40等差数列概念和性质教案
等差数列的定义与通项公式教案

等差数列的定义与通项公式教案第一章:等差数列的概念引入1.1 等差数列的定义1.1.1 引导学生回顾自然数的排列,引入等差数列的概念。
1.1.2 通过具体例子,让学生理解等差数列的含义。
1.1.3 引导学生总结等差数列的特点。
1.2 等差数列的表示方法1.2.1 介绍等差数列的表示方法,引导学生理解首项、末项、公差等概念。
1.2.2 通过示例,让学生学会用符号表示等差数列。
1.2.3 让学生尝试自己表示一些等差数列,并判断其是否正确。
第二章:等差数列的性质2.1 等差数列的通项公式2.1.1 引导学生探究等差数列的通项公式。
2.1.2 通过推导,让学生理解并掌握等差数列的通项公式。
2.1.3 让学生运用通项公式计算等差数列的特定项。
2.2 等差数列的求和公式2.2.1 引导学生探究等差数列的求和公式。
2.2.2 通过推导,让学生理解并掌握等差数列的求和公式。
2.2.3 让学生运用求和公式计算等差数列的前n项和。
第三章:等差数列的通项公式的应用3.1 求等差数列的特定项3.1.1 让学生运用通项公式求解等差数列的特定项。
3.1.2 提供一些练习题,让学生巩固求特定项的方法。
3.2 求等差数列的前n项和3.2.1 让学生运用求和公式求解等差数列的前n项和。
3.2.2 提供一些练习题,让学生巩固求前n项和的方法。
第四章:等差数列的综合应用4.1 等差数列与函数的关系4.1.1 引导学生理解等差数列与函数的关系。
4.1.2 提供一些示例,让学生学会如何将等差数列问题转化为函数问题。
4.2 等差数列在实际问题中的应用4.2.1 提供一些实际问题,让学生运用等差数列的知识解决问题。
4.2.2 引导学生思考等差数列在其他领域的应用,如数学建模、数据处理等。
第五章:总结与拓展5.1 等差数列的定义与通项公式的总结5.1.1 与学生一起总结等差数列的定义与通项公式的关键点。
5.1.2 鼓励学生提出疑问,解答学生的疑惑。
《等差数列》教案

《等差数列》教案一、教材分析本课是初中数学七年级下册的课程——等差数列。
本课程的教材分为四个部分,分别是引入、等差数列的概念及一些常用公式、等差数列的性质和等差数列的应用。
教材通过生动形象的例子和图示,让学生对等差数列有一个直观的感受,然后通过公式和性质的推倒,使学生真正理解等差数列的本质和规律,最后让学生通过同类型的应用题目来锻炼等差数列的应用能力。
二、教学目标1、知识目标:(1)了解等差数列的定义、性质、公式和应用。
(2)掌握判断数列是否等差、求等差数列的公式、求等差数列中某一项的值等基本技能。
2、能力目标:(1)能够进一步提高分析问题、解决问题的能力。
(2)培养学生的推理、判断、分析能力。
(3)能够在实际问题中应用等差数列的知识,解决经济和社会生活中的实际问题。
3、情感目标:(1)能够在学习中培养学生的探究精神,积极参与到学习中来。
(2)能够引导学生在学习过程中,锻炼自己的耐心和毅力。
(3)能够引导学生在学习过程中,理解等差数列的好处,认识数学在实际中的应用价值。
三、教学重点与难点(1)深入理解数列的概念和性质。
(2)对数列进行进一步推理并灵活使用公式和性质。
(3)把所学的知识运用于实际问题中。
四、教学策略1、激发学生学习兴趣,提高学生的自主学习能力。
2、灵活运用PBL教学策略,引导学生学会问题提出、研究和解决问题。
3、注重实际应用,使学生能够在实际问题中灵活地运用学过的知识。
4、采用互动式授课方式,让学生积极参与互动的环节,掌握知识并掌握解题技巧。
五、教学流程1、引入(1)通过三张幻灯片引入本课。
第一张幻灯片标题为《数列》,让学生去思考什么是数列。
第二张幻灯片标题为《等差数列》通过一句话引发学生对等差数列的思考。
第三张幻灯片标题为《数学的跨越》,让学生了解数学在现代社会的应用。
(2)通过一张PBL策略幻灯片,让学生提出所研究的问题,引导学生进一步理解等差数列的概念。
2、知识讲授(3)针对基本问题进行讲解。
《等差数列》教案优秀3篇

《等差数列》教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!《等差数列》教案优秀3篇以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。
数学等差数列教案优秀8篇

数学等差数列教案优秀8篇一、预习问题:1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:①1,2,3,4,5是等差数列;()②1,1,2,3,4,5是等差数列;()③数列6,4,2,0是公差为2的等差数列;()④数列是公差为的等差数列;()⑤数列是等差数列;()⑥若,则成等差数列;()⑦若,则数列成等差数列;()⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()⑨等差数列的公差是该数列中任何相邻两项的差。
()6、思考:如何证明一个数列是等差数列。
