16.3 二次根式的加减第1课时 二次根式的加减

合集下载

16.3 二次根式的加减

16.3  二次根式的加减
16.3
二次根式的加减
第2课时
(1) 27 3 【例题】
6
2
Байду номын сангаас
(1) 27 3 6 2
3 3 (1 ) 27 6 3 6 2 ( 2) 】计算 3 3 6 【例 ( 2)1 3 3 8 8 3 2) 3 3 (3)( 48 ( 27 )83 48 27 ) 3 6 (3)( 1. 注意运算顺序
9 12 5 20 29 12 5
整式运算的乘法公式在二次根式的运算中仍然适用.
【跟踪训练】
1.计算
1 2
2 3 3
3
32 2

2 2
【解析】
2
3 2 2
(1)原式 2 2

3 3
2
2
8 27 19
(2)原式 6 4 2 3 2 4 2 2

5 6
5 6 11
【解析】选C.在选项C中,
2 2 2 ( 3) (a b)(a b) 3(a b ). 原式=
2.(德化·中考)下列计算正确的是( A. 20 2 10 C. 4 2 2 【解析】选B.选项A中 B. 2 3

6
2 D. ( 3) 3
45 30 10 50
95 30 10
1.下列计算正确的是(

A. 102 82 102 82 10 8 2
B. 2 3 2

2 3 2 4 3 2 2
2
C. 3 a b 3 a b 3 a 2 b 2 D.

人教版八年级下册数学《二次根式的加减》二次根式说课复习教学课件

人教版八年级下册数学《二次根式的加减》二次根式说课复习教学课件
a
(a 0, b 0)
b
b
问题4
在进行二次根式的乘除运算时,需要注意什么?
需要注意的是:运算结果要化成最简形式.
新课导入
问题5 二次根式的加减运算法则是什么?
a c b c ( a b) c
问题6
二次根式的加减运算法则的依据是什么?
加减法则的依据是:乘法分配律.
知识讲解
在七年级我们就已经学
第 十六章 二次根式
二次根式的加减
(第1课时)
课件
学习目标
1
了解二次根式的加、减运算法则.(重点)
2
会用二次根式的加、减运算法则进行简单的运算.(难点)
新课导入
知识回顾
1.同类项的概念: 所含字母相同,并且相同字母的指数也相同的项
叫做同类项.
2.合并同类项的概念: 把多项式中的同类项合并成一项,叫做合并
= (2 2 − 3) × (2 2 + 3)
2018
= ( − 1)2018 =1.
随堂训练
4.计算:(1)
32 1
+
2+ 3
2− 3
解:(1)
32 + 2 ÷ 2
D. 3( 2 + 3) = 6 + 2 3
随堂训练
2. 已知 = 3 + 2, = 3 − 2, 求下列各式的值:
(1) x 2 2 xy y 2 ;
(2) x 2 y 2 .
解:
(1) x 2 2 xy y 2 ( x y ) 2
[( 3 2) ( 3 2)]2
(3) 8 +
4 3 12 −
1
1

16.3(1)二次根式的加法和减法

16.3(1)二次根式的加法和减法

1、什么是最简二次根式?
1)被开方数不含分母 2)被开方数的各因式的指数为1 2、下列各组里的二次根式是不是同类二次 根式?(题中字母都为正数)
问题
怎样计算 a ?
2
a 2 8a 50a 2 a 2 a
3
二次根式加减运算的步骤:
(1)把各个二次根式化成最简二次根式
(2)把同类二次根式分别合并
(1)把各个二次根式化成最简二次根式
(2) 再把同类二次根式分别合并
(不是同类二次根式不能合并)
• 教学反思: • 此节教学的难点是正确化简二次根式尤其 是被开方数比较复杂的二次根式的化简.解 含二次根式的一元一次方程、不等式也容 易出错.
16.3(1) 二次根式的加法和减法
• 教学目标: • 掌握二次根式的加减法运算法则; • 在二次根式的加减法运算法则的学习过程 中,渗透分析、概括、类比等数学思想方 法,提高学生的思维品质和学习兴趣. • 教学重点和难点: • 掌握二次根式的加减法运算法则.
学情分析:
学生已掌握最简二次根式、同类二次根式的概念以及 合并同类项等知识,通过将合并同类二次根式与合并 同类项类比,将二次根式的加减与整式加减类比,掌握 二次根式加减法运算法则。
练习1
判断题
(1)3 2 2 3 5 3 ( (2)2 3 2 3 ( (3)3 3 3 3 ( ) )
)
(4)2 x x 3x x x (
) )
1 1 (5)a x x (a ) x ( b b
练习2
计算 : (1)6 3 0.12 48
x 2 (2) 8 x 2 2x 2 9x 3a (3)2a 3ab (b 27a 2ab ) (b 0) 4

