山东省莱芜市实验校2022年中考联考数学试卷含解析
2022年山东省莱芜市中考数学试题(word版含解析)

2022年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题〔本大题共12小题,每题3分〕1.〔3分〕〔2022•莱芜〕﹣3的相反数是〔〕A.3 B.﹣3 C.D.﹣考点:相反数.专题:常规题型.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是3,应选:A.点评:此题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣〞号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.〔3分〕〔2022•莱芜〕将数字2.03×10﹣3化为小数是〔〕A.0.203 B.0.0203 C.0.00203 D.0.000203考点:科学记数法—原数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:2.03×10﹣3化为小数是0.00203.应选C.点评:此题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.〔3分〕〔2022•莱芜〕以下运算正确的选项是〔〕A.〔﹣a2〕•a3=﹣a6 B.a6÷a3=a2 C.a2+a3=a5 D.〔a3〕2=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、〔﹣a2〕•a3=﹣a5,故错误;B、a6÷a3=a3,故错误;C、a2•a3=a5,故错误;D、正确;应选:D.点评:此题考查同底数幂的除法,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法那么才能做题.4.〔3分〕〔2022•莱芜〕要使二次根式有意义,那么x的取值范围是〔〕A.x B.x C.x D.x考点:二次根式有意义的条件.分析:二次根式的被开方数是非负数.解答:解:依题意得3﹣2x≥0,解得x≤.应选:B.点评:此题考查了二次根式的意义和性质.概念:式子〔a≥0〕叫二次根式.性质:二次根式中的被开方数必须是非负数,否那么二次根式无意义.5.〔3分〕〔2022•莱芜〕如图,AB∥CD,EF平分∠AEG,假设∠FGE=40°,那么∠EFG的度数为〔〕A.35° B.40° C.70° D.140°考点:平行线的性质.分析:先根据两直线平行同旁内角互补,求出∠AEG的度数,然后根据角平分线的定义求出∠AEF的度数,然后根据两直线平行内错角相等,即可求出∠EFG的度数.解答:解:∵AB∥CD,∠FGE=40°,∴∠AEG+∠FGE=180°,∴∠AEG=140°,∵EF平分∠AEG,∴∠AEF=∠AEG=70°,∵AB∥CD,∴∠EFG=∠AEF=70°.应选C.点评:此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.6.〔3分〕〔2022•莱芜〕以下列图形中,是轴对称图形,但不是中心对称图形的是〔〕A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念对各选项分析判断即可得解.解答:解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.应选D.点评:此题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两局部折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两局部重合.7.〔3分〕〔2022•莱芜〕为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下〔单位:℃〕:﹣6,﹣3,x,2,﹣1,3.假设这组数据的中位数是﹣1,那么以下结论错误的选项是〔〕A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣1考点:方差;算术平均数;中位数;众数;极差.分析:分别计算该组数据的平均数,众数,极差及方差后找到正确的答案即可.解答:解:根据题意可知x=﹣1,平均数=〔﹣6﹣3﹣1﹣1+2+3〕÷6=﹣1,∵数据﹣1出现两次最多,∴众数为﹣1,极差=3﹣〔﹣6〕=9,方差=[〔﹣6+1〕2+〔﹣3+1〕2+〔﹣1+1〕2+〔2+1〕2+〔﹣1+1〕2+〔3+1〕2]=9.应选A.点评:此题考查了方差、极差、平均数、中位数及众数的知识,属于根底题,掌握各局部的定义及计算方法是解题关键.8.〔3分〕〔2022•莱芜〕以下几何体中,主视图和左视图都为矩形的是〔〕A.B.C.D.考点:简单几何体的三视图.分析:分别写出各几何体的主视图和左视图,然后进行判断.解答:解:A、主视图和左视图都为圆,所以A选项错误;B、主视图和左视图都为矩形的,所以B选项正确;C、主视图和左视图都为等腰三角形,所以C选项错误;D、主视图为矩形,左视图为圆,所以D选项错误.应选B.