工科数学分析全微分
《高等数学》课件 3第三节 全微分 ppt

[ f ( x, y y) f ( x, y)]
fx ( x 1 x, y y) x f y ( x, y 2 y) y
( 0 1 , 2 1 )
z [ f x ( x0 , y0 ) ]x [ f y ( x0 , y0 ) ]y
lim
x0
0,
lim
x0
则该函数在该点偏导数 z , z 必存在,且有
x y
d z z x z y. x y
证: 由全增量公式
令y 0,
得到对 x 的偏增量
xz f ( x x, y) f (x, y) Ax o ( x )
z lim x z A
x x0 x 同样可证 z B , 因此有
二、可微分存在的条件
一元函数: 可微 可导
可微分的必要条件: 可微分
偏导数存在
定理1. 若函数 z = f (x, y) 在点(x, y) 可微分, 则该函数在 该点偏导数 z , z 必存在,且有
x y
d z z x z y. x y
定理1(必要条件) 若函数 z = f (x, y) 在点(x, y) 可微分,
xy ( x)2 ( y)2
xy
( x)2 ( y)2
0
o( ) 因此,函数在点 (0,0) 不可微 .
可微分的充分条件: 偏导数连续
可微分
定理2. 若函数
的偏导数 z , z x y
在点( x, y) 连续, 则函数在该点可微分, 且
z z x z y o( ).
x y
三、全微分的计算
V πr 2h. 记 r,h 和V 得增量依次为Δ r,Δ h和Δv,则有
ΔV dV VrΔr VhΔh 2π rhΔr π r2Δh. 把 r 20,h 100,Δ r 0.05,Δ h 1 代入,得
全微分的定义公式

全微分的定义公式全微分是描述多元函数在其中一点处的微小变化的概念。
它可以帮助我们理解多元函数的性质,并在一些应用中起到重要的作用。
首先,我们先回顾一元函数的微分的定义。
对于一个一元函数f(x),如果在其中一点x=x0处,函数f(x)的微分存在,则微分df(x0)可以表示为:df(x0) = f'(x0)dx其中,f'(x0)是f(x)在x=x0处的导数,dx是自变量的一个微小增量。
对于多元函数来说,全微分的定义与一元函数类似,只是自变量有多个。
假设有一个二元函数f(x, y),我们希望求解在点(x0, y0)处的全微分。
全微分df(x0, y0)可以表示为:df(x0, y0) = (∂f/∂x),x=x0,y=y0 * dx + (∂f/∂y),x=x0,y=y0 *dy其中,∂f/∂x和∂f/∂y分别表示f(x, y)对x和y的偏导数,dx和dy分别为自变量x和y的微小增量。
这个定义可以推广到任意多个自变量的情况。
这个定义稍微有点抽象,我们可以通过一个具体的例子来说明。
假设有一个二元函数f(x,y)=x^2+y^2,在点(1,2)处求解全微分。
首先,求解∂f/∂x和∂f/∂y。
对于f(x,y)=x^2+y^2,我们可以得到:∂f/∂x=2x∂f/∂y=2y然后,我们给定自变量的微小增量dx和dy的值,比如dx=0.1,dy=0.2、代入上式,就可以计算出df(x0, y0)的值:df(x0, y0) = (∂f/∂x),x=1,y=2 * dx + (∂f/∂y),x=1,y=2 * dy=2*1*0.1+2*2*0.2=0.6所以,在点(1, 2)处,函数f(x, y)的全微分df(x0, y0)的值为0.6、这个值表示函数在这个点处的微小变化。
df(x10, x20, ..., xn0) = (∂f/∂x1),x1=x10, x2=x20, ...,xn=xn0 * dx1 + (∂f/∂x2),x1=x10, x2=x20, ..., xn=xn0 * dx2 + ... + (∂f/∂xn),x1=x10, x2=x20, ..., xn=xn0 * dxn其中,∂f/∂xi表示f(x1, x2, ..., xn)对xi的偏导数,dxi表示自变量xi的微小增量。
全微分和微分