人教版八年级下册16.3《二次根式的加减》课件(共33张PPT)

人教版八年级下册16.3《二次根式的加减》课件(共33张PPT)

合作探究
问题2
形成知识
怎样计算
8 + 18

如果看不出 化,先看算式 3
3 2-
8 + 18 22
能否化简,我们不妨把问题简
能否化简.
2
2 =( 3 - 1 ) 2 = 2
用分配 律合并
整式 加减
你能得到这样的两个二次根式加减的方法吗? 将同类二次根式用分配律合并.
合作探究
算式
形成知识
8 + 1 8 与算式 3 22
合作探究 形成知识
例1
( ( 1)
计算:
8+ 3)
8+ 48 +
6 ;
3) 18 = 4
(4 ( 2)
6 = 8
2 -3
6 +
6) 2
3 6
2 .
解: ( 1) (
=
3+3
2;
思考:(1)中,每一步的依据是什么? 第一步的依据是:分配律或多项式乘单项式; 第二步的依据是:二次根式乘法法则; 第三步的依据是:二次根式化简.
( 48 +
2 0 )( 12 -
5 )= 4
3+2
5-2
3+
5 =2
3 +3 5
化成最简 二次根式
合并被开方 数相同的二 次根式
自主学习 复习引入
思考:二次根式加减,分为几个步骤?
二次根式的加减主要归纳为两个步骤: 第一步,先将二次根式化成最简二次根式; 第二步,再将被开方数相同的二次根式进行合并.
的结果是
B.
20 3
330 2 3
30 3
3 C.

16.3 二次根式的加减(第1课时)(课件)八年级数学下册(人教版)

16.3 二次根式的加减(第1课时)(课件)八年级数学下册(人教版)

知识点一 同类二次根式
活动1 观察下列二次根式的被开数有什么共同特征:
(1) 2,3 2,-
2
5
1
2,
3
2 ···
2
(2) 3,17 3,- 5 3, ·
3··
13
每组的二次根式的被开方数相同
活动2 思考下列二次根式具有的被开数以上特征吗?你怎样发现的?:
9
(3) 2, 8, 18, 32, 0.5,2
2 10
8
2
3
5
3
2
ab
2
b
(1) 75 =____;(2) 8a b =_______;(3) =_____.
5
5
问题 现有一块长 7.5 dm、宽 5 dm 的木板,能否采用如图的方式,在这
块木板上截出两个分别是 8 dm2 和 18 dm2 的正方形木板?
5 dm
5 dm
8 18
8
18
2
2
2
5
2
1 4.
课堂总结
一般地,二次根式的


加减时,可以先将二次根
式化成最简二次根式,再
将被开方数相同的二次根
二次根
式加减
式进行合并.

运算原理
运算律仍然适用
运算顺序
与实数的运
算顺序一样

(乘法分配律逆用)
5 2
(有理数的加减)
归纳知识
2.二次根式的加减法法则
将二次根式化成最简二次根式,再将同类二次根式进行合并.
简记:一化、二找、三合并
典例精析
【例3】计算:
(1) 80 45;
1

