超临界流体
特殊流体Ⅰ-超临界流体

超临界流体的特性
高密度
超临界流体的密度接近液体,具有较 高的溶解能力,可以用于萃取和分离 等过程。
低粘度
超临界流体的粘度较低,具有较好的 流动性,有利于传热和传质。
高扩散系数
超临界流体的扩散系数接近气体,可 以快速传递物质,有利于混合和分散。
介电常数可调
超临界流体的介电常数可以通过温度 和压力的调节来改变,从而影响其溶 解能力和化学反应性能。
03
密度和粘度的变化会影响超临界流体的传热和传质特性,进 而影响其在工业应用中的性能。
相行为和相平衡
超临界流体在压力和温度变化时表现 出复杂的相行为。在某些条件下,超 临界流体可以与气体或液体共存,形 成多相混合物。
相平衡受到压力、温度和流体的种类 等因素的影响。了解相平衡有助于预 测和控制超临界流体在分离、反应和 萃取等过程中的应用。
物质分离
萃取分离
超临界流体可作为萃取剂, 用于分离和纯化混合物中 的目标组分。
吸附分离
超临界流体可以作为吸附 剂,用于吸附和分离气体 或液体混合物中的杂质。
精馏分离
超临界流体可以用于精馏 过程,降低能耗和提高分 离效率。
传热
强化传热
超临界流体具有较高的热传导性和热容量,可用 于强化传热过程,提高换热效率。
能量。
在某些应用中,如超临界流体萃 取和反应中,表面张力的大小会
影响到相分离和传质过程。
05
超临界流体的实验研究方法
实验设备
高压反应釜
用于模拟超临界流体的压力和温 度条件,是实验中必不可少的设
备。
热力学测量仪
用于测量超临界流体的热力学性质, 如密度、压力、温度等。
光学仪器
用于观察超临界流体在实验过程中 的光学性质变化。
超临界流体

超临界流体超临界二氧化碳纯净的物质随着温度和压力的变化,会呈现出气体、液体或固体不同的物理状态;当到达某个特定的温度和压力时,物质的气、液界面会消失,此时的温度称为临界温度T,而压力称为临界压力P超临界流体(SCF)就是温度和压力处于临界点以上的流体超临界流体是一种兼具气体和液体物理性质的独特流体。
它本质上仍是一种气态,但又不同于常规意义上的气体,而是一种稠密的气态。
超临界流体的密度与液体相似,粘度和扩散能力与气体相似,表面张力近似于零,有利于流体的传质和传热。
此外,超临界流体的介电常数对压力非常敏感,可以通过改变压力来调控超临界流体溶解不同极性的物质。
超临界流体还具有较强的可压缩性,略微地调节温度和压力就能改变超临界流体的物理性质超临界二氧化碳(scCO2)是应用最为广泛的一种。
因为scCO2除了拥有超临界流体本身所具有的渗透性能好、传质系数高等特点之外,还拥有以下优点:(1)CO2达到超临界状态的条件很温和,只需温度超过31.1 °C、压力超过7.38MPa,CO2就会转变为scCO2;(2)CO2来源广泛,价格低廉,并且无色、无毒、无臭、无害,具有优异的化学稳定性,不会发生燃烧和爆炸;(3)scCO2在聚合物熔体中具有较高的扩散性和溶解度,对聚合物熔体有较强的增塑作用,从而能显著降低熔体黏度,提高熔体的流动性;(4)scCO2能轻易从产物中脱除,完全省去了使用传统溶剂带来的复杂的后处理工序,并且还能实现对CO2的回收利用;(5)CO2分子成对称结构,极性较弱,它能溶解非极性或极性较弱的物质,可以作为反应介质或萃取剂;若要溶解无机盐类或极性较强的物质,需要在scCO2中加入一些极性共溶剂(如乙醇)来改善它的极性。
