3.1空间向量及其运算 教学设计 教案
3.1空间向量及其运算

3.1.1空间向量及其线性运算教学目标:1.了解空间向量的概念,掌握空间向量的线性运算及其性质;2.理解空间向量共线的充要条件 ;3.运用类比方法,经历向量及其运算由平面向空间推广的过程. 教学重点:空间向量的概念、空间向量的线性运算及其性质; 教学过程: 一.问题情境由于实际问题的需要,在必修4中,我们学习了平面向量,研究了平面向量的概念、运算及其性质,进而解决了平面上有关点,线的位置关系及度量问题. 但向量未必都在同一平面内,如下问题:已知物体受三个大小都为1000N 的力F 1 ,F 2,F 3, 且这三个力两两之间的夹角都为60°,则物体所受的合力为多少? 是否为F 1→+F 2→+F 3→?此问题中,三个向量不在同一平面内,问题不好直接用平面向量来解决,为此需要将向量由平面向空间推广! 二.数学理论1.平面向量与空间向量的有关概念(1)在平面上,我们把既有大小又有方向的量叫做平面向量.平面上的向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量. 长度为0的向量叫零向量,记作0,0的方向是任意的; 长度为1个单位长度的向量,叫单位向量;F 12方向相反但模相等的向量叫做相反向量;向量a 的相反向量记作-a .方向相同或相反的非零向量叫做平行向量(共线向量),规定0与任一向量平行; 记作:a ∥b ,0∥a .由向量的实际背景,平面向量的有关概念都可以移植到空间中 (2)空间向量的有关概念:在空间,我们把既有大小又有方向的量叫做空间向量.空间向量一般用有向线段表示.同向等长的有向线段表示同一或相等的向量. 在空间中,长度为0的向量叫零向量,记作0,0的方向是任意的; 长度为1个单位长度的向量,叫单位向量;方向相反但模相等的向量叫做相反向量;向量a 的相反向量记作-a .方向相同或相反的非零向量叫做平行向量(共线向量),规定0与任一向量平行; 记作:a ∥b ,0∥a .2.平面向量与空间向量的线性运算我们现在研究的是自由向量,大小相等方向相同的向量是相等向量,而与它们的起点无关. 所以任意两个空间向量都可以平移到同一平面内因此,空间的两个向量可用同一平面内的两条有向线段来表示.这样,空间两个向量的线性运算的意义与平面向量完全一样.已知空间向量a ,b ,在空间任取一点O ,作OA →=a ,AB →=b .由O ,A ,B 三点确定一个平面或共线可得,空间任意两个向量都可以用同一平面内的两个有向线段来表示.ab空间向量的加法、减法与数乘运算的意义如下(如图)OB →=OA →+AB →=a +b (三角形法则) OC →=OA →+OB →=a +b (平行四边形法则) BA →=OA →-OB →=a -b OP →=λa (λ∈R )平面向量的线性运算满足下列运算律 运算律:⑴加法交换律:a +b =b +a⑵加法结合律:(a +b )+c =a +(b +c ) ⑶数乘分配律:λ(a +b )=λa +λb (λ∈R ) 那么,空间向量的运算是否仍满足上述规律?aλaO PaAOb Ba -b ab ab OABa +b(1),(3)中只涉及两个向量,显然满足,但(2)中涉及三个向量,在空间中是否成立?这一规律关系到空间中三个向量和的定义问题? 结合律的验证:三个向量中有共线向量时规律显然成立. 平面向量共线的充要条件在空间也是成立的3.共线向量定理:共线向量定理:空间任意两个向量a ,b (a ≠0),a ∥b 的充要条件是存在实数λ,使b =λa . 三.数学运用例1. 如图,在三棱柱ABC -A 1B 1C 1中,M 是BB 1的中点, 化简下列各式,并在图中标出化简得到的向量: (1)CB →+BA 1→; (2)AC →+CB →+12AA 1→;(3)AA 1→-AC →-CB → 解:(1)CB →+BA 1→=CA 1→(2)因为M 是BB 1的中点, 所以BM →=12BB 1→,AC →+CB →+12AA 1→AOABCabca +ba +b +cb +cA /A /又AA 1→=BB 1→,所以AC →+CB →+12AA 1→=AB →+BM →=AM →.(3)AA 1→-AC →-CB →=CA 1→-CB →=BA 1→.例2.如图,在长方体OADB-CA ’D’B’中,OA =3,OB =4,OC =2,OI =OJ =OK =1,,点E ,F 分别是DB ,D ’B ’的中点,设OI →=i , OJ →=j , OK →=k , ,试用向量i , j , k 表示OE →和OF →解:∵BD →=OA →=3OI →=3i ,∴BE →=12BD →=32 i .又OB →=4OJ →=4j ,∴OE →=OB →+BE →=32i +4j .∵EF →= BB ’→=OC →=2k ,∴OF →=OE →+EF →=32i +4j +2k .例3.已知平行六面体ABCD -ABCD .求证:AC →+ AB ’→+ AD ’→=2 AC ’→. 证明:∵平行六面体的六个面均为平行四边形, ∴AC →=AB →+AD →, AB ’→=AB →+ AA ’→, AD ’→=AD →+ AA ’→,∴AC →+ AB ’→+ AD ’→=(AB →+AD →)+(AB →+ AA ’→) +(AD →+ AA ’→)=2(AB →+AD →+ AA ’→). 又∵ AA ’→= CC ’→,AD →=BC →,∴AB →+AD →+ AA ’→=AB →+BC →+ CC ’→=AC →+ CC ’→= AC ’→, ∴AC →+ AB ’→+ AD ’→=2 AC ’→. 【课堂练习】已知空间四边形ABCD ,连结AC ,BD ,设M ,G 分别是BC ,CD 的中点,化简下列各表达式,并标出化简结果向量: (1)AB →+BC →+CD →; (2)AB →+12(BD →+BC →);(3)AB →-12(AB →+AC →).BCDMGAABCDA ’B ’C ’D ’四、回顾总结空间向量的定义与运算法则五、布置作业3.1.2 共面向量定理教学目标:1.了解向量共面的含义,理解共面向量定理;2.能运用共面向量定理证明有关线面平行和点共面的简单问题. 教学重点、难点:空间向量共面定理的证明及其应用. 教学过程: 一.知识回顾复习空间向量的概念以及空间向量的线性运算和性质. 二.问题情境在同一平面中,向量之间有共线与不共线之分; 在空间中,我们当然要关心向量共面问题.为此首先要明确什么叫做向量共面? 能平移到同一平面的向量叫做共面向量 问题: 空间中两个向量是否共面? 空间中三个向量是否共面?在平面向量中,向量b 与向量a (a ≠0)共线的充要条件是存在实数λ,使得b =λa .那么,空间的任意一个向量p 与两个不共线向量a ,b 共面时,它们之间存在怎样的关系呢? 三.数学理论共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在有序实数组(x ,y ),使p =x a +y b .证明:(必要性)向量a ,b 不共线,当p 与向量a ,b 共面时,它们可以平移到同一个平面内,根据平面向量的基本定理,存在惟一的有序实数组(x ,y ),使得p =x a +y b .