新人教版数学初中八年级下册16.3《二次根式的加减》公开课优质课教学设计

新人教版数学初中八年级下册16.3《二次根式的加减》公开课优质课教学设计

1《16.3二次根式的加减》本课在学习二次根式乘除运算及化简的基础上,本课在学习二次根式乘除运算及化简的基础上,从算术平方根的运算出发,从算术平方根的运算出发,研究二次根式的加减运算.二次根式的运算方法与数的运算方法本质上是一致的.二次根式的运算方法与数的运算方法本质上是一致的.实数的运算律对二次根式的运算仍实数的运算律对二次根式的运算仍然适用.结合二次根式的化简、乘除和加减运算,利用交换律、结合律、分配律及多项式乘法公式进行二次根式的混合运算.进行二次根式的混合运算.1. 1. 探索二次根式加减运算的方法和步骤;探索二次根式加减运算的方法和步骤;2.2. 会进行二次根式的加减运算.会进行二次根式的加减运算.3.3. 通过探究二次根式的加减运算体会数学中的类比思想通过探究二次根式的加减运算体会数学中的类比思想. .4.4. 类比有理数混合运算和整式混合运算,探索二次根式的加、减、乘、除混合运算顺序的步骤和方法方法. .5.5. 能熟练地进行二次根式的加、减、乘、除混合运算能熟练地进行二次根式的加、减、乘、除混合运算. .6.6. 通过学习二次根式的加、减、乘、除混合运算的学习,培养学生的运算能力、推理能力.1.1. 在化简二次根式的基础上,应用分配律进行二次根式的加减运算.在化简二次根式的基础上,应用分配律进行二次根式的加减运算.2.2. 熟练并准确地进行二次根式的加、减、乘、除混合运算熟练并准确地进行二次根式的加、减、乘、除混合运算. .课件课件◆ 教材分析 ◆ 教学目标◆ 教学重难点 ◆◆ 课前准备◆◆ 教学过程第一课时一、复习引入:一、复习引入:问题1:什么叫最简二次根式?你能将18,8,23化为最简二次根式吗?化为最简二次根式吗? 问题2:现有一块长7.5dm,7.5dm,宽宽5dm 的木板的木板,,能否采用如图的方式能否采用如图的方式,,在这块木板上截出两个面积分别是8dm 2和18dm 2的正方形木板的正方形木板? ? 提问提问::①大、小正方形木板的边长分别为18dm 和8dm,dm,木板是木板是否够宽否够宽??②木板是否够长呢②木板是否够长呢??③怎样计算818+的结果呢的结果呢? ?问题3:计算下列各式:(1)a+2a a+2a;;(2)3x-2x 3x-2x;;解:(1)a+2a=(1+2)a=3a a+2a=(1+2)a=3a;;(2)3x-2x=(3-2)x=x 3x-2x=(3-2)x=x;;【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备. .二、新课讲解:1.1.探究二次根式的加法探究二次根式的加法探究二次根式的加法. .问题4:请类比整式的加减,计算下列各式::请类比整式的加减,计算下列各式:(1)323+;(2)52-53.解:(1)333)21(323=+=+;(2)55)23(52-53=-=.【点拨】最简二次根式中,被开方数相同的二次根式的加减,直接把系数相加减,根号和根号内的数不变内的数不变. .问题5:53+能合并吗?为什么?82+呢?呢?解:53+不能合并,因为它们被开方数不相同;不能合并,因为它们被开方数不相同;232)21(22282=+=+=+.【小结】(1)二次根式能够进行合并的条件:①首先将二次根式化成最简二次根式;②观察被开方数是否相同开方数是否相同. .(2)二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式合并式合并. .练习1:下列各组二次根式中,能够合并的一组二次根式是(:下列各组二次根式中,能够合并的一组二次根式是( )A .xy 与y x 2B .22y x +与22y x - C .mn 与n m + D.ab 2与ba 2 练习练习:2:2:2::(教材P13练习)下列计算是否正确?为什么?练习)下列计算是否正确?为什么?(1)3838-=-;(2)9494+=+;(3)22223=-.解:(1)∵228=和3的被开方数不相同,的被开方数不相同,∴不能合并∴不能合并,,故错误故错误. .(2)∵53294=+=+,1394=+,故9494+¹+,故错误;,故错误;(3)∵22)23(2223=-=-,故正确故正确. .[点拨点拨]]化为最简二次根式后,只有被开方数相同的二次根式才能合并化为最简二次根式后,只有被开方数相同的二次根式才能合并. .2.2.二次根式加法的运用二次根式加法的运用二次根式加法的运用. .问题7:(教材例题)计算:(1)4580-;(2)a a 259+;(3)483316122+-;(4))53()2012(-++.解:(1)553-544580==-; (2)a a a a a 853259=+=+;(3)3102831232-28483316122+=+=+-; (4)533535232)53()2012(+=-++=-++.练习3:(教材P13练习2)计算:(1)4580-;(2)a a 9194+; (3)52080+-;(4))2798(18-+;(5))681()5.024(--+.解:(1)553-544580==-; (2)a a a a a =+=+31329194; (3)535525452080=+-=+-;(4)33210332723)2798(18-=-+=-+;.42636422262)642()2262()681()5.024(5+=+-+=--+=--+)(问题6:前面问题2中,怎样计算818+的结果呢的结果呢??