1.3 scCO2在聚合物发泡中的应用聚合物发泡材料是指以聚合物(塑料、橡胶、弹性体或天然高分子材料)为基体而内部含有无数气泡的多孔材料,也可以视为以气体为填料的复合材料。
超临界流体

超临界流体(SCF)是指处于临界温度(Tc)和临界压力(Pc)以上的流体,其具有如下特性:(1)粘度低,传质阻力小,扩散速度快,是化学反应的良好介质;(2)常温常压下不相溶的物质在超临界状态下具有较大的溶解度,可形成均相体系,减小了相间传质阻力,大大提高了反应速度;(3)温度或压力的微小变化可以使流体的性质(如密度等)发生很大的变化,从而使溶质在超临界流体中的溶解度发生很大的变化,这样有利于溶剂和溶质或催化剂分离。
超临界流体中的解聚反应,主要利用超临界流体优异的溶解能力和传质性能,分解或降解高分子废弃物,得到气体、液体和固体产物。
在日常生活中,有大量的塑料废弃物产生,在聚合物的生产过程及塑料加工中,也会产生一些废料、边角料等。
采用超临界解聚技术可使之转换为燃料油或各种化学原料,也可还原成化学单体循环使用,这样一方面消除了大量塑料废弃物对环境的严重污染,另一方面将塑料废弃物重新回收利用,防止了资源浪费。
水是自然界最重要的溶剂,它无毒、无害、与许多反应物无需分离,是重要的反应介质。
水的临界温度为374.3℃,临界压力为22.05 MPa。
超临界水具有常态下有机溶剂的性能,溶解有机物,而不溶解无机物,还具有氧化性。
它可以与空气、氮气、氧气、和二氧化碳等气体完全互溶,所以它可以作为氧化反应的介质,又可以直接进行氧化反应。
但对废旧塑料的分解,也有好多人用超临界甲醇、乙醇。
由于塑料的化学成分不一样,所以进行超临界水解时所采取的实验方案也不一样,要对各种废旧塑料进行分类处理。
我所选取的主要有三类废旧塑料类型分别是PET、PE、PS。
1、PETPET 是聚对苯二甲酸乙二醇酯的简称,广泛应用于合成纤维、薄膜、塑料。
其中PET 塑料瓶在世界范围内有逐步取代玻璃瓶成为市场上主要饮料容器的趋势。
因此,它的回收再利用技术受到人们的广泛重视。
以超临界水为溶剂,能够快速分解PET 和回收单体对苯二甲酸(PTA)。
用超临界水水解得到的单体产物正是各种聚合物的原材料,而且回收的对苯二甲酸纯度为99%。
超临界流体

超临界流体技术超临界流体(Supercritical Fluids, SCF), 是一种在温度和压力处于其临界点以上时兼具液体和气体双重物性的流体。
超临界流体技术就是利用超临界流体的这种特性发展起来的一门新兴技术, 因其清洁、安全、高质、高效等显著优势超越传统技术, 被誉为“超级绿色”技术。
1超临界流体中的化学反应1.1 超临界CO2聚合反应超临界CO2(SC-CO2)用于聚合反应,是基于其惰性不会引起链转移,通过减压即可实现反应-分离一体化。
目前在SC-CO2中进行的的聚合反应大多为非均相聚合,主要有悬浮聚合、乳液聚合、分散聚合和沉淀聚合,前3 种都需要合成能溶于SC-CO2的特殊表面活性剂,而且聚合物很难与这些表面活性剂分离纯化,所以研究在SC-CO2中的沉淀聚合反应更具有实用意义。