(充分性)对于空间的三个向量p ,a ,b ,其中a ,b 不共线,如果存在有序实数组(x ,y ),使p =x a +y b ,那么在空间任意取一点M ,作MA →=a , MB →=b , MA '→=x a ,过点A ’作A'P →=y b ,(如图),则MP →=MA'→+A'P →= x a +y b = p ,,于是点P 在平面MAB 内,从而MP →,MA →,MB →共面,即向量p 与向量a ,b 共面.这就是说,向量p 可以由两个不共线的向量a ,b 线性表示.四.数学运用例1.如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:MN ∥平面CDE .分析:要证明MN ∥平面CDE ,只要证明向量NM →可以用平面CDE 内的两个不共线的向量DE →和DC →线性表示.证明:如图,因为M 在BD 上,且BM =13BD ,所以MB →=13DB →=13DA →+13AB →.同理AN →=13AD →+13DE →,又CD →=BA →=-13AB →,所以MN →=MB →+BA →+AN →=(13DA →+13AB →)+BA →+(13AD →+13DE →)=23BA →+13DE →=23CD →+13DE →.又CD →与DE →不共线,根据共面向量定理,可知MN →,CD →,DE →共面. 由于MN 不在平面CDE 内,所以MN ∥平面CDE .例2.设空间任一点O 和不共线的三点A ,B ,C ,若点P 满足向量关系OP →=xOA →+yOB →+zOC →(其中x +y +z =1),试问:P , A ,B ,C 四点是否共面?分析:类比证明三点共线的方法,要判断P , A ,B ,C 是否共面,可考察三个共起点的向量AP →,AB →,AC →是否共面.解:由x +y +z =1,可得x =1-z -y .则OP →=(1-z -y )OA →+yOB →+zOC →=OA →+y (OB →-OA →)+z (OC →-OA →), 所以OP →-OA →=y (OB →-OA →)+z (OC →-OA →),即AP →=yAB →+zAC →.由A ,B ,C 三点不共线,可知AB →和AC →不共线, 所以AP →,AB →,AC →共面且具有公共起点A .从而P , A ,B ,C 四点共面.思考:如果将x +y +z =1整体代入,由(x +y +z ) OP →=xOA →+yOB →+zOC →出发,你能得到什么结论?例3.从□ABCD 所在平面外一点O 作向量OE →=kOA →,OF →=kOB →,OG →=kOC →,OH →=kOD →, (1)求证:四点E ,F ,G ,H 共面;(2)平面AC ∥平面EG . 解:(1)∵四边形ABCD 是平行四边形,∴AC →=AB →+AD →, ∵EG →=OG →-OE →=kOC →-kOA →=k (OC →-OA →)=kAC →=k (AB →+AD →) =k (OB →-OA →+OD →-OA →)=OF →-OE →+OH →-OE →=EF →+EH →, ∴EG →,EF →,EH →共面且共起点,∴E ,F ,G ,H 四点共面. (2)∵EF →=OF →-OE →=k (OB →-OA →)=kAB →,∴EF →∥AB →,∴EF →∥平面AC ,同理EG →∥平面AC ,又EF →∩EG →=E ,∴平面AC ∥平面EG . 练习:已知两个非零向量e 1, e 2不共线,如果AB →=e 1+ e 2, AC →=2 e 1+8 e 2, AD →=3 e 1-3 e 2. 求证:A ,B ,C ,D 四点共面. 五.回顾小结1.共面向量定理的证明; 2.共面向量定理的简单运用. 六.布置作业3.1.3空间向量基本定理教学目标:1.掌握空间向量基本定理及其推论;2.理解空间任一向量可用空间不共面的三个已知向量唯一线性表示,而且这种表示是唯一 的;3.在简单问题中,会选择适当的基底来表示任一空间向量. 教学重点,难点:空间向量基本定理及其推论. 教学过程: 一.知识回顾共线向量定理:空间任意两个向量a ,b (a ≠0),a ∥b 的充要条件是存在实数λ,使b =λa . 平面向量基本定理:如果e 1,e 2那么对于这一平面内的任一向量a ,有且只有一对实数x ,y ,使a = x e 1+ y e 2 . 二.问题情境平面向量基本定理表明,平面内任一向量可以用该平面的两个不共线的向量来线性表示.对于空间向量是否有相应的结论呢? 三.数学理论 空间向量基本定理:如果三个向量 e 1, e 2 , e 3不共面,那么对空间任一向量p ,存在一个惟一的有序实数组x ,y ,z ,使p =x e 1+y e 2+z e 3.证明:(存在性)设e 1, e 2 , e 3不共面过点O 作OA →=e 1, OB →=e 2, OC →=e 3, OP →=p ,, 过点P 作直线PP’平行于OC ,交平面OAB 于点P’, 在平面OAB 内,过点P’作直线P’A’∥OB , P’B ∥OA , 分别与直线OA ,OB 相交于点A ’,B ’,于是,存在三个实数x ,y ,z ,使OA'→=xOA →=x e 1,OB'→=yOB →=y e 2,OC'→=zOC →=z e 3,∴OP →=OA'→+OB'→+OC'→=xOA →+yOB →+zOC →=x e 1+y e 2+z e 3.1/ (惟一性)假设还存在x’,y’,z’使p=x’ e1+y’ e2+z’e3,那么x e1+y e2+z e3=x’ e1+y’ e2+z’e3∴(x-x’)e1+(y-y’)e2+(z-z’)e3=0不妨设x≠x’即x-x’≠0,∴e1=-y-y’x-x’e2-z-z’x-x’e3,∴e1, e2, e3共面此与已知矛盾,∴有序实数组(x,y,z)是惟一的.空间向量基本定理告诉我们,若三向量e1,e2,e3不共面,那么空间的任一向量都可由e1, e2, e3线性表示,我们把{ e1, e2, e3}叫做空间的一个基底,e1, e2, e3叫做基向量.空间任意三个不共面的向量都可以构成空间的一个基底如果空间一个基底的三个基向量两两互相垂直,那么这个基底叫做正交基底,特别地,当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,通常用{i,j,k}表示.推论:设O,A,B,C是不共面的四点,则对空间任一点P,都存在惟一的三个有序实数x,y,z,使OP→=xOA→+yOB→+zOC→.四.数学运用例1如图,在正方体OADB-CA’D’B’中,,点E是AB与OD的交点,M是OD’与CE的交点,试分别用向量OA→,OB→,OC→表示OD'→和OM→.解:∵OD→=OA→+OB→,∴OD'→=OD→+DD'→=OA→+OB→+OC→.由△OME∽△D’MC,可得OM=12MD’=13OD’,∴OM→=13OD'→=13OA→+13OB→+13OC→.例2 .如图,已知空间四边形OABC,其对角线为OB,AC,M,N分别是对边OA,BC的中点,点G在线段MN上,且MG=2GN,用基底向量OA→,OB→,OC→表示向量OG→.