木板长7.5dm,7.5dm,宽宽5dm 5dm,是否够长?,是否够长?,是否够长?解:818+=2223+···化为最简二次根式·化为最简二次根式=2)23(+···乘法分配率·乘法分配率=25≈7.077.07<<7.5故木板够长故木板够长. .练习4:(教材P13练习3)如果两个圆的圆心相同,他们的面积分别是12.56和25.1225.12,求圆环的,求圆环的宽度d (π取3.143.14,结果保留小数点后两位),结果保留小数点后两位),结果保留小数点后两位). .解:∵解:∵S S 圆=πr 2,∴d=r 大圆-r 小圆小圆=2224814.356.1214.312.25-=-=-=-ππ小圆大圆S S ≈0.83 答:圆环的宽度d 为0.83.三、课堂小结:三、课堂小结:1.1. 知识梳理:(1)二次根式合并的前提:化成最简二次根式之后,被开方数相同)二次根式合并的前提:化成最简二次根式之后,被开方数相同. .(2)二次根式加减的实质:合并被开方数相同的最简二次根式)二次根式加减的实质:合并被开方数相同的最简二次根式. .2.2.二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:①化成最简二次根式后,如果被开方数不相同,则不能进行合并;①化成最简二次根式后,如果被开方数不相同,则不能进行合并;②合并被开方数相同的最简二次根式时,②合并被开方数相同的最简二次根式时,只合并根式外的因式,即系数相加减,被开方数和根指数只合并根式外的因式,即系数相加减,被开方数和根指数不变不变. .3.3. 二次根式加减运算的步骤:①去括号;②化简;③判断并合并.二次根式加减运算的步骤:①去括号;②化简;③判断并合并.4.4.二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别运算运算二次根式的乘除法二次根式的乘除法 二次根式的加减法二次根式的加减法 系数系数系数相乘除系数相乘除 系数相加减系数相加减被开方数被开方数 被开方数相乘除被开方数相乘除 被开方数不变被开方数不变化简化简 结果化成最简二次根式结果化成最简二次根式先化成最简二次根式先化成最简二次根式,,再合并被开方数相同的二次根式的二次根式((同类二次根式同类二次根式) )四、随堂测试:四、随堂测试:1.1.下列各式计算正确的是下列各式计算正确的是下列各式计算正确的是 ( () A.532=+ B.13334=- C.363332=´ D.3327=¸ 解析解析:A.:A.:A.不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;B.B.合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;C.C.应为应为18363332=´=´´,故错误;,故错误;D.39327327==¸=¸,故正确,故正确. .故选D.2.2.以下二次根式以下二次根式以下二次根式::①12,②22,③32,④27中, 化简后能合并成一项的是化简后能合并成一项的是化简后能合并成一项的是( ( ( )A.A.①和②①和②①和②B. B.②和③②和③②和③C. C.①和④①和④D.D.③和④③和④③和④解析:①3212=;②222=;③3632=;④3327=. 3.3. 计算:2-23的值是(的值是() A.2 B.3 C.2 D.22 解析:解析:..222)13(2-23=-=.4.4. 一个等腰三角形的两边长分别为2332,, 则三角形的周长为则三角形的周长为则三角形的周长为. . 解析:分两种情况讨论:(1)当32为腰长,23为底边长时,周长为3423+;(2)当23为腰长,为32底边长时,周长为3226+.5.5. 若最简二次根式若最简二次根式14232+a 与16322-a 的被开方数相同的被开方数相同,,则a= a= . 解析:由题意得4a 2+1=6a 2-1-1,解得,解得a=a=±±1.6.6. 计算:(1)233-2332++; (2)101015-40+.第二课时一、复习引入:一、复习引入:1.1.计算:(1)728+;(2)68´;(3)324¸. 解:(1)282622728=+=+;(2)34486868==´=´;(3)228324324==¸=¸.【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备. .2.2. 计算:(1)(2x-y)(2x-y)··zx zx;;(2)(2x 2y+3xy 2)÷xy xy;;(3)(2x+y)(x-3y) (3)(2x+3y)(2x-3y);(2x+3y)(2x-3y);((4)(2x+1)2+(2x-1)2.解:(1)(2x-y)(2x-y)··zx=2x 2z-xyz z-xyz;;(2)(2x 2y+3xy 2)÷xy=2x 2y ÷xy+3xy 2÷xy=2x+2y xy=2x+2y;;(3)(2x+y)(x-3y)=2x 2-6xy+xy-3y 2=2x 2-5xy-3y 2;(4)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x 2-9y 2;(5)(2x+1)2+(2x-1)2=4x 2+4x+1+4x 2-4x+1=8x 2+2.提问:上面的运算用到了哪些法则和公式?提问:上面的运算用到了哪些法则和公式?学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式. .【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算. .