全微分和微分全微分和微分是微积分中的两个重要概念。
在学习微积分时,这两个概念经常被提到,但是很多人可能不太清楚它们之间的区别和联系。
本文将从定义、性质和应用等方面介绍全微分和微分。
一、全微分全微分是一个函数在自变量改变一个无限小量时,所引起的函数值的改变量与自变量的改变量之比。
如果这个比值存在极限,那么这个函数就是全微分可导的。
全微分的定义可以表示为:df=f’(x)dx其中,f’(x)表示函数f(x)的导数,dx表示自变量x的无限小变化量,df表示函数f(x)在x处的全微分。
从定义上看,全微分是一个函数在某个点上的微小变化量,它是一个实数。
全微分具有以下性质:1. 全微分是一个线性函数。
2. 全微分是一个一阶微分形式。
3. 全微分是一个标量。
4. 全微分是一个恰当形式。
全微分在物理学、经济学和统计学等领域中有广泛的应用。
例如,在物理学中,全微分可以用来计算热力学系统的内能;在经济学中,全微分可以用来描述边际效用;在统计学中,全微分可以用来计算方差。
二、微分微分是一个函数在某一点上的导数,也就是函数的变化率。
微分的定义可以表示为:dy=f’(x)dx其中,f’(x)表示函数f(x)在x处的导数,dx表示自变量x的无限小变化量,dy表示函数f(x)在x处的微分。
从定义上看,微分是一个函数在某一点上的变化率,它也是一个实数。
微分具有以下性质:1. 微分是一个线性函数。
2. 微分是一个一阶微分形式。
3. 微分是一个标量。
4. 微分是一个非恰当形式。
微分在物理学、工程学和金融学等领域中有广泛的应用。
例如,在物理学中,微分可以用来计算速度和加速度;在工程学中,微分可以用来描述电路和控制系统;在金融学中,微分可以用来计算期权价格和风险价值。
三、全微分和微分的区别和联系从定义上看,全微分和微分都是一个函数在某一点上的变化量。
但是,它们之间还存在一些区别和联系。
1. 区别全微分和微分的主要区别在于它们所描述的函数不同。
高等数学8-3全微分讲解

dz z dx z dy . x y
二元函数的全微分等于它的两个偏微分之和这件事称为 二元函数的微分符合叠加原理.
叠加原理也适用于二元以上的函数, 例如uf(x, y, z)的全 微分为
du
u x
dx
u y
dy
u z
dz
.
设
zf(x,
y),
则
dz
z x
dx
如果函数zfxy的偏导数xz??yz??在点xy连续?叠加原理按着习惯xy分别记作dxdy并分别称为自变量的微分这样函数zfxy的全微分可写作二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理
§8.3 全微分及其应用
一、全微分的定义 二*、全微分在近似计算中的应用
一、全微分的定义
偏增量与偏微分
根据一元函数微分学中增量与微分的关系, 有
f(xx, y)f(x, y)fx(x, y)x, f(x, yy)f(x, y)fy(x, y)y, f(xx, y)f(x, y) ——函数f(x, y)对x的偏增量
f(x, yy)f(x, y) ——函数f(x, y)对y的偏增量
zdzfx(x, y)xfy(x, y)y, f(xx, yy)f(x, y)fx(x, y)xfy(x, y)y.
例4 有一圆柱体, 受压后发生形变, 它的半径由20cm增大
到20. 05cm, 高度由100cu减少到99cm. 求此圆柱体体积变化
的近似值.
解 设圆柱体的半径、高和体积依次为r、h和V,
x2 y1
e2
,
z y
x2 y1
2e2
,
dze2dx2e2dy.
全微分 公式

全微分公式全微分是微积分中的一个重要概念,它描述了函数在某一点的微小变化与自变量的微小变化之间的关系。
全微分的计算方法可以通过泰勒展开式来推导得到。
在物理学、工程学和经济学等领域,全微分在描述变量之间的关系和进行近似计算时都起到了重要作用。
在微积分中,全微分是指一个函数在某一点的微小变化与自变量的微小变化之间的关系。
全微分的计算方法可以通过泰勒展开式来推导得到。
假设有一个函数f(x,y),其自变量分别为x和y,全微分可以表示为df = ∂f/∂x * dx + ∂f/∂y * dy。
其中,∂f/∂x和∂f/∂y 分别表示函数f对x和y的偏导数,dx和dy分别表示自变量x和y 的微小变化量。
全微分的概念可以用来描述函数在某一点的局部变化情况。
例如,假设有一个函数f(x,y) = x^2 + y^2,当x和y分别发生微小变化dx和dy时,函数值的变化量df可以用全微分来表示。
根据全微分的定义,df = 2x * dx + 2y * dy。
这个式子说明了函数值的微小变化量df与自变量的微小变化量dx和dy之间的关系。
全微分的计算方法可以通过泰勒展开式来推导得到。
泰勒展开式可以将一个函数在某一点附近进行近似表示。
假设有一个函数f(x,y),在点(x0,y0)处进行泰勒展开,展开的结果可以表示为f(x,y) ≈ f(x0,y0) + ∂f/∂x(x0,y0) * (x - x0) + ∂f/∂y(x0,y0) * (y - y0)。
其中,∂f/∂x(x0,y0)和∂f/∂y(x0,y0)分别表示函数f在点(x0,y0)处的偏导数。
通过将自变量的微小变化量dx和dy带入泰勒展开式,可以得到函数值的微小变化量df。
全微分在物理学、工程学和经济学等领域都有广泛的应用。
在物理学中,全微分可以用来描述物理量之间的关系,例如速度、加速度和力之间的关系。
在工程学中,全微分可以用来描述工程系统的变化情况,例如电路中电压和电流之间的关系。
高等数学(第三版)课件:全微分