解:OG→=OM→+MG→=OM→+23MN→A=12OA →+23(ON →-OM →) =12OA →+23[12(OB →+OC →)-12OA →] =12OA →+13(OB →+OC →)-13OA → =16OA →+13OB →+13OC →, ∴OG →=16OA →+13OB →+13OC →.五、回顾总结空间向量基本定理及其证明 六、布置作业§3.1.4 空间向量的坐标表示教学目标(1)能用坐标表示空间向量,掌握空间向量的坐标运算; (2)会根据向量的坐标判断两个空间向量平行. 教学重点,难点空间向量的坐标的确定及运算. 教学过程 一.知识回顾复习平面向量的坐标表示及运算律:(1)若p =x i +y j (i ,j 分别是x ,y 轴上同方向的两个单位向量),则p 的坐标为(x , y ); (2)若a =(a 1, a 2),b =(b 1, b 2),则加(减)法:a +b =(a 1+b 1, a 2+b 2);a -b =(a 1-b 1, a 2-b 2) 数乘:λa =(λa 1, λa 2)(λ∈R ) 数量积:a ·b =a 1b 1+a 2b 2特别地,a ∥b ⇔a 1=λb 1,a 2=λb 2(λ∈R );a ⊥b ⇔a 1b 1+a 2b 2=0(3)若A (x 1, y 1),B (x 2, y 2),则AB →=(x 2-x 1, y 2-y 1). 二.问题情境在平面“解析几何初步”一章中,我们已经学习过空间直角坐标系,并能用坐标表示空间任意一点的位置.如何用坐标表示空间向量?怎样进行空间向量的坐标运算? 三.数学理论1.空间向量的坐标表示如图,在空间直角坐标O -xyz 中,分别取与x 轴、y 轴、z 轴方向相同的单位向量i ,j ,k 作为基向量,对于空间任意一个向量a ,根据空间向量基本定理,存在唯一的有序实数组(x , y , z ),使a =x i +y j +z k .有序实数组(x , y , z )叫做向量a 在空间直角坐标O -xyz 中的坐标,记作a =(x , y , z ).2.在空间直角坐标O -xyz 中,对于空间任意一点A (x , y , z ),向量OA →是确定的,容易得到OA →=x i +y j +z k ,因此,向量OA →的坐标为OA →=(x , y , z ).这就是说,当空间向量a 的起点移至坐标原点时,其终点的坐标就是向量a 的坐标. 3.向量坐标运算法则(类似于平面向量的坐标运算) (1)设a =(a 1, a 2, a 3),b =(b 1, b 2, b 3),则a +b =(a 1+b 1, a 2+b 2, a 3+b 3),a -b =(a 1-b 1, a 2-b 2, a 3-b 3) λa =(λa 1, λa 2, λa 3)(λ∈R )(2)若A (x 1, y 1, z 1),B (x 2, y 2, z 2),则AB →=(x 2-x 1, y 2-y 1, z 2-z 1). 4.空间向量平行的坐标表示a ∥b (a ≠0)⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ) 说明:即对应的坐标成比例(但没有平面向量平行的等积式)四.数学运用 1.例题:【例1】已知a =(1, -3, 8),b =(3, 10, -4),求a +b ,a -b ,3a . 解:a +b =(1, -3, 8)+(3, 10, -4)=(1+3, -3+10, 8-4)=(4, 7, 4),a -b =(1, -3, 8)-(3, 10, -4)=(1-3, -3-10, 8+4)=(-2, -13, 12), 3a =3×(1, -3, 8)=(3, -9, 24)【例2】已知空间四点A (-2, 3, 1),B (2, -5, 3),C (10, 0, 10)和D (8, 4, 9),求证:四边形ABCD 是梯形.证:依题意OA →=(-2, 3, 1),OB →=(2, -5, 3),所以AB →=OB →-OA →=(2, -5, 3)-(-2, 3, 1)=(4, -8, 2)同理DC →=(2, -4, 1),AD →=(10, 1, 8),BC →=(8, 5, 7) 由AB →=2DC →可知,AB →∥CD →,|AB →|≠|DC →|,又AD →与BC →不共线,所以四边形ABCD 是梯形. 说明:与平面向量一样,若A (x 1, y 1, z 1),B (x 2, y 2, z 2),则AB →=OB →-OA →=(x 2-x 1, y 2-y 1, z 2-z 1).这就是说,一个向量的坐标等于表示这个向量的有向线段的终点坐标减去它的起点坐标.【例3】已知a =(1, 6, -3),b =(1, -2, 9),c =(4, 0, 24),求证:a ,b ,c 共面. 解:因为a =(1, 6, -3),b =(1, -2, 9),所以a 与b 不共线.不妨设c =x a +y b ,则⎩⎪⎨⎪⎧x +y =46x -2y =0-3x +9y =24解得⎩⎨⎧x =1y =3,所以c =a +3b ,所以a ,b ,c 共面.【例4】在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是CC 1,B 1C 1,C 1D 1的中点,试建立空间直角坐标系,证明:平面MNP ∥平面A 1BD .解:以D 1为坐标原点,D 1A 1,D 1C 1,D 1D 所在直线为x ,y ,z 轴,建立空间直角坐标系.设正方体棱长为1,则A1(1, 0, 0),B (1, 1, 1),D (0, 0, 1),B 1(1, 1, 0),C 1(0, 1, 0),N (12, 1, 0),M (0, 1, 12),D 1(0, 0, 0),P (0,12, 0), 于是A 1B →=(0, 1, 1),A 1D →=(-1, 0, 1),NM →=(-12, 0, 12),PM→=(0, 12, 12),显然有NM →=12A 1D →,PM →=12A 1B →.所以,NM →∥A 1D →,PM →∥A 1B →,因此平面MNP ∥平面A 1BD .说明:同平面解析几何坐标法解题一样,关键是如何建立适当的坐标系.当然本题不用坐标法而用向量的方法也不难证明. 五.回顾小结:1.会正确的确定空间向量及点的坐标;2.向量的坐标判断两个空间向量平行的方法;六.课外作业:§3.1.5 空间向量的数量积第一课时教学目标1.在充分了解平面向量及空间向量的概念、向量的加、减以及数乘等运算基础上,进一步类比探究并获得空间向量数量积的概念、性质及运算律.2.掌握空间向量夹角和模的概念,学会用向量数量积求两直线所成的角,能判断两直线(向量)的位置关系(平行、垂直);3.了解空间向量数量积的几何意义. 教学重点,难点 空间向量数量积 教学过程一.问题情境 1.知识回顾(1)平面向量的数量积定义:已知两个非零向量a ,b ,有a ·b =|a ||b |cos θ,(0≤θ≤π),其中θ是向量a ,b 的夹角,并规定a ·b =0.(2)平面向量的夹角:将a →与b →平移至同起点处所成的0≤θ≤π 角.(同起点是关键) 2.问题:我们已经学过了平面向量夹角的定义和平面向量数量积的定义,那么类比平面向量知识,空间向量的夹角和数量积怎么定义? 二.数学理论由于任意两个空间向量都是共面向量,因此,两个空间向量的夹角以及它们的数量积就可以像平面向量那样来定义. 