点评:此题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.记住常见的几何体的三视图.9.〔3分〕〔2022•莱芜〕一个多边形除一个内角外其余内角的和为1510°,那么这个多边形对角线的条数是〔〕A.27 B.35 C.44 D.54考点:多边形内角与外角.分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为x,边数为n,∴〔n﹣2〕×180°﹣x=1510,180n=1870+x,∵n为正整数,∴n=11,∴=44,应选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.10.〔3分〕〔2022•莱芜〕甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,那么以下结论中正确的选项是〔〕A.甲乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与速度v有关考点:列代数式〔分式〕.分析:设从A地到B地的距离为2s,根据时间=路程÷速度可以求出甲、乙两人同时从A地到B地所用时间,然后比较大小即可判定选择项.解答:解:设从A地到B地的距离为2s,而甲的速度v保持不变,∴甲所用时间为,又∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为,∴甲先到达B地.应选:B.点评:此题主要考查了一元一次方程在实际问题中的应用,解题时首先正确理解题意,根据题意设未知数,然后利用条件和速度、路程、时间之间的关系即可解决问题.11.〔3分〕〔2022•莱芜〕如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D的路径移动.设点P经过的路径长为x,PD2=y,那么以下能大致反映y与x的函数关系的图象是〔〕A.B.C.D.考点:动点问题的函数图象.分析:根据题意,分三种情况:〔1〕当0≤t≤2a时;〔2〕当2a<t≤3a时;〔3〕当3a<t≤5a时;然后根据直角三角形中三边的关系,判断出y关于x的函数解析式,进而判断出y与x的函数关系的图象是哪个即可.解答:解:〔1〕当0≤t≤2a时,∵PD2=AD2+AP2,AP=x,∴y=x2+a2.〔2〕当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵PD2=CD2+CP2,∴y=〔3a﹣x〕2+〔2a〕2=x2﹣6ax+13a2.〔3〕当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵PD2=y,∴y=〔5a﹣x〕2=〔x﹣5a〕2,综上,可得y=∴能大致反映y与x的函数关系的图象是选项D中的图象.应选:D.点评:〔1〕此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.〔2〕此题还考查了直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.12.〔3分〕〔2022•莱芜〕如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC为直径的⊙O与AD 相切,点E为AD的中点,以下结论正确的个数是〔〕〔1〕AB+CD=AD;〔2〕S△BCE=S△ABE+S△DCE;〔3〕AB•CD=;〔4〕∠ABE=∠DCE.A.1 B. 2 C.3 D. 4考点:圆的综合题.分析:设DC和半圆⊙O相切的切点为F,连接OF,根据切线长定理以及相似三角形的判定和性质逐项分析即可.解答:解:设DC和半圆⊙O相切的切点为F,∵在直角梯形ABCD中AB∥CD,AB⊥BC,∴∠ABC=∠DCB=90°,∵AB为直径,∴AB,CD是圆的切线,∵AD与以AB为直径的⊙O相切,∴AB=AF,CD=DF,∴AD=AE+DE=AB+CD,故①正确;如图1,连接OE,∵AE=DE,BO=CO,∴OE∥AB∥CD,OE=〔AB+CD〕,∴OE⊥BC,∴S△BCE=BC•OE=〔AB+CD〕=〔AB+CD〕•BC==S△ABE+S△DCE,故②正确;如图2,连接AO,OD,∵AB∥CD,∴∠BAD+∠ADC=180°,∵AB,CD,AD是⊙O的切线,∴∠OAD+∠EDO=〔∠BAD+∠ADC〕=90°,∴∠AOD=90°,∴∠AOB+∠DOC=∠AOB+∠BAO=90°,∴∠BAO=∠DOC,∴△ABO∽△CDO,∴,∴AB•CD=OB•OC=BC BC=BC2,故③正确,如图1,∵OB=OC,OE⊥BC,∴BE=CE,∴∠BEO=∠CEO,∵AB∥OE∥CD,∴∠ABE=∠BEO,∠DCE=∠OEC,∴∠ABE=∠DCE,故④正确,综上可知正确的个数有4个,应选D.点评:此题考查了切线的判定和性质、相似三角形的判定与性质、直角三角形的判定与性质.解决此题的关键是熟练掌握相似三角形的判定定理、性质定理,做到灵活运用.二、填空题〔本大题共5小题,每题填对得4分,共20分,请填在答题卡上〕13.〔4分〕〔2022•莱芜〕计算:﹣|﹣2|+〔﹣1〕3+2﹣1=.考点:实数的运算;负整数指数幂.专题:计算题.