SC- CO2具有双极性, 其极性与烃类相近。
根据相似相溶原理, 其既可溶解非极性物质, 又可溶解极性物质, 还能溶解许多有机固体。
对气体如H2、O2等也具有很高的溶解性, 有利于诸如催化加氢、催化氧化等反应的进行。
在不对称的催化加氢反应、Diels-Alder反应、氢甲酰化反应、烯烯键易位反应、烯环化反应等方面都有应用研究。
如, Burk[1]小组以SC-CO2为溶剂极大地提高了烯烃衍生物不对称氢化的对映性选择(99.5%,ee), 这无疑是一个完美的绿色合成反应。
陈坚等[2]在超临界CO2中进行氯乙烯(VC)自由基聚合,对聚合过程和树脂颗粒特性进行了研究。
实验发现聚合存在诱导期和自动加速效应,聚合初期一次加入引发剂、提高聚合压力和搅拌都会使转化率降低。
压力提高使得凝胶效应减弱,导致聚合转化率降低;聚合过程中部分自由基和活性聚合物链被聚合物包埋、金属釜壁面对自由基和活性聚合物链的终止作用也导致聚合转化率降低。
聚合成粒过程有别于传统氯乙烯悬浮聚合,树脂由初级粒子聚集而成,且多孔疏松、无皮膜。
1.2超临界水氧化的应用超临界水氧化是一种对有机物废料处理的新技术[3,4],它的优点是被处理的有机物和氧在超临界水中可以完全混溶, 即反应过程中反应物成单一流体相; 并且在温度足够高( 400~ 600℃ ) 时, 氧化速度非常快, 可以在几分钟内将有机物完全转化为CO2和水。
超临界流体技术

超临界流体的性质
SCF传递特性与气体,液体的特征比较
物理特征 密度 (g/cm3) (0.6-2)*10-3 0.6-1.6 0.2-0.9 粘度 (g/cm/s) (1-4)*10-4 扩散系数 (cm2/s) 0.1-0.4
气体 液体 SCF
(0.2-3)*10-2 (0.2-2)*10-5 (1-9)*10-4 (0.2-0.7)*10-3
超临界流体的发展
• 1822年,Cagniard 首次报道物质的临界现象。 • 1879年,Hanny and Hogarth 发现了超临界流 体对固体有溶解能力,为超临界流体的应用提供 了依据。 • 1970年,Zosel采用sc-CO2萃取技术从咖啡豆提 取咖啡因,从此超临界流体的发展进入一个新阶 段。 • 1992年,Desimone 首先报道了sc-CO2为溶剂, 超临界聚合反应,得到分子量达27万的聚合物,开 创了超临界CO2高分子合成的先河。
3 溶剂没有污染,可以回收使用,简单方便,节省能源。
超临界流体在制备超细颗粒及薄膜中的应用
快 速 膨 胀 过 程
在超临界状态时,当含有难挥发组 分的SCF通过毛细管等作快速膨胀,在 极短时间内〈10-5 S,组分在SCF中过饱 和度高达106倍,形成大量晶核,因而 得到粒径分布很窄,粒度极细的超细颗粒。 主要用于陶瓷原料SiO2,CeO2等超细颗 粒的制备. 将含有某种溶质的溶液通过喷入 SCF,溶剂与SCF互溶后,使溶液稀释膨 胀,降低原溶剂对溶质的溶解度,在短时 间内形成较大的过饱和度而使溶质结晶 析出,得到纯度高,粒径分布均匀的超 细颗粒。该技术成功用于微球制备,多微 孔纤维和空心纤维的制备.