1.空间向量的夹角及其表示:如图,已知两非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与向量b 的夹角,记作<a ,b >;范围:0≤<a ,b >≤π,在这种规定下,两个向量的夹角就被唯一确定了,并且有<a ,b >=<b ,a >. 若<a ,b >=0,那么向量a 与b 同向; 若<a ,b >=π,那么向量a 与b 反向;若<a ,b >=π2,则称a 与b 互相垂直,记作:a ⊥b .注意:正确使用两个向量夹角的符号<a ,b >.例如:<AB →,AC →>=∠BAC . 2.向量的模:设OA →=a ,则有向线段OA →的长度叫做向量a 的长度或模,记作:|a |. 3.向量的数量积:已知a ,b 是空间两个非零向量,则|a ||b |cos<a ,b >叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos<a ,b >.规定:0向量与任何向量的数量积为0.注意:①两个向量的数量积是数量,而不是向量,符号由cos θ的符号所决定. ②零向量与任意向量的数量积等于零. 4.由空间向量数量积定义可知:空间两个非零向量a ·b 的夹角<a ,b >可以由cos<a ,b >=a ·b|a ||b |求得.5.空间向量数量积的性质:(1)cos<a ,b >=a ·b|a ||b |;(2)a ⊥b ⇔a ·b =0(a ,b 是两个非零向量);(3)|a |2=a ·a =a 2.注意:①性质(2)是证明两向量垂直的依据; ②性质(3)是求向量的长度(模)的依据。
教案)空间向量及其运算

教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够运用空间向量解决实际问题,提高空间想象力。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。
2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。
(2) 向量减法:差向量、相反向量。
(3) 数乘向量:数乘的定义、运算规律。
(4) 向量点乘:点乘的定义、运算规律、几何意义。
三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。
2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。
四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。
2. 利用实际例子,引导学生运用空间向量解决实际问题。
3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。
五、教学安排1. 第一课时:空间向量的概念及表示方法。
2. 第二课时:空间向量的线性运算(向量加法、减法)。
3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。
4. 第四课时:空间向量线性运算的应用。
5. 第五课时:总结与拓展。
六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。
2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。
4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。
七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。
2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。
3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。
4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。
空间向量及其运算教案

第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量及其加减运算教学目标:知识与技能(1)通过本章的学习,使学生理解空间向量的有关概念。
(2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。
过程与方法(1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。
(2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。
(3)培养学生空间向量的应用意识情感态度与价值观通过本节课的学习,让学生在掌握知识的同时,体验发现数学的乐趣,从而激发学生努力学习的动力。
教学重点:(1)空间向量的有关概念;(2)空间向量的加减运算及其运算律、几何意义;(3)空间向量的加减运算在空间几何体中的应用教学难点:(1)空间想象能力的培养,思想方法的理解和应用。
(2)空间向量的加减运算及其几何的应用和理解。
课堂类型:新授课教学方法:研讨、探究、启发引导教学用具:多媒体教学过程:一、创设情境(老师):以前我们学过平面向量,请问所有的向量都是平面向量吗?比如:长方体中的过同一点的三条边上的向量(老师):这三个向量和以前我们学过的向量有什么不同?(学生):这是三个向量不共面(老师):不共面的向量问题能直接用平面向量来解决么?(学生):不能,得用空间向量(老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算(老师):实际上空间向量我们随处可见,常见的高压电线及支架所在向量。
二、讲授新课(老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量的知识。
(一)复习回顾平面向量的基本概念1.向量概念:在平面上既有大小又有方向的量叫向量;2.画法:用有向线段AB画出来;3.表示方式:AB或a(用小写的字母表示);4零向量:在平面中长度为零的向量叫做零向量,零向量的方向是任意的;5.单位向量:在平面中模为1的向量称为单位向量;6.相反向量:在平面中长度相等,方向相反的两个向量,互称为相反向量;7.相等向量:在平面中方向相同且模相等的向量称为相等向量;(二)空间向量的基本概念(老师):其实空间向量就是把向量放到空间中了,请同学们给空间向量下个定义,(学生)在空间中,既有大小又有方向的量(老师):非常好,请大家类比平面向量得到空间向量的其他相关定义(提问学生)(学生)回答向量概念、画法、.表示方式及零向量(零向量的方向是任意的)、单位向量、相反向量、相等向量的概念。
3.1.1空间向量及其加减运算(说课稿)

3.1.1空间向量及其加减运算(说课稿)一.教材分析1.本节内容在高中教材中的地位和作用向量可以表示物体的位置,本身也是一种几何图形(有向线段),因而它成为几何学的基本研究对象;向量可以进行加减,数乘,数量积等运算,又成为了代数学的研究对象。
可以说向量是重要的数学模型,是沟通代数,几何的桥梁。