二、新课讲解:二、新课讲解:问题1:如果把上面的x ,y ,z 改成二次根式呢?以上的运算法则是否仍然成立?改成二次根式呢?以上的运算法则是否仍然成立?例1.1.(教材(教材P14例题3)计算:(1)6)38(´+;(2)226324¸-)(.解:(1)6)38(´+=6368´+´=1848+=2334+;(2)2263-24¸)( =22632224¸-¸=3232-.【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率. . 练习1:(教材P14练习1)计算:(1))53(2+;(2)5)4080(¸+; 解:(1))53(2+=5232´+´=106+;(2)5)4080(¸+=540580¸+¸=816+=224+.【小结】(1)与有理数、实数运算一样,在混合运算中先乘除,后加减;)与有理数、实数运算一样,在混合运算中先乘除,后加减;(2)最终的结果一定要化为最简二次根式)最终的结果一定要化为最简二次根式. . .问题2.2.(教材(教材P14面例4)例2.2. 计算:(1))52()32(-×+;(2))35)(35(-+. 解:(1))52()32(-×+=152523)2(2--+=15222--=2213--;(2))35)(35(-+=22)3()5(-=5-3=2.提问:你能说出上面两道题中每一步的依据是什么吗?提问:你能说出上面两道题中每一步的依据是什么吗?【小结】乘法公式使计算准确、简便,因此能用运算公式的,尽可能用运算公式.因为二次根式表示数,二次根式的运算也是实数的运算.根式表示数,二次根式的运算也是实数的运算.练习2:计算:(1))17(72--=;(2))2332)(2332(+-=.答案为:7214+-;6.练习3:计算2)322215324(×+-的结果是(的结果是( ) A. A. 303-3320 B.30-3320 C.332303- D.332302- 练习3 计算:(1))2762)(6227(-+;(2)2)377(-;(3)22)632()632(-+--+解:(1))2762)(6227(-+=222762)()(-=24-98=-74=-74;;(2)2)377(-=22)37(3772)7(+´´-=2114154-;(3)22)632()632(++--+=)]632()632)][(632()632[(++--++++-+ =)62()3222(-×+=21238--.练习4:已知4x 2+y 2-4x-6y+10=0-4x-6y+10=0,求下面式子的值,求下面式子的值,求下面式子的值. . )1()(2y x y x y x y y xx +-+解:由4x 2+y 2-4x-6y+10=0得到得到(2x-1)(2x-1)2+(y-3)2=0,∴2x-1=0,y-3=0.解得,解得,x=x=21,y=3. )1()(2yx y x y x y y xx +-+ =yx x y y x 12--+ =y y x x y y y x--+=x y -当x=21,y=3时,时, 原式原式==223213-=-. 三、课堂小结:三、课堂小结:师生共同回顾本节课所学主要内容师生共同回顾本节课所学主要内容: :关于二次根式的四则混合运算关于二次根式的四则混合运算,,实质上就是实数的混合运算.(1)(1)运算顺序与有理式的运算顺序相运算顺序与有理式的运算顺序相同;(2);(2)运算律仍然适用运算律仍然适用运算律仍然适用;(3);(3);(3)与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似,,可以利用乘法公式与因式分解的方法来简化二次根式的有关运算.四、随堂检测:1. 下列二次根式中可以进行合并的是下列二次根式中可以进行合并的是( ) ( )A. ab 与2abB. 22n m + 与22n m -C. mn 与nm 11+ D. 438b a 与432b a 【知识点:同类二次根式】【知识点:同类二次根式】【参考答案】D【思路点拨】先化简成最简二次根式,再看被开方数是否相同【思路点拨】先化简成最简二次根式,再看被开方数是否相同. .2.2.计算:计算:)12)(12(-+的结果是(的结果是(). A.23+ B.23- C.1D.3 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】C C【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,本题利用平方差公式直本题利用平方差公式直接计算即可接计算即可. .3.3.若矩形相邻两边长分别是若矩形相邻两边长分别是cm 20和cm 125,则它们的周长是,则它们的周长是. .【知识点:二次根式混合运算】【知识点:二次根式混合运算】【参考答案】cm 514【思路点拨】矩形的周长【思路点拨】矩形的周长==(长(长++宽)×宽)×2 24. 计算:)4831375(12-+´的结果是(的结果是() A.23 B.32 C. 6D. 12 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】D D【思路点拨】123232)34335(12)4831375(12=´=-+´=-+´5. 计算:3)4841311527(¸+-【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】1-【解析】原式=1333)33533(-=¸-=¸+-略。