从而
f (x x, y y) f (x, y) f x(x, y)x f y(x, y)y
例4 求(1.98)4.01 的近似值.
解 (1.98)4.0可1 看作函数 z x y在 x x 1.98 y y 4.01的函数值.取 x 2 x 0.02
全微分
一、全微分的定义 二、全微分在近似计算中的应用
一、全微分的定义
1、引例 一矩形金属片,长为 x ,宽为y ,则面积z xy
当边长x, y分别有增量x,y 时,面积的增量为 z (x x)( y y) xy yx xy xy
z称为函数z xy的全增量,记 (x)2 (y)2
y 4, y 0.01
f x(2,4) yx y1 x2 32 f y(2,4) x y ln x x2 11.09
y4
y4
(1.98)4.01 f x(2,4)x f y(2,4)y f (2,4)
32 (0.02) 11.09 0.0116 15.47
在点 (x, y)处必可微.
例1 求函数 z x y 的全微分.
解
z yx y1 x
z x y ln x y
d z z d x z d y x y
yx y1 d x x y ln x d y
注:关于二元函数全微分的定义及可微分的充
分条件可以完全类似地推广到三元和三元以上
的多元函数.
例2:计算 u
处的两个偏导数 z
x
、yz
必都存在.
(2)函数 z f (x, y) 在点 (x, y) 处可微,则函数在点(x, y)
处连续.
高等数学 全微分PPT课件

由微分定义 : lim z lim ( A x B y ) o ( ) 0
x 0 y 0
0
得
x 0 y 0
lim f ( x x, y y ) f ( x, y )
lim 0 , lim 0 x 0 x 0 y 0 y 0
z f x ( x, y ) x f y ( x, y ) y x y
lim 0 , lim 0 x 0 x 0 y 0 y 0
2. 重要关系: 函数连续 函数可微 函数可导
偏导数连续
机动 目录 上页 下页 返回 结束
思考与练习 1. P72 题 1 (总习题八)
2. 选择题 函数 z f ( x, y ) 在 ( x0 , y0 ) 可微的充分条件是( D )
将 x , z 看成常数: u x w , w y z .
u y
( 2 , 2 ,1)
yz yz x ln x z y z 1 ( 2, 2,1) ( x ) ( 2, 2,1) y 4 ln 2
将 x , y 看成常数:u x w , w y z .
u y
第三节
2. 可微的条件
全微分
1. 全微分的定义
3. 连续、可导与可微的关系
4. 小结、作业
一元函数 y = f (x) 的微分
y Ax o( x)
d y f ( x)x
应用
近似计算 估计误差
机动
目录
上页
下页
返回
结束
一、全微分的定义
第四节 全微分