在学习了立体几何初步和平面向量的基础上进行的空间向量的学习为空间向量解决立体几何问题提供了新的视角,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。
而本节内容又是整个空间向量的基础,是后续学习的前提,因此学好这节内容就显得尤为重要。
2.教学重难点(1)教学重点:类比平面向量知识理解掌握空间向量的有关概念及其加减运算。
(2)教学难点:空间向量的加减运算。
二.学情分析由于学生已学过平面向量知识有一定的向量基础,学习过立体几何知识有一定的空间观念,因此在教学中可运用类比和归纳让学生体验数学结构上的和谐性。
由于空间向量是在平面向量的基础上推广的,涉及内容和平面向量类似,学生应该容易接受。
但要在教学过程中注意维数增加给学生带来的不利影响。
三.教学目标1.知识目标理解空间向量的相关概念,掌握空间向量的加减运算及其运算律。
2.能力目标(1)体会类比和归纳的数学思想。
(2)进一步培养学生的空间观念。
(3)体会数形结合的思想。
3.情感态度、价值观目标:(1)培养学生认真参与,积极交流的主体意识。
(2)培养学生探索精神和创新意识。
(3)使学生懂得数学源于生活,服务于生活。
四.教法学法教法:采取类比引导、计算机辅助教学、反馈评价等方式;学法:采取自主探索、类比猜想、合作交流等形式。
五.教学过程根据课改的精神,本着“以学生发展为本”的教学理念,结合学生实际,对教学内容作如下安排:1.创设情境——引入新课我将以三名学生从空间三个不同的方向提拉一物体这样一个生活实例出发,让学生感受向量在生活中的存在,以及学习空间向量的必要性。
最新人教A版选修1-1高中数学3.1空间向量及其运算第1课时公开课教学设计

§3.1.1空间向量及加减其运算【学情分析】:向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用。
在人教A版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意与平面向量的类比,体会空间向量在解决立体几何问题中的作用。
【教学目标】:(1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法(2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法(3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。
【教学重点】:空间向量的概念和加减运算【教学难点】:空间向量的应用【教学过程设计】:练习与测试: (基础题)1.举出一些实例,表示三个不在同一平面的向量。
2.说明数字0与空间向量0的区别与联系。
答:空间向量0有方向,而数字0没有方向;空间向量0的长度为0。
3.三个向量a,b,c 互相平行,标出a+b+c. ‘解:分同向与反向讨论(略)。
4.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +; (2)121AA ++;(3)CB AC AA --1解:(1)11BA =+ (2)AM AA CB AC =++121(3)11BA CB AC AA =--(中等题)5.如图,在长方体///B D CA OADB -中,3,4,2,OA i OB j OC k ===,点E,F 分别是//,B D DB 的中点,试用向量,,表示OE 和OF解:423+=2423++=。
6.在上题图中,试用向量,,表示和解:= =2,FE=--EF=--k2。
《3.1.1 空间向量及其线性运算》教案

《3.1.1 空间向量及其线性运算》教案一、教学目标:1.运用类比的方法,经历向量及其线性运算由平面向空间推广的过程;2.了解空间向量的概念,掌握空间向量的线性运算及其性质;3.理解空间向量共线(平行)的充要条件及共线向量定理.二、教学重难点:1.空间向量的线性运算及其性质.2.空间向量及其线性运算法则的运算.三、教学方法建议:新授课、启发式——引导发现、合作探究.四、教学过程:(A)类问题(学生自学)1、在平面内既有大小又有方向的量叫平面向量.2、在空间,既有大小又有方向的量叫空间向量.3、空间向量的加法和数乘运算满足的运算律.加法交换律: a b b a +=+;加法结合律:()() a b c a b c ++=++;数乘分配律:(λλλ a b a b +)=+.4、共线向量定理:空间任意两个向量 a , b ( a ≠0 ), a //b 的充要条件是存在实数λ,使 b =λ a .(B)类问题(学生练习,教师点拨)1、如图,在三棱柱111ABC A B C -中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量:(1)1 CB BA +; (2)112AC CB AA ++; (3)1 AA AC CB --.(C)类问题(学生思考,教师点拨)如图,在长方体111OADB CA D B 中,OA=3,OB=4,OC=2,OI=OJ=OK=1,点E,F 分别是DB,D1B1的中点.设 OI i =, OJ j =, OK k =,试用向量 i , j , k 表示OE 和 OF.五、问题解决情况检测:(A)类问题检测(B)类问题检测正方体AC1中,点E,F 分别为棱BC 和A1D1的中点,求证:四边形DEB1F 为平行四边形.(C)类问题检测已知空间四边形ABCD,连结AC,BD,设M,G 分别是BC,CD 的中点,化简下列各表达式,并标出化简结果向量:(1) AB BC CD ++; (2)1()2AB BD BC ++. 六、教学反思:。
3.1空间向量及其运算 教学设计 教案
教学准备
1. 教学目标
(1)知识与技能:掌握掌握空间向量的夹角的概念,空间向量数量积的定义和运算律
(2)过程与方法:类比学习,注重类比、推广等思想方法的学习和使用,掌握立体几何中的三垂线定理及其逆定理的证明
(3)情感态度与价值观:进一步学习向量法在证明立体几何中的应用,培养学生的开拓创新能力和举一反三的能力。
2. 教学重点/难点
【教学重点】:空间向量的数量积运算
【教学难点】:空间向量的数量积运算在解决立体几何中的应用
3. 教学用具
多媒体
4. 标签
3.1.3 空间向量的数量积运算
教学过程
课堂小结
(1)夹角、空间向量数量积、运算律(2)三垂线定理及其逆定理
(3)夹角、距离的求法。
人教A版高中数学选修空间向量及其运算教案人教新课标A