人教版八年级数学下册课件 16-3 第1课时 二次根式的加减


b
2a+3b
如果把a,b用二次根式来替代,能得到什么呢?
当a= 2 ,b= 8 时,得2a+3b= 2 2 3 8 .
因为 3 8 3 22 2 6 2,由前面知两者可以合并.
你又发现
了什么?
2a+3b=2 2+6 2=8 2
我们发现:要将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
归纳总结
将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
注意:判断几个二次根式是否可以合并,一定都要
化为最简二次根式再判断.
合并的方法与合并同类项类似,把根号外的因数(式)
相加,根指数和被开方数(式)不变.如:
m a n a m n a
例题讲解
例1 若最简根式
3 − 2 与 3 可以合并,
2
4 5 , 3 5, 2 5 .
化简后被开方数相同
获取新知
知识点一:同类二次根式
同类二次根式:几个二次根式化成最简二次根式后,它们
的被开方数相同, 这些二次根式就称为同类二次根式
备注:
1.同类二次根式首先必须是最简二次根式;
2.同类二次根式再次必须是被开方数相同
例题讲解
例1 下列根式中,与 3 不是同类二次根式的是( C )
第十六章 二次根式
16.3 第1课时 二次根式的加减
知识回顾
问题1 满足什么条件的根式是最简二次根式?
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
问题2 化简下列两组二次根式,每组化简后有什么共同特点?
(1) 8 ,18 ,0.5;