z f ( x0 x , y0 y ) f ( x0 , y0 )
f x ( x0 , y0 ) x f y ( x0 , y0 ) y o( )
当 | x |, | y | 充分小时,
x y z [ f x (0,0) x f y (0,0) y ] , 2 2 ( x ) ( y )
x 0 y x
f x (0,0) f y (0,0) 0 ,
lim
x y x 2 y 2
/ x 2 y 2 lim
精确值
0.940326993
12
练习:
P324 习题七
13
f x (1, 2) y x y 1
(1, 2 ) y 2 , f y (1, 2) x ln x (1, 2) 0 ,
f (1, 2) 1 , 所以
(0.97) 2.02 f (1, 2) f x (1, 2) x f y (1, 2) y
1 2 (0.03) 0 0.02 0.94 .
2
二、函数可微的必要条件及充分条件
定理 如果函数 z f ( x , y ) 在点 ( x0 , y0 ) 可微分, 则函 数在该点连续.
证明 事实上, 若 z Ax By o( ) ,
则 lim z 0 , 即
0
( x , y ) ( 0 , 0 )
lim
f ( x0 x , y0 y ) lim[ f ( x0 , y0 ) z ]
0
f ( x 0 , y0 ) ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元函数 y = f (x) 的微分
y Ax o(x)
dy f (x)x 应用
本节内容:
一、全微分的定义
近似计算 估计误差
二、全微分在数值计算中的应用
一、全微分的定义
定义: 如果函数 z = f ( x, y )在定义域 D 的内点( x , y )
处全增量
可表示成
z Ax B y o( ) ,
z xexy y
Байду номын сангаас
z x
(2,1)
e2 ,
z y
(2,1) 2e2
例2. 计算函数
的全微分.
解: d u
(
1 2
cos
y 2
zeyz
)d y
二、全微分在数值计算中的应用
1. 近似计算 由全微分定义
z fx (x, y)x f y (x, y)y o()
dz
可知当 及 较小时, 有近似等式:
其中 A , B 不依赖于 x , y , 仅与 x , y 有关,则称函数
f ( x, y ) 在点( x, y) 可微,
称为函数 f (x, y)
在点 (x, y) 的全微分
记作 dz d f Ax By
若函数在域 D 内各点都可微, 则称此函数在D 内可微.
由微分定义 :
lim z lim (Ax By ) o ( ) 0
则 1.042.02 f (1.04, 2.02 )
1 2 0.04 0 0.02 1.08
内容小结
1. 微分定义:
z
o() (x)2 (y)2
d z fx (x, y)dx f y (x, y)dy
2. 重要关系: 函数连续
偏导存在
函数可微
偏导数连续
3. 微分应用 近似计算
当 (x)2 (y)2 0 时是无穷小量 ; (D) z f x(x, y)x f y (x, y)y
(x)2 (y)2
当 (x)2 (y)2 0 时是无穷小量 .
2. 设
解: f (x,0,0) x 3 cos x
注意: x , y , z 具有 轮换对称性
fx
(0,0,0)
fx (x, y)x f y (x, y)y
fx (x, y)x f y (x, y)y
思考与练习
1. 选择题
函数 z f (x, y)在 (x0, y0 ) 可微的充分条件是( D )
( A) f (x, y) 在 (x0 , y0 ) 连续 ; (B) fx(x, y), f y (x, y) 在 (x0 , y0 )的某邻域内存在 ; (C) z fx(x, y)x f y (x, y)y
定理2 (充分条件) 若函数
的偏导数 z , z
在点 (x, y) 连续, 则函数在该点可微分.
x y
证:z f (x x, y y) f (x, y)
[ f (x x, y y) f (x, y y)]
[ f (x, y y) f (x, y)]
fx (x 1x, y y)x f y (x, y 2y)y ( 0 1 , 2 1 )
z d z fx (x, y)x f y (x, y)y
(可用于近似计算; 误差分析)
f (x x, y y) f (x, y) fx (x, y)x f y (x, y)y
(可用于近似计算)
例3.计算
的近似值.
解: 设 f (x, y) x y,则
f x (x, y) y x y1 , f y (x, y) x y ln x 取 x 1, y 2, x 0.04, y 0.02
反例: 函数 f (x, y)
xy , x2 y2
0,
x2 y2 0
x2 y2 0
易知 fx (0, 0) f y (0, 0) 0 , 但
z [ fx ( 0, 0)x f y ( 0, 0)y]
x y (x)2 (y)2
x y (x)2 (
y)
2
0
o( ) 因此,函数在点 (0,0) 不可微 .
[ fx (x, y) ]x [ f y (x, y) ]y
lim
x0
y 0
0,
lim
x0
y 0
0
z
fx (x, y)x f y (x, y)y x y
lim
x0
y 0
0,
lim
x0
y 0
0
注意到
x y
, 故有
z f x (x, y)x f y (x, y)y o( )
3
x cos
x
x
0
1 4
利用轮换对称性 , 可得
f y (0,0,0)
f z (0,0,0)
1 4
d f (0,0,0) f y (0,0,0) d x f y (0,0,0) d y f z (0,0,0) d z
1 (d x d y d z) 4
3. 证明函数
在点 (0,0) 连续且偏导数存在, 但偏导数在点 (0,0) 不连
x0
0
y0
得 lim f (x x, y y) f (x, y)
x0 y0
即 函数zz = ff(x(,xy) 在点x, y(x, y)y可) 微f (函x,数y)在该点连续
下面两个定理给出了可微与偏导数的关系:
(1) 函数可微
偏导数存在
(2) 偏导数连续
函数可微
定理1(必要条件) 若函数 z = f (x, y) 在点(x, y) 可微 ,
则该函数在该点偏导数
必存在,且有
d z z x z y x y
证: 由全增量公式
得到对 x 的偏增量
x x
x
z lim x z A x x0 x
同样可证 z B , 因此有 y
令y 0, Ax o ( x )
注意: 定理1 的逆定理不成立 . 即:
偏导数存在函数 不一定可微 !
所以函数
在点 可微.
推广: 类似可讨论三元及三元以上函数的可微性问题.
例如, 三元函数 u f (x, y, z) 的全微分为 d u u x u y u z x y z
习惯上把自变量的增量用微分表示, 于是
du
u d z z
例1. 计算函数
解: z yexy , x
在点 (2,1) 处的全微分.
续, 而 f (x, y) 在点 (0,0) 可微 .
证: 1) 因 xy sin 1
xy x2 y2
x2 y2
2
所以
lim f (x, y) 0 f (0,0)
x0 y0
故函数在点 (0, 0) 连续 ;
2) f (x,0) 0, fx (0,0) 0 ; 同理 f y (0,0) 0.