超临界流体技术
主要内容
• 超临界流体的概述 • 超临界流体的发展 • 超临界流体的性质及应用
超临界流体的制备和应用

超临界流体的制备和应用超临界流体是介于气体-液体两相之间的一种物质状态,具有一定的密度、粘度和溶解能力。
在高温高压条件下,超临界流体的物理和化学性质会发生巨大的变化,因此被广泛应用于化学、材料、环保等领域。
本文将就超临界流体的制备和应用做详细阐述。
一、超临界流体的制备1.常用制备方法超临界流体的制备主要有三种方法:压缩法、膨胀法和化学反应法。
压缩法是以高压为主要手段,通过升高温度和压力把物质压缩至临界状态,进而转化为超临界流体。
膨胀法则是通过突然减压使液体在恒压下变为超临界流体。
化学反应法是利用化学反应产生的反应热,让物质在特定温度、压力条件下形成超临界流体。
2.影响制备的因素超临界流体的制备还受到多种因素的影响,如温度、压力、溶剂、反应物浓度等。
温度和压力是制备超临界流体的关键参数,它们的选择会直接影响反应物的状态和产率。
不同的溶剂或反应物浓度也会对制备过程产生重要影响,不同的配料比例可能导致制备结果不同。
二、超临界流体的应用1.化学领域超临界流体在化学领域有多种应用,例如在化学反应和催化领域中,超临界流体既可以作为反应介质,也可以作为溶剂。
在超临界流体中,反应速率和收率往往比传统的反应更高。
此外,超临界CO2在芳香化合物的合成和分离、核磁共振(NMR)试样制备、高质量蛋白质像素制备等领域也得到了广泛应用。
2.材料领域超临界流体在材料领域有突出应用,尤其是在金属纳米材料的制备中。
由于超临界反应物的可控性和高分散能力,超临界流体可以用于制备纳米颗粒、纳米形貌粉体、高含量纳米抗菌材料等。
此外,超临界流体还广泛应用于制备二氧化硅和其他纳米材料的天然长晶体的制备过程中,可以实现高质量、高效率、低成本的纳米材料制备。
3.环保领域超临界流体在环保领域也有重要作用,主要体现在有机污染物的净化和绿色化学反应中。
超临界流体具有高渗透能力和高粘度,可以有效地替代传统有毒有机溶剂,达到绿色化学反应的目的。
同时,超临界流体通过溶解和分离技术可以实现高品质的固体废物的回收利用,有重要的环保价值。
超临界流体工作原理

超临界流体工作原理超临界流体是一种特殊的物质状态,具有独特的工作原理。
在超临界流体的应用领域,如化工、能源、环保等领域,了解其工作原理对于优化设计和提高效率具有重要意义。
本文将详细介绍超临界流体的工作原理,并探讨其在实际应用中的优势和挑战。
一、超临界流体的定义和特性超临界流体是介于气体和液体之间的状态,其温度和压力高于临界温度和临界压力。
在超临界状态下,物质的密度和溶解能力显著增强,同时具有气体和液体的特性。
超临界流体具有高扩散性、低粘度、可逆性等特点,这些特性使其在化工领域有广泛的应用前景。
二、超临界流体的工作原理超临界流体的工作原理主要涉及两个方面:物质状态的改变和传质动力学过程。
1. 物质状态的改变在超临界状态下,物质的密度和溶解能力显著增强,导致其物理性质发生了显著变化。
以超临界二氧化碳为例,当温度高于31.1摄氏度,压力高于7.38MPa时,二氧化碳由气体转变为超临界流体状态。
超临界流体的密度与压力关系不再遵循气体状态方程,而是受到物质的组成、温度和压力等因素的综合影响。
2. 传质动力学过程超临界流体以及超临界流体中的溶质在流动过程中表现出与传统流体不同的传质性能。
超临界流体具有较高的溶质扩散性能和渗透能力,能够渗透到固体颗粒内部,实现有效的质量传递和反应。
此外,超临界流体对于溶解、吸附等反应过程的控制也更加灵活,可通过调节温度、压力和溶质浓度等参数实现精确的控制。
三、超临界流体的应用超临界流体具有独特的物理性质和传质特性,因此在多个领域有着广泛的应用。
1. 化学合成与催化超临界流体在化学合成和催化反应中可作为优良的溶剂和反应介质。
超临界流体具有较好的传质性能,可提高反应速率、增加溶质溶解度,同时避免了传统有机溶剂的环境问题和废弃物处理难题。
2. 材料制备与加工超临界流体在新材料制备和加工领域有着广泛应用。
通过超临界流体的溶解和渗透能力,可以实现对纳米材料的制备、表面改性和组装。