人教初中数学八下 16.3 二次根式的加减课件3 【经典初中数学课件汇编】


【归纳】
一般地,正比例函数 y=kx (k是常数,k≠0 )的图 象是一条经过原点的直线,我们称它为直线 y=kx .当 k>0时,直线y=kx经过第一、三象限,从左向右上升,即 函数值y随x的增大而增大;当k<0时,直线y=kx经过第二、 四象限,从左向右下降,即函数值y随x的增大而减小.
? 通过以上学习,画正比例函数图象有无简便的
_______________。 • (2)合并二次根式时,只有被开方数________的二次根
式才能合并,合并的依据是__________。 • (3)合并被开方数相同的二次整式,就等同于整式加减
的__________,把被开方数相同的二次根式看成各项的 字母部分,合并时根指数及被开方数_________,只把系 数_________。
(2) 这只燕鸥的行程y(单位:千米)与飞行时间x(单位:
天)之间有什么关系?
【解析】 y=200x(0≤x≤128).
(3)这只燕鸥飞行一个半月(一个月按30天计算)的行程 大约是多少千米? 【解析】当x=45时,y=200×45=9 000(千 米).
【想一想】
下列问题中的变量对应规律可用怎样的函数表示?
【想一想】
下列问题中的变量对应规律可用怎样的函数表示?
(1)圆的周长L随半径r大小的变化而变化; L=2πr
(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它 的体积V(单位:cm3)大小的变化而变化;
m=7.8V
(3)每个练习本的厚度为0.5cm,一些练习本撂在一起的总 厚度h(单位:cm)随这些练习本的本数n的变化而变化;
办法?
y
y=kx(k>0)
y
y=kx
k

16.3 二次根式的加减 第1课时 二次根式的加减 同步练习

16.3 二次根式的加减第 1 课时二次根式的加减基础训练知识点1 被开方数相同的最简二次根式1.下列各式化成最简二次根式后被开方数与错误!未找到引用源。

的被开方数相同的是( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

2.(2016·龙岩)与-错误!未找到引用源。

是同类二次根式的是( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

3.以下二次根式:①错误!未找到引用源。

;②错误!未找到引用源。

;③错误!未找到引用源。

;④错误!未找到引用源。

中,化简后被开方数相同的是( )A.①和②B.②和③C.①和③D.③和④4.(2015·凉山州)下列根式中,不能与错误!未找到引用源。

合并的是( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

5.下列根式中,化成最简二次根式后不能与错误!未找到引用源。

(a>0,b>0)合并的是( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

6.若最简二次根式 4错误!未找到引用源。

与错误!未找到引用源。

可以进行合并,则m的值为( )A.-1B.0C.1D.2知识点2 二次根式的加减7.(2016·桂林)计算3错误!未找到引用源。

-2错误!未找到引用源。

的结果是( )A.错误!未找到引用源。

B.2错误!未找到引用源。

C.3错误!未找到引用源。

D.68.(2016·云南)下列计算,正确的是( )A.(-2)-2=4B.错误!未找到引用源。

=-2C.46÷(-2)6=64D.错误!未找到引用源。

-错误!未找到引用源。

=错误!未找到引用源。

9.(2016·广州)下列计算正确的是( )A.错误!未找到引用源。

16.3二次根式的加减(第1课时)

计算下列各式:
问题:1.什么是同类项? 2.同类项怎样合并?
a b ab ab a b(a≥0,b≥0)
a b
a b
a b
a (a≥0,b>0) b
1.被开方数中不 含分母; 下列根式中,哪些是最简二次根式? 2.被开方数中 不含开得尽方 的因数或因式
15a , 18, x 1, 5 x y , 24abc,
2 3

×

×
×
ab 3xy 2 2 2 x y, , , 6(a b ) 3 3
2

×


二次根式在什么条件下可以合并?
探究
如何计算 8
2 4 2 呢?
分析: 类似8a+4a=12a,我们可以 根据乘法分配律的逆用来进行运算。 解: 8 2 4 2
(8 4) 2
12 2
下列计算哪些正确,哪些不正确? (不正确) 3 2 5
a b a b
a b a b
(不正确) (不正确)

a a b a (a b) a
1 3a 2 2a a
(正确)
a 0 (不正确)
1 ⑸ 3
下列解答是否正确?为什么?
(1)2 75 3 27 3 2 75 9 3 3 10 3 10 3 0
注意:被开方数不相同的二次根式 (如 2 与 3 )不能合并
例题讲解
(2) 80 45 计算: (1) 9a 25a
解: (1) 9a 25a
(2) 80 45
3 a 5 a
4 5 3 5
(3 5) a
(4 3) 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档