二、实战操作:例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?(3)已知数列的公差则例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法,通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
教学过程:一、片头(30秒以内)前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。
本节微课重点讲解等差数列的定义,并且能初步判断一个数列是否是等差数列。
30秒以内二、正文讲解(8分钟左右)第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒第二部分内容:给出等差数列的定义及其数学表达式50 秒第三部分内容:哪些数列是等差数列?并且求出首项与公差。
等差数列的概念、性质(优质课)教案

等差数列的概念、性质(优质课)教案教学目标:教学重点: 掌握等差数列的概念、通项公式及性质;求等差中项,判断等差数列及与函数的关系; 教学难点: 通项公式的求解及等差数列的判定。
教学过程:1. 等差数列的概念一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 来表示。
用递推关系系表示为()1n n a a d n N ++−=∈或()12,n n a a d n n N −+−=≥∈2. 等差数列的通项公式若{}n a 为等差数列,首项为1a ,公差为d ,则()11n a a n d =+− 3. 等差中项如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项 4. 通项公式的变形对任意的,p q N +∈,在等差数列中,有:()11p a a p d =+−()11q a a q d =+− 两式相减,得()p q a a p q d =+− 其中,p q 的关系可以为,,p q p q p q <>=5. 等差数列与函数的关系由等差数列的通项公式()11n a a n d =+−可得()1n a dn a d =+−,这里1,a d 是常数,n 是自变量,n a 是n 的函数,如果设1,,d a a d b =−=则n a an b =+与函数y ax b =+对比,点(),n n a 在函数y ax b =+的图像上。
6. 等差数列的性质及应用(1)12132...n n n a a a a a a −−+=+=+=(2)若2,m n p q w +=+=则2m n p q w a a a a a +=+=(,,,,m n p q w 都是正整数) (3)若,,m p n 成等差数列,则,,m p n a a a 也成等差数列(,,m n p 都是正整数) (4)()n m a a n m d =+−(,m n 都是正整数)(5)若数列{}n a 成等差数列,则(),n a pn q p q R =+∈(6)若数列{}n a 成等差数列,则数列{}n a b λ+(,b λ为常数)仍为等差数列 (7)若{}n a 和{}n b 均为等差数列,则{}n n a b ±也是等差数列类型一: 等差数列的判定、项及公差的求解、通项公式的求解例1.(2015河北唐山月考)数列{}n a 是首项11a =−,公差3d =的等差数列,若2015,n a = 则n =A.672B.673C.662D.663 解析:由题意得()()1111334,n a a n d n n =+−=−+−⨯=−令2015n a =,解得673n = 答案:B练习1. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2003,n a = 则n = A.669 B.673 C.662 D.663 答案:A练习2. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2000,n a = 则n = A.669 B.668 C.662 D.663 答案:B例2.(2015山西太原段考)一个首项为23、公差为整数的等差数列从第7项开始为负数,则其公差d 为()A.-2B.-3C.-4D.-6 解析:由题意知670,0a a ≥<所以有115235062360a d d a d d +=+≥+=+<解得2323,456d d Z d −≤<−∈∴=− 答案:C练习3. 一个首项为23、公差为整数的等差数列从第6项开始为负数,则其公差d 为() A.-2 B.-3 C.-4 D.-5 答案:D练习4.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 答案:B例3.