第三章空间向量与立体几何课题:3.1.1空间向量及其运算(一)第课时总序第个教案课型:新授课编写时时间:年月日执行时间:年月日教学目标:教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.批注教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学用具:多媒体,三角板,直尺教学方法:讨论法.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下:(1)|λa |=|λ||a |(2)当λ>0时,λa 与a 同向;当λ<0时,λa 与a 反向;当λ=0时,λa =0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c )数乘分配律:λ(a +b )=λa +λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.[师]空间向量的加法、减法、数乘向量各是怎样定义的呢?[生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: AB OA OB +==a +b ,OA OB AB -=(指向被减向量),=OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b +c );(课件验证)⑶数乘分配律:λ(a + b ) =λa +λb .[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-Λ因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. ⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即: 011433221=+++++-A A A A A A A A A A n n n Λ.⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB +;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD —A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P 27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.巩固练习课本P 86 练习Ⅳ. 教学反思平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法.Ⅴ.课后作业⒈课本P 106 1、2、⒉预习课本P 86~P 89,预习提纲:⑴怎样的向量叫做共线向量?⑵两个向量共线的充要条件是什么?⑶空间中点在直线上的充要条件是什么?⑷什么叫做空间直线的向量参数表示式?⑸怎样的向量叫做共面向量?⑹向量p与不共线向量a、b共面的充要条件是什么?⑺空间一点P在平面MAB内的充要条件是什么?教学后记:。
《空间向量及其运算》教学设计
教学设计3.1.1空间向量及其加减运算整体设计教材分析《空间向量及其加减运算》是《空间向量与立体几何》的起始课,本节课旨在介绍空间向量这一工具的相关概念,了解空间向量的物理背景,对空间向量有一个初步的认识.类比平面向量的加减运算得出空间向量的加减运算的运算法则和运算律,并借助空间几何体表示空间向量的加减运算,为用空间向量解决立体几何问题奠定基础.课时分配1课时教学目标知识与技能1.理解空间向量的有关概念;2.掌握空间向量的加减运算法则.过程与方法1.运用类比方法,经历向量及其运算由平面向空间推广的过程;2.引导学生借助空间几何体理解空间向量加减运算及其运算律的意义.情感、态度与价值观1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力;2.培养学生的空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义;3.培养学生空间向量的应用意识.重点难点教学重点:1.空间向量的有关概念;2.空间向量的加减运算及其运算律、几何意义;3.空间向量的加减运算在空间几何体中的应用.教学难点:1.空间想象能力的培养,思想方法的理解和应用;2.空间向量的加减运算及其几何的应用和理解.教学过程引入新课我们已学过向量的概念,请同学们回顾:(1)向量的概念是什么?基本要素是什么?(2)向量如何表示?(3)什么是向量的长度?(4)有哪些特殊的向量?活动设计:学生先独立回忆,必要时可以看书,也可以求助同学.活动结果:(板书)(1)我们把具有大小和方向的量叫做向量;大小和方向;(2)几何表示法:AB →,a ;坐标表示法a =x i +y j =(x ,y).(3)向量的长度,即向量的大小,记作|a |.(4)零向量:长度为零的向量;单位向量:长度为1的向量.设计意图:复习已经学过的向量的有关概念,让学生回顾认知基础,为空间向量的引入打下基础.提出问题:我们以前研究向量(特别是多于两个向量时)是在同一个________内研究的,即所研究的向量都在同一个________内.为此我们称它们为________向量.活动设计:学生先独立思考,允许小组合作.活动成果:平面 平面 平面设计意图:在必修4学习向量时,虽然章标题写着“平面向量”,但教材仅仅给出了“向量”的概念,却始终没有给出“平面向量”的概念,尽管也始终是在平面内研究的向量,所以首先让学生明确以前学习的向量为平面向量是必要的,这也为今天要研究的“空间向量”作好了准备.探究新知提出问题1:右图是一个物体的受力情况分析,F 1,F 2,F 3是不是平面向量?它们和平面向量的区别与联系是什么?活动设计:学生自由发言.活动成果:F 1,F 2,F 3不是平面向量,它们具有平面向量的两个要素,但它们不在同一平面内,我们把它们称为空间向量.设计意图:帮助学生找到平面向量和空间向量的区别与联系,引出空间向量的概念. 提出问题2:类比平面向量的相关概念、表示方法,试着给出空间向量的相关概念、表示方法.活动设计:先让学生独立思考,然后小组交流,教师巡视指导,并注意与学生交流. 活动成果:空间向量的概念:在空间,我们把具有大小和方向的量叫做空间向量.空间向量的表示方法:几何表示法:AB →,a .空间向量的长度(或称模):空间向量的大小,记作|AB →|,|a |.特殊的空间向量:零向量:长度为零的向量.单位向量:长度为1的向量.相等向量:方向相同且模相等的向量.相反向量:长度相等、方向相反的向量.设计意图:把平面向量的相关概念类比到空间向量,使学生更容易接受新知.提出问题3:回忆学习平面向量时的研究内容、呈现顺序,试着类比给出(估计、猜想)学习空间向量,我们应当研究哪些内容,呈现顺序应当是怎样的.活动设计:学生独立思考,自由发言.活动结果:应当研究的主要内容和呈现顺序:空间向量的有关概念→表示方法→零向量、单位向量(后加)→运算(加、减、数乘、数量积)→共线、共面向量→向量及其运算的坐标表示→应用空间向量知识解决有关问题.设计意图:由于这是本章的第一节课,也就是一节章起始课,按照学习从概貌开始,先整体后具体的认识规律和学习规律,使学生首先从整体上把握本章要研究哪些主要问题、主要脉络是什么样的.这样就会使学生清楚本章的学习目标和路线图,是学有目标,研有方向,胸怀全局,先见森林再见树木的学习,其学习效果不言而喻.即使没有前面学习平面向量的基础,教师也可以仅从“向量”是一种“既有大小,又有方向的量”开始,让学生估计应当主要研究哪些主要问题.比如,首先要研究如何表示,其次有“大小”就要研究运算,有“方向”就要研究夹角,最终要利用它解决问题.于是也可以得出要研究的主要内容、呈现顺序:概念→表示→运算→应用.提出问题4:(1)我们学过平面向量的哪些运算?(2)平面向量的加减法法则是什么?满足什么样的运算律?活动设计:学生先独立回忆,必要时可以看书,也可以求助同学.