此外,超临界流体还可用于材料的成膜、纳米颗粒的制备等过程。
超临界流体技术

固体溶质在超临界流体中的溶解度由操作温度和压力调节。溶解在高密度超临界流体中的溶质通过喷嘴快速 降压后,固体溶质能够以较细颗粒结晶析出并提供了一项超细颗粒的制造技术。该技术包含两种实现方式,既快 速膨胀法及抗溶剂法。研究者们在色素、药物的超细颗粒制造做了大量的工作,且制备了尺寸可控,性能优异的 超细颗粒。 以超临界流体为溶剂制备锂电池中正极材料LiCo-PO4,得到易于控制粒径分布的纳米棒和纳片,明 显改善了电池的循环和倍率等电化学性能。
超临界流体技术
化学术语
01 基本概念
0ቤተ መጻሕፍቲ ባይዱ 技术
目录
02 特点 04 技术优点及展望
部分物质随着温度和压力的变化,会相应的呈现出固态、液态、气态三种相态。三态之间相互转化的温度和 压力称为三相点,除三相点外,分子量不太大的稳定物质还存在一个临界点,临界点由临界温度、临界压力和临 界密度构成,当把处于气液平衡的物质升温升压时,热膨胀引起液体密度减少,压力升高使气液两相的界面消失, 成为均相体系,这一点成为临界点。
技术优点及展望
由于超临界流体的特殊物理化学性质,超临界流体技术的应用领域不断扩展,超临界流体除了应用于传质萃 取外,还可用于颗粒制造、环境治理、化学反应和节能方面。从超临界流体的基础数据、工艺流程到装置设备等 方面的研究也不断地深入和全面,但对超临界流体萃取本身的认识不够透彻,在化学反应、传质与传热过程的理 论未达成共识等问题仍需深入研究,且超临界流体操作压力较高,对设备要求高,使得一次性投资较大问题限制 其工业化规模的应用,有待进一步解决。随着国内外学者对超临界流体的更深入的研究,超临界流体技术的工业 化将具有更好的应用前景,给社会带来更大的经济效益和环保效益。
概述图引自。
基本概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超临界流体是温度和压力同时高于临界值的流体,亦即压缩到具有接近液体密度的气体。
超临界流体的密度和溶剂化能力接近液体,粘度和扩散系数接近气体,在临界点附近流体的物理化学性质随温度和压力的变化极其敏感,
在不改变化学组成的条件下,即可通过压力调节流体的性质。
特性
总体而言,超临界流体的属性介于气体和液体之间。
在表1中,显示一些常用作超临界流体的化合物之临界性质。
乙烷(C2H6)30.07 305.3 4.87 (48.1) 0.203
丙烷(C3H8)44.09 369.8 4.25 (41.9) 0.217
乙烯(C2H4)28.05 282.4 5.04 (49.7) 0.215
丙烯(C3H6)42.08 364.9 4.60 (45.4) 0.232
甲醇(CH3OH)32.04 512.6 8.09 (79.8) 0.272
乙醇(C2H5OH)46.07 513.9 6.14 (60.6) 0.276
丙酮(C3H6O)58.08 508.1 4.70 (46.4) 0.278
在超临界流体中没有液体及气体之间的相界限,因此不存在表面张力,借由改变流体的压力和温度,可以微调超临界流体的特性,使其更类似液体或是气体。
物质在流体中的溶解度即为重要特性之一,在固定温度条件下,溶解度会随流体密度增加而增加。
由于密度也是随压力增加而增加,因此在压力增加时,溶解度也会增加。
溶解度和温度的关系比较复杂,在固定密度条件下,溶解度会随温度增加而增加,
但靠近临界点时,温度轻微的增加会造成密度的大幅下降。
因此靠近临界点时,随着温度上升,溶解度会先下降,然后再上升[2]。
二种以上的超临界流体,只要温度及压力超过其临界点,二者均可以混溶,形成单一相的混合物。
二元混合物的临界点可以用二超临界流体的临界温度及临界压力,再配合加权平均求得:
T c(mix) = (A的莫耳分率)x A的T c + (B的莫耳分率)x B的T c 若要有更高的准确度,临界点可以用像是彭-罗宾逊物态方程式之类的状态方程求得,或是用基团贡献(group contribution)法求得,像密度之类的其他性质,也可以用状态方程来计算[3]。
超临界流体萃取。