(2014浙江绍兴一中期中)已知数列{}n a 满足1111,1,4n na a a +==−其中n N +∈设221n n b a =−(1) 求证:数列{}n b 是等差数列 (2) 求数列{}n a 的通项公式 解析:(1)1144222222121212121n n n n n n n n n a a b b a a a a a ++−−=−=−==−−−−− 所以数列{}n b 是等差数列(2)()111121,21221212,212n n n a b b b n d n a n n a a n=∴==∴=+−=−+∴==−答案:(1)略 (2)12n n a n+=练习5.已知数列{}n a 满足()1114,21n n n a a a n a −−==≥+令1n nb a =(1) 求证:数列{}n b 是等差数列(2) 求数列{}n b 与{}n a 的通项公式 答案:(1)数列{}n b 是公差为1的等差数列 (2)443n a n =− ,34n b n =− 练习6.在等差数列{}n a 中,已知581,2,a a =−= 求1,a d 答案:15,1a d =−=例4.已知数列8,,2,,a b c 是等差数列,则,,a b c 的值分别为____________ 解析:a 为8与2的等差中项,得8252a +== ;2为,ab 的等差中项得1b =−;由b 为2与c 的等差数列,得4c =− 答案:5,-1,-4练习7. 已知数列8,,2,,a b 是等差数列,则,a b 的值分别为____________ 答案:5,-1练习8. 已知数列2,,8,,a b c 是等差数列,则,,a b c 的值分别为____________ 答案:5,11,14类型二:等差数列的性质及与函数的关系例5.等差数列{}n a 中,已知100110142015a a +=,则12014a a +=()A.2014B.2015C.2013D.2016解析:1001101412014+=+,且{}n a 为等差数列,12014100110142015a a a a ∴+=+=故选B 答案:B练习9.在等差数列{}n a 中,若4681012120,a a a a a ++++=则10122a a −的值为 () A.24 B.22 C.20 D.18 答案:A练习10.(2015山东青岛检测)已知等差数列{}n a 中,1007100812015,1,a a a +==−则2014a = _____ 答案:2016例6.已知数列{}n a 中,220132013,2a a ==且n a 是n 的一次函数,则 2015a =________ 解析:n a 是 n 的一次函数,所以设()0n a kn b k =+≠代入22013,a a 解得20151,20152015201520150n k b a n a =−=∴=−+∴=−+=答案:0练习11.若,,a b c 成等差数列,则二次函数()22f x ax bx c =−+的零点个数为()A.0B.1C.2D.1或2 答案:D练习12.已知无穷等差数列{}n a 中,首项13,a = 公差5d =−,依次取出序号被4除余3的项组成数列{}n b (1) 求1b 和2b (2) 求{}n b 的通项公式 (3){}n b 中的第503项是{}n a 的第几项答案:数列{}n b 是数列{}n a 的一个子集列,其序号构成以3为首项,4为公差的等差数列,由于{}n a 是等差数列,所以{}n b 也是等差数列 (1)()()13,5,31585n a d a n n ==∴=+−−=− 数列{}n a 中序号被4除余3的项是{}n a 中的第3项,第7项,第11项,…13277,27b a b a ∴==−==− (2)设{}n a 中的第m 项是{}n b 的第n 项即n mb a =()()413414185411320n m n m n n b a a n n −=+−=−∴===−−=− 则1320n b n =−(3)503132*********b=−⨯=−,设它是{}n a中的第m项,则1004785m−=−,则2011m=,即{}n b中的第503项是{}n a中的第2011项1.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6 C.8 D.10答案:A2.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为()A.49 B.50 C.51 D.52答案:D3. 如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35答案:C4. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有()A.a1+a101>0 B.a2+a100<0 C.a3+a100≤0D.a51=0答案:D5. 等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为()A.30 B.27 C.24 D.21答案:B6. 等差数列{a n}中,a5=33,a45=153,则201是该数列的第()项()A.60 B.61 C.62 D.63答案:B_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.