活动结果:(板书)(1)向量的加减法运算,实数与向量的乘积,两个向量的数量积运算等.(2)平面向量的加法法则是“平行四边形法则”和“三角形法则”,向量的加法满足交换律、结合律.向量的减法是向量的加法的逆运算(即向量的减法可以转化为向量的加法),向量的减法不满足交换律和结合律.注意:“三角形法则”也就是求两个向量之和的“首尾相连法”,并且可以推广为求多个向量之和的“首尾相连法”,“首尾相连法”极其好用,必需熟练掌握,而且要达到只需根据表达式中的双字母表示,不需图形即可得出结论的水平.如,见了AB →+BC →+CD →即知等于AD →;见了A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n 即知等于A 1A n →.更进一步,要能善于将表达式转化成可以利用“首尾相连法”求解的结构,并能快速得到需要的结果.提出问题5:类比平面向量的加减法法则,空间向量的加减法法则应该怎样定义?加减法满足哪些运算律?活动设计:先让学生独立思考,然后小组交流,教师巡视指导,并注意与学生交流. 活动成果:(板书)平面向量的加减法法则可以直接推广为空间向量的加法法则:(如图)平行四边形法则:把两个向量放在同一起点上,以两向量为邻边作平行四边形,以共同起点为起点的平行四边形的对角线即为两个向量的和向量.OB →=OA →+OC →.三角形法则:以第一个向量的终点为第二个向量的起点,以第一个向量的起点为起点,以第二个向量的终点为终点的向量为两个向量的和向量.OB →=OA →+AB →.注意:“三角形法则”也就是求两个向量之和的“首尾相连法”,并且可以推广为求多个向量之和的“首尾相连法”.“首尾相连法”极其好用,必需熟练掌握,而且要达到只需根据表达式中的双字母表示,不需图形即可得出结论的水平.如,见了AB →+BC →+CD →即知等于AD →;见了A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n 即知等于A 1A n →.更进一步,要能善于将表达式转化成可以利用“首尾相连法”求解的结构,并能快速得到需要的结果.空间向量的减法法则:a -b =a +(-b ),OB →-OA →=OB →+AO →=AB →.平面向量的加法满足的运算律可以直接推广为空间向量的加法满足的运算律:(1)加法满足交换律:a +b =b +a .(2)加法满足结合律:(a +b )+c =a +(b +c ).设计意图:把平面向量的加减法法则和运算律类比到空间向量,使学生感觉到就像是自己发现新知识,而且更容易接受新知.理解新知提出问题1:零向量的方向应当怎样定义?单位向量的方向确定吗?所有单位向量移到同一起点上,终点构成一个什么图形?活动设计:学生自由发言,教师以相等向量的定义进行引导.活动成果:规定零向量的方向是任意的,所有单位向量移到同一起点上,终点构成一个半径为1的球.设计意图:加深对零向量、相等向量、单位向量等概念的理解.提出问题2:依据空间向量的加减法运算法则,探索|a |,|b |,|a +b |,|a -b |之间有怎样的大小关系.活动设计:学生画出向量加法的平行四边形法则图形,从图形中观察;教师巡视并和学生交流.必要时,教师可以提问:“任意两个空间向量是否一定是共面向量?”,若是,则即可转化为“平面向量”处理.进一步提出:在平面向量中,|a |,|b |,|a +b |,|a -b |之间有怎样的大小关系?活动成果:1.|||a |-|b |≤|a +b |≤|||a |+|b |,当且仅当a ,b 方向相同时,有||a +b =|||a |+|b |;当且仅当a ,b 方向相反时,有||a +b =|||a |-|b |;2.|||a |-|b |≤|a -b |≤|||a |+|b |,当且仅当a ,b 方向相反时,有||a -b =|||a |+|b |;当且仅当a ,b 方向相同时,有||a -b =|||a |-|b |.设计意图:获得向量模的三角形法则,并加深学生对空间向量的加减法运算法则的理解.提出问题3:你能在正方体ABCD —A ′B ′C ′D ′中验证加法满足结合律吗?活动设计:学生从正方体ABCD —A ′B ′C ′D ′中任意选择三个向量检验空间向量加法的结合律,教师巡视指导.活动成果:(一例)AB →+AD →+AA ′→=AC →+AA ′→=AC ′→;AB →+(AD →+AA ′→)=AB →+AD ′→=AC ′→;所以AB →+AD →+AA ′→=AB →+(AD →+AA ′→).设计意图:让学生经历向量加法结合律的验证,将空间向量引入空间几何体中. 运用新知如图,已知平行六面体ABCD —A ′B ′C ′D ′,M 为CC ′的中点,化简下列向量表达式,并标出化简结果所表示的向量.(1)AB →+BC →; (2)AB →+AD →+'AA ;(3)AB →+AD →+MC ′→; (4)AB →-DA →-'B B -CM →.思路分析:利用空间向量的加、减法法则及其运算律来解答.解:(1)AB →+BC →=AC →;(2)AB →+AD →+AA ′→=AC ′→;(3)AB →+AD →+MC ′→=AC →+CM →=AM →.(4)AB →-DA →-B ′B →-CM →=AB →+AD →+BB ′→+MC →=AB →+BC →+CC ′→+C ′M →=AM →.点评:始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的体对角线所示向量.巩固练习如图,已知空间四边形ABCD ,连结AC ,BD ,设M ,G 分别是BC ,CD 的中点,化简下列各表达式,并标出化简结果所表示的向量:(1)AB →+BC →+CD →;(2)AB →+MC →+MG →;(3)AB →+MC →-GM →-GC →.解:如图,(1)AB →+BC →+CD →=AC →+CD →=AD →;(2)AB →+MC →+MG →=AB →+BM →+MG →=AG →;(3)AB →+MC →-GM →-GC →=AB →+BM →+MG →+GD →=AD →.变练演编1.如图,已知平行六面体ABCD —A ′B ′C ′D ′,化简下列向量表达式.(1)AB ′→+A ′D ′→+C ′C →;(2)AD ′→-BD ′→+BC ′→;(3)AD ′→-AC →+AB →.2.如图,已知平行六面体ABCD —A ′B ′C ′D ′,则(1)________+________=AC ′→;(2)________+________+________=AC ′→;(3)________+________+________+________=AC ′→;(4)______+______+______+______+______=AC ′→.请将你所能想到的所有答案都一一列举出来.1.解:(1) 'AB +''A D +'C C ='AB +''B C +'C C =AC →.(2) 'AD -BD ′→+BC ′→=AB →+BC ′→=AC ′→.(3) 'AD -AC →+AB →='AD +CA →+AB →='CD +''D D ='CC .2.解:(1)AC →,'CC ;或AB ′→,''B C ;或AA ′→,''A C ;或'AD ,''D C ;或AD →,DC ′→.