在等差数列{a n}中,a3=7,a5=a2+6,则a6=()A.11 B.12 C.13 D.14答案:C2. 若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .33 答案:D3. 已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12等于( )A .15B .30C .31D .64 答案:A4. 等差数列中,若a 3+a 4+a 5+a 6+a 7+a 8+a 9=420,则a 2+a 10等于( )A .100B .120C .140D .160 答案:B 5. 已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A.3 B.2 C.13 D.12答案:A6. 在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 答案: 747. 等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_______.答案: 858. 在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 答案:C9. 在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=________. 答案:4210. 等差数列{a n }的前三项依次为x,2x +1,4x +2,则它的第5项为__________. 答案:411. 已知等差数列6,3,0,…,试求此数列的第100项. 答案:设此数列为{a n },则首项a 1=6,公差d =3-6=-3,∴a n =a 1+(n -1)d =6-3(n -1)=-3n +9. ∴a 100=-3×100+9=-291.能力提升12. 等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( )A .d >875B .d <325 C.875<d <325 D.875<d ≤325答案:D13. 设等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 是( )A .48B .49C .50D .51 答案:C14. 已知数列{a n }中,a 3=2,a 7=1,又数列{1a n +1}是等差数列,则a 11等于( )A .0 B.12 C.23 D .-1答案:B15. 若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1、d 2,则d 1d 2等于( )A.32B.23C.43D.34 答案:C16. 《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案:676617. 等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根 B .有两个相等实根 C .有两个不等实根 D .不能确定有无实根答案:A18. 在a 和b 之间插入n 个数构成一个等差数列,则其公差为( ) A.b -a n B.a -b n +1 C.b -a n +1 D.b -a n -1答案:C19. 在等差数列{a n }中,已知a m +n =A ,a m -n =B ,,则a m =__________. 答案:12(A +B )20.三个数成等差数列,它们的和等于18,它们的平方和等于116,则这三个数为__________. 答案:4,6,821. 在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案:2022. 已知数列{a n }是等差数列,且a 1=11,a 2=8.(1)求a 13的值;(2)判断-101是不是数列中的项; (3)从第几项开始出现负数? (4)在区间(-31,0)中有几项?答案:(1)由题意知a 1=11,d =a 2-a 1=8-11=-3,∴a n =a 1+(n -1)d =11+(n -1)×(-3)=-3n +14. ∴a 13=-3×13+14=-25.(2)设-101=a n ,则-101=-3n +14, ∴3n =115,n =1153=3813∉N +.∴-101不是数列{a n }中的项.(3)设从第n 项开始出现负数,即a n <0, ∴-3n +14<0,∴n >143=423.∵n ∈N +,∴n ≥5, 即从第5 项开始出现负数. (4)设a n ∈(-31,0),即-31<a n <0, ∴-31<-3n +14<0, ∴423<n <15,∴n ∈N +, ∴n =5,6,7,…,14,共10项.23. 已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项? 答案:设首项为a 1,公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+(15-1)d =33a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23d =4,∴a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,得n =45∈N *, ∴153是所给数列的第45项. 24. 已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2,且n ∈N *)确定. (1)求证:{1x n}是等差数列;(2)当x 1=12时,求x 100的值.答案:(1)∵x n =f (x n -1)=3x n -1x n -1+3(n ≥2,n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n ≥2,n ∈N *). ∴数列{1x n }是等差数列.(2)由(1)知{1x n }的公差为13,又x 1=12,∴1x n =1x 1+(n -1)·13=13n +53.∴1x 100=1003+53=35,即x 100=135.25. 四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.答案:设四个数为a -3d ,a -d ,a +d ,a +3d ,据题意得,(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94 ⇒2a 2+10d 2=47.①又(a -3d )(a +3d )=(a -d )(a +d )-18⇒8d 2=18⇒d =±32代入①得a =±72,故所求四个数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1. 26. 已知等差数列{a n }中,a 2+a 6+a 10=1,求a 3+a 9.答案:解法一:a 2+a 6+a 10=a 1+d +a 1+5d +a 1+9d =3a 1+15d =1,∴a 1+5d =13.∴a 3+a 9=a 1+2d +a 1+8d =2a 1+10d =2(a 1+5d )=23.解法二:∵{a n }为等差数列,∴2a 6=a 2+a 10=a 3+a 9,∴a 2+a 6+a 10=3a 6=1, ∴a 6=13,∴a 3+a 9=2a 6=23.27. 在△ABC 中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,试判断三角形的形状.答案:∵A ,B ,C 成等差数列,∴2B =A +C ,又∵A +B +C =π,∴3B =π,B =π3.∵lgsin A ,lgsin B ,lgsin C 成等差数列, ∴2lgsin B =lgsin A +lgsin C , 即sin 2B =sin A ·sin C , ∴sin A sin C =34.又∵cos(A +C )=cos A cos C -sin A sin C ,cos(A -C )=cos A cos C +sin A sin C , ∴sin A sin C =cos (A -C )-cos (A +C )2,∴34=12[cos(A -C )-cos 2π3], ∴34=12cos(A -C )+14, ∴cos(A -C )=1,∵A -C ∈(-π,π),∴A -C =0, 即A =C =π3,A =B =C .故△ABC 为等边三角形.。
等差数列的性质教案

2.2.2等差数列的性质教学设计教学目标1.知识与技能:理解和掌握等差数列的性质,能选择更方便快捷的解题方法,了解等差数列与一次函数的关系。
2.过程方法及能力:培养学生观察、归纳能力,在学习过程中体会类比思想,数形结合思想,特殊到一般的思想并加深认识。
3.情感态度价值观:通过师生,生生的合作学习,增强学生团队协作能力的培养,并引导学生从不同角度看问题,解决问题教学重点:理解等差中项的概念,等差数列的性质,并用性质解决一些相关问题,体会等差数列与一次函数之间的联系。
教学难点:加深对等差数列性质的理解,学生在以后的学习过程能从不同角度看问题,解决问题,学会研究问题的方法。
授课类型:新授课课时安排:1课时教学方法:启发引导,讲练结合学法:观察,分析,猜想,归纳教具:多媒体教学过程:一、复习引入首先回忆一下上节课所学主要内容:1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)2.等差数列的通项公式:d n a a n )1(1-+= (=n a d m n a m )(-+)3.有几种方法可以计算公差d① d=n a -1-n a ② d =11--n a a n ③ d =mn a a m n -- 二、讲解新课:问题:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 应满足什么条件?由定义得A-a =b -A ,即:2b a A +=反之,若2b a A +=,则A-a =b -A 由此可可得:,,2b a b a A ⇔+=成等差数列 也就是说,A =2b a +是a ,A ,b 成等差数列的充要条件 定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项如数列:1,3,5,7,9,11,13…中5是3和7的等差中项,1和9的等差中项9是7和11的等差中项,5和13的等差中项看来,73645142,a a a a a a a a +=++=+性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N )三.例题讲解。