(2)AB →,BC →,'CC ;或AB →,BB ′→,''B C ;或AB →,BD →,'DC ;或AB →,BA ′→,''A C ;AB →,BD ′→,''D C ;或AA ′→,''A B ,''B C ;等等.(3)AB →,BD →,DC →,'CC ;或AB ′→,''B A ,''A D ,''D C ;等等.(4)AB →,BC →,CD →,DD ′→,''D C ;或AB →,BC →,CA ′→,''A D ,''D C ;或AB →,BC →,CA ′→,''A B ,''B C ;等等.设计意图:第2题的设计不仅是为了训练学生根据解题需要能熟练、恰当地将一个向量分解为几个分向量之和的能力(这是很实用的一种能力),而且可以培养学生的发散性思维能力,并且可以考查学生对知识、问题理解的深刻性和思维的深刻性、全面性.题型的新颖性、开放性更是不言而喻,学生的兴趣会更浓,思维也会更积极.达标检测1.如图,在空间四边形ABCD 中,E ,F 分别是AD 与BC 的中点,求证:EF →+EF →=AB→+DC →.2.如图,在平行六面体ABCD —A ′B ′C ′D ′中,设AB →=a ,AD →=b ,'AA =c ,(1)用向量a ,b ,c 表示'D B ; (2)化简:AB →+'BB +BC →+''C D ′+'D A .1.证明:EF →+EF →=(EA →+AB →+BF →)+(ED →+DC →+CF →)=(EA →+ED →)+(BF →+CF →)+AB →+DC →=AB →+DC →.2.解:(1) 'D B ='D A ′+''A B ′+'BB =-b +a -c ;(2) AB →+'BB +BC →+''C D +'D A =AB ′→+''B C +''C D +'D A=AD ′→+''C D =0.课堂小结1.知识收获:空间向量的相关概念;空间向量的加减法运算法则和运算律.2.方法收获:类比方法、数形结合方法.3.思维收获:类比思想、转化思想.布置作业课本本节练习第3题;补充练习3.补充练习基础练习1.在长方体ABCD —A ′B ′C ′D ′中,化简向量表达式AB →+''A D 的结果是__________.2.如果向量AB →、AC →、BC →满足||AB →=||AC →+||BC →,则( ) A.AB →=AC →+BC → B.AB →=-AC →-BC →C.AC →与BC →同向D.AC →与CB →同向答案:1.AC → 2.D拓展练习3.已知正方体ABCD —A ′B ′C ′D ′的中心为O ,则在下列结论中正确的共有( )①OA →+OB →与'OB +'OC 是一对相反向量;②OB →-OC →与'OA -'OD 是一对相反向量;③OA →+OB →+OC →+OD →与'OA +'OB +'OC +'OD 是一对相反向量;④'OA -OA →与OC →-'OC 是一对相反向量.A .1个B .2个C .3个D .4个答案:3.B设计说明本节课是空间向量的起始课,重点介绍空间向量的相关概念和加减法运算,本节课主要设计了问题驱动、类比思考、启发引导、自主探索等教学方式,主要特点是引导学生把空间向量的相关概念和加减法运算用平面向量的相关概念类比出来,得出结论以后引导学生在平行六面体中进行检验,增强学生的应用意识,加深学生的理解.类比是本节课设计的主要特点.本节课突出教师的主导作用和学生的主体地位,在教师所提问题的引导下,学生自主完成探究新知和理解新知的过程,在运用新知时进行变练演编,加深学生对知识的理解和问题转化的能力.备课资料如右图,在空间四边形ABCD 中,点M 、G 分别是BC 、CD 边的中点,填空:(1)AC →=________+________;(2)AC →=________+________+________;(3)AG →=________+________;(4)AG →=________+________+________+________.答案:(1)AB → BC →;或AD → DC → (2)AB → BD → DC →;或AD → DB → BC → (3)AD → DG →;或AC → CG →;或AM → MG →;或AB → BG → (4)AD → DB → BC → CG →;或AD → DB → BM → MG → 点评:解决加减法运算的关键除了运用平行四边形法则和三角形法则外,首尾相连法则的应用对解决本题这种类型的问题更为有效、高效.(设计者:徐西文 王文清)。
空间向量及运算教学设计
3.1空间向量及其运算教学设计教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢?[生]向量加法和数乘向量满足以下运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)数乘分配律:λ(a+b)=λa+λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.[师]空间向量的加法、减法、数乘向量各是怎样定义的呢?[生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: AB OA OB +==a +b , OA OB AB -=(指向被减向量), =OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c );(课件验证)⑶数乘分配律:λ(a + b ) =λa +λb .[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:011433221=+++++-A A A A A A A A A A n n n .⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD —A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.课堂练习课本P92练习Ⅳ.课时小结平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法.Ⅴ.课后作业⒈课本P106 1、2、⒉预习课本P92~P96,预习提纲:⑴怎样的向量叫做共线向量?⑵两个向量共线的充要条件是什么?⑶空间中点在直线上的充要条件是什么?⑷什么叫做空间直线的向量参数表示式?⑸怎样的向量叫做共面向量?⑹向量p与不共线向量a、b共面的充要条件是什么?⑺空间一点P在平面MAB内的充要条件是什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学准备
1. 教学目标
(1)知识与技能:掌握空间向量的数乘运算
(2)过程与方法:进行类比学习,会用空间向量的运算意义和运算律解决立几问题(3)情感态度与价值观:会用平面的向量表达式解决共面问题
2. 教学重点/难点
【教学重点】:空间向量的数乘运算及运算律
【教学难点】:用向量解决立几问题
3. 教学用具
多媒体
4. 标签
3.1.2 空间向量的数乘运算
教学过程
课堂小结
1.空间向量的数乘运算
2.空间向量的运算意义和运算律解决立几问题3.平面的向量表达式解决共面问题。