等差数列的基本定义及性质(教案二)
等差数列的基本定义及性质(教案二)。
一、基本定义等差数列是指一个数列中相邻的两个数字之间的差值相等的数列。
这个差值称为公差,记为d,而数列中的第一项记为a1,第n项记为an。
简单来说,等差数列可以表示为:a1, a1+d, a1+2d, a1+3d, …, an-1+d, an其中,d为公差,a1为首项,an为末项,n为项数。
二、性质1.通项公式对于一个等差数列,我们可以得到以下的通项公式:an = a1 + (n-1)d这个公式表明了,对于等差数列中的任意一项,我们可以通过首项、公差和项数来求出。
2.求和公式对于一个等差数列,我们可以使用以下的公式来求和:Sn = (a1 + an) × n / 2其中,Sn表示前n项和。
3.公差的性质公差有以下的性质:① 两个相邻的项之间的差值等于公差d。
② 对于任意两个项,它们之间的差值可以表示为d × (m - n),其中m和n分别表示这两个项的下标。
③ 如等差数列的首项和公差均为正数,那么数列中的每一项都是正数。
④ 如果等差数列的首项和公差均为负数,那么数列中的每一项都是负数。
4.项数的性质项数有以下的性质:① 对于任意一个等差数列,我们都可以通过首项、末项和公差来求出项数。
② 当n大于2时,等差数列的第n项与第n-1项之间的差值是公差。
③ 任意三个项构成的子等差数列,其公差等于原等差数列的公差。
三、应用等差数列在数学中有着广泛的应用,特别是在数列求和、数学证明、概率统计等方面。
在数列求和中,我们可以通过等差数列的求和公式来求出前n项的和。
在数学证明中,等差数列可以用来证明某些数学定理,例如等差数列的一些性质。
在概率统计中,等差数列可以被用来模拟某些随机变量的分布。
等差数列是数学中一个重要的概念,其基本定义和性质对于我们的数学学习有很大的帮助,因此,掌握等差数列的相关知识是非常必要的。
等差数列的概念教案
等差数列的概念教案教学目标:1.了解等差数列的定义和性质;2.学会计算等差数列的通项公式;3.能够应用等差数列解决实际问题。
教学内容:一、引入(10分钟)1.引出等差数列的概念:教师出示一个数字序列:1,3,5,7,9,询问学生是否有发现,让学生讨论并总结规律。
2.介绍等差数列的定义:教师解释等差数列的定义:如果一个数列中任意两个相邻的项之差始终保持不变,那么这个数列就是等差数列。
二、定义与性质(20分钟)1.形式化的定义:教师整理上述讨论结果,给出等差数列的形式化定义,即对于数列{a1, a2, a3,..., an},如果有公差d,那么对于任意的n≥2, ai+1 - ai = d。
2.等差数列的特点:-公差d的大小决定了数列每一项之间的差距;-第一项a1的大小、公差d的正负以及项数n的大小决定了整个数列的排列。
三、计算等差数列的通项公式(30分钟)1.推导递推公式:教师给出等差数列的第一项a1和公差d,让学生推导出递推公式。
-a2=a1+d-a3=a1+2d-...- an = a1 + (n-1)d2.总结通项公式:教师引导学生从递推公式中总结出等差数列的通项公式:an = a1 + (n-1)d。
3.练习计算:学生通过练习计算等差数列的通项公式,巩固学习成果。
四、应用示例(30分钟)1.求等差数列的和:教师给出一个等差数列,让学生思考如何通过通项公式求出数列的和,并进行讲解。
2.实际问题的应用:-示例1:小明从1月1日起,每天存入100元,到12月31日共存了多少钱?-示例2:在一座大楼的楼梯间,第一步有10级台阶,之后每一步比前一步多2级,小明从第二步开始每一步以这个规律上楼,到第10步停下,请计算小明一共走了多少级台阶。
学生通过这些实际问题,巩固应用等差数列解决实际问题的能力。
五、练习与总结(10分钟)1.练习题:让学生独立完成一些练习题,检查学生对等差数列的概念和通项公式的理解和应用。
等差数列教案大班
等差数列教案大班一、教学目标:1. 了解等差数列的概念和性质。
2. 掌握等差数列的通项公式及应用。
3. 能够运用等差数列解决实际问题。
4. 培养学生的逻辑思维和分析问题的能力。
二、教学重点:1. 等差数列的概念和性质。
2. 等差数列的通项公式及应用。
三、教学难点:1. 运用等差数列解决实际问题。
2. 发现等差数列在生活中的应用。
四、教学准备:1. 教学课件、教学书籍。
2. 黑板、粉笔。
3. 习题和练习题。
五、教学过程:步骤一:导入(5分钟)老师通过提问的方式,复习学生对数列的基本概念的理解。
引出等差数列的概念,并给出一个生活中的例子,如每天步行的步数。
引导学生思考等差数列的性质。
步骤二:讲解(20分钟)1. 通过教学课件,详细讲解等差数列的定义和性质。
2. 指导学生理解等差数列的通项公式,并给出相关的示例。
3. 鼓励学生自己推导等差数列的通项公式,帮助他们理解公式的由来。
步骤三:练习(25分钟)1. 分发练习题,并让学生独立完成。
2. 学生完成后,老师逐个讲解题目的解答过程,同时解释解题的思路和方法。
3. 引导学生分析实际问题,应用等差数列进行计算。
步骤四:拓展(20分钟)1. 引导学生思考等差数列在生活中的应用。
例如,车速、水位的变化等。
2. 让学生分组进行小研究,找出更多生活中的等差数列应用,并分享给全班。
3. 整理学生的发现,鼓励他们运用数学知识解决生活中的问题。
步骤五:总结与反思(5分钟)老师引导学生总结今天学习的内容,回顾所学的知识点和解题方法。
并鼓励学生进行反思,思考自己在学习过程中的问题和不足之处。
六、教学延伸:1. 教师可以带领学生进行更复杂的等差数列的计算和应用。
2. 引导学生进行等差数列的推广,如等差数列的和公式等。
3. 给学生提供更多的练习题和挑战题,以更好地巩固所学的知识。
七、教学评价:1. 教师可以通过课堂练习和小组讨论的方式进行学生的评价。
2. 老师可以提供一些练习题或考试题,检查学生对等差数列的掌握程度。
等差数列的定义与通项公式教案
等差数列的定义与通项公式教案一、教学目标:1. 了解等差数列的定义,掌握等差数列的性质。
2. 掌握等差数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
二、教学内容:1. 等差数列的定义2. 等差数列的性质3. 等差数列的通项公式4. 等差数列的求和公式5. 应用举例三、教学重点与难点:1. 教学重点:等差数列的定义、性质、通项公式及应用。
2. 教学难点:等差数列通项公式的理解和运用。
四、教学方法:1. 采用讲授法,讲解等差数列的定义、性质、通项公式及应用。
2. 利用实例进行分析,帮助学生理解和掌握等差数列的性质和通项公式。
3. 运用练习题,巩固所学知识,提高学生的解题能力。
五、教学过程:1. 引入:通过列举一些实际问题,引导学生思考等差数列的定义和性质。
2. 等差数列的定义:讲解等差数列的定义,引导学生理解等差数列的特点。
3. 等差数列的性质:讲解等差数列的性质,如相邻两项的差是常数等。
4. 等差数列的通项公式:推导等差数列的通项公式,并解释其含义。
5. 等差数列的求和公式:讲解等差数列的求和公式,并给出应用实例。
6. 练习题:布置一些有关等差数列的练习题,让学生巩固所学知识。
7. 总结:对本节课的主要内容进行总结,强调等差数列的定义、性质和通项公式的重点。
8. 作业:布置一些有关等差数列的应用题,让学生进一步理解和掌握所学知识。
六、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了等差数列的定义、性质和通项公式。
针对存在的问题,调整教学方法,为下一节课做好准备。
七、教学评价:通过课堂讲解、练习题和课后作业,评价学生对等差数列的定义、性质和通项公式的掌握程度。
对学生的学习情况进行全面评价,鼓励优秀学生,帮助后进生。
八、课时安排:2课时九、教学资源:教材、教案、PPT、练习题等。
十、教学拓展:1. 等差数列在实际应用中的例子:如人口增长、工资增长等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§40 等差数列概念和性质教案(2)
一.常用知识点:
1.解决与等差数列有关问题有哪些常见数学思想 ⑴函数思想 : ⑵方程思想: ⑶整体思想: ⑷类比思想:
2.如何判断一个数列是等差数列?
⑴定义法 ⑵等差中项法 ⑶通项公式法
⑷前n 项和公式法
3.求等差数列前n 项和最值的常用方法
(1)_二次函数法__________________________ (2)通项公式法_________________________ 二、基础训练
1、{}n a 为等差数列,466a a +=,510S =,则d=
2、已知数列{}n a 中,11
3
a =
,且
1115n n a a +=+,则6a = 3、已知等差数列 —10,—6,—2,……..54n S =,则n= 4、等差数列中,48122,10,S S S === 5、等差数列{}n a 中,1001
,1002
d S =
=,则13599.......a a a a ++++= 三、课堂例题
例1、已知等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18.
(1)求数列{a n }的通项公式;
(2)令b n =S n
n +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,
求出c 的值;若不存在,请说明理由.
例2、已知{}n a 是等差数列,
(1)前四项和21,末四项和67,所有项和286,求项数; (2)220,38,n n S S == 求3n S (3)若两个等差数列前n 项和之比为71
427
n n ++, 求第11项之比。
例 3 设{}n a 是公差不为零的等差数列,n S 为其前n 项和,且满足
7,72
5242322=+=+S a a a a
(1) 求数列{}n a 的通项公式及前n 项和n S ; (2) 试求所有的正整数m ,使得
2
1
++m m m a a a 为数列{}n a 中的项.
例4设等差数列{}n a 的前n 项和为n S ,且5133349a a S +==,.
(1)求数列{}n a 的通项公式及前n 项和公式; (2)设数列{}n b 的通项公式为n
n n a b a t
=
+,问: 是否存在正整数t ,使得12m b b b ,, (3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.
四.课后练习
1.已知数列{}n a 的前n 项和S n =n 2
—7n, 且满足16<a k +a k +1<22, 则正整数k = _______.
2.已知公差不为零的等差数列{}n a 满足931,,a a a 成等比数列,{}n S 为数列 {}n a 的前n 项和,则
6
79
11S S S S --的值是 .
3.等差数列{a n }中,已知,13,1598≤≥a a 则12a 的取值范围是________
4.已知数列{}n a 的前n 项和21()2
n S n kn k *=-+∈N ,且n S 的最大值为8,则=2
a _______
5.已知{}n a 是首项为a,公差为1的等差数列,1n n n
a b a +=
.若对任意的*
n N ∈,都有8n b b ≥成立,则实数a 的取值范围是__________.
等差数列概念和性质学案(2)
1、设等差数列{}n a 的前n 项和为n S ,若535a a =则
9
5
S S = 2、在各项均不为零的等差数列{a n }中,若a n +1-a 2n +a n -1=0 (n ≥2),
则S 2n -1-4n =_______. 3、设数列{a n }、{b n }都是等差数列,且a 1=10,b 1=90,a 2+b 2=100,那么数列{a n +b n }的第2 012项的值是________. 4、《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 5、等差数列{}n a 中,101010,70,a S d ===
6、等差数列{a n }中a 1>0,001312<>S S ,, S n 中最大的是__________
7、设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________.
8、已知n S 是等查数列前n 项和,若
31
84=S S ,则_________16
8=S S 9、一个等差数列前12项和为118,前12项中偶数项的和与奇数项的和之比为32:27,
则公差_______=d
10、设等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,若对任意自然数n 都有S n T n =2n -3
4n -3
,
则a 9b 5+b 7+a 3b 8+b 4
的值为________. 11.设数列{n a }是公差不为0的等差数列,S 为其前n 项和,若2
2
2
2
1234a a a a +=+,55S =,
则7a 的值为_____.
12.已知等差数列{},{}n n a b 的前n 项和分别为n S 和n T ,若
7453n n S n T n +=
+,且2n n
a
b 是整数,则n 的值为_______.
13.已知数列{}n a 满足1144,4n n a a a -==-
,令1
2
n n b a =- (1)求证:数列{}n b 是等差数列 (2)求数列{}n a 的通项公式
14.设数列{}n a 的前n 项和为n S ,满足2
1n n a S An Bn +=++(0A ≠).
(1)若132a =,29
4
a =,求证数列{}n a n -是等比数列,并求数列{}n a 的通项公式; (2)已知数列{}n a 是等差数列,求1
B A
-的值.
15. 已知在正整数数列{a n }中,前n 项和S n 满足:S n =1
8
(a n +2)2.
(1)求证:{a n }为等差数列. (2)若b n =1
2
a n -30.求数列{
b n }的前n 项和的最小值.
16.设数列{}n a 的前n 项和2
n S n =,数列{}n b 满足*()n
n n a b m N a m
=
∈+.
(Ⅰ)若128,,b b b 成等比数列,试求m 的值;
(Ⅱ)是否存在m ,使得数列{}n b 中存在某项t b 满足*
14,,(,5)t b b b t N t ∈≥成等差数列?
若存在,请指出符合题意的m 的个数;若不存在,请说明理由。