分析:原式第一项利用算术平方根定义计算,第二项利用绝对值的代数意义化简,第三项利用乘方的意义化简,最后一项利用负整数指数幂法那么计算即可得到结果.解答:解:原式=3﹣2﹣1+=,故答案为:点评:此题考查了实数的运算,熟练掌握运算法那么是解此题的关键.14.〔4分〕〔2022•莱芜〕m+n=3,m﹣n=2,那么m2﹣n2=.考点:平方差公式.分析:根据平方差公式,即可解答.解答:解:m2﹣n2=〔m+n〕〔m﹣n〕=3×2=6.故答案为:6.点评:此题考查了平方差公式,解决此题的关键是熟记平方差公式.15.〔4分〕〔2022•莱芜〕不等式组的解集为.考点:解一元一次不等式组.分析:先求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可.解答:解:∵由①得:x≥﹣1,由②得:x<2,∴不等式组的解集是﹣1≤x<2,故答案为﹣1≤x<2.点评:此题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.16.〔4分〕〔2022•莱芜〕如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为.考点:垂径定理;弧长的计算;解直角三角形.分析:由OC=r,点C在上,CD⊥OA,利用勾股定理可得DC的长,求出OD=时△OCD的面积最大,∠COA=45°时,利用弧长公示得到答案.解答:解:∵OC=r,点C在上,CD⊥OA,∴DC==,∴S△OCD=OD•,∴S△OCD2=OD2•〔r2﹣OD2〕=﹣OD4+r2OD2=﹣〔OD2﹣〕2+∴当OD2=,即OD=r时△OCD的面积最大,∴∠OCD=45°,∴∠COA=45°,∴的长为:=πr,故答案为:.点评:此题主要考查了扇形的面积,勾股定理,求出OD=时△OCD的面积最大,∠COA=45°是解答此题的关键.17.〔4分〕〔2022•莱芜〕如图,反比例函数y=〔x>0〕的图象经过点M〔1,﹣1〕,过点M作MN⊥x轴,垂足为N,在x轴的正半轴上取一点P〔t,0〕,过点P作直线OM的垂线l.假设点N关于直线l的对称点在此反比例函数的图象上,那么t=.考点:反比例函数图象上点的坐标特征;坐标与图形变化-对称.分析:根据反比例函数图象上点的坐标特征由点A坐标为〔1,﹣1〕得到k=﹣1,即反比例函数解析式为y=﹣,且ON=MN=1,那么可判断△OMN为等腰直角三角形,知∠MON=45°,再利用PQ⊥OM可得到∠OPQ=45°,然后轴对称的性质得PN=PN′,NN′⊥PQ,所以∠NPQ=∠N′PQ=45°,于是得到N′P⊥x轴,那么点n′的坐标可表示为〔t,﹣〕,于是利用Pn=Pn′得t﹣1=|﹣|=,然后解方程可得到满足条件的t的值.解答:解:如图,∵点A坐标为〔1,﹣1〕,∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵ON=MN=1,∴△OMN为等腰直角三角形,∴∠MON=45°,∵直线l⊥OM,∴∠OPQ=45°,∵点N和点N′关于直线l对称,∴PN=PN′,NN′⊥PQ,∴∠N′PQ=∠OPQ=45°,∠N′PN=90°,∴N′P⊥x轴,∴点N′的坐标为〔t,﹣〕,∵PN=PN′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=〔不符合题意,舍去〕,∴t的值为.故答案为:.点评:此题考查了反比例函数的综合题,涉及知识点有反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质和用求根公式法解一元二次方程等.利用对称的性质得到关于t的方程是解题的关键.三、解答题〔本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤〕18.〔6分〕〔2022•莱芜〕先化简,再求值:〔1﹣〕,其中x=3.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=•=•=,当x=3时,原式=2.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.19.〔8分〕〔2022•莱芜〕为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如以下列图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45 b良好 a 0.3合格105 0.35不合格60 c〔1〕该校初四学生共有多少人?〔2〕求表中a,b,c的值,并补全条形统计图.〔3〕初四〔一〕班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.考点:列表法与树状图法;频数〔率〕分布表;条形统计图.分析:〔1〕利用合格的人数除以该组频率进而得出该校初四学生总数;〔2〕利用〔1〕中所求,结合频数÷总数=频率,进而求出答案;〔3〕根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.解答:解:〔1〕由题意可得:该校初四学生共有:105÷0.35=300〔人〕,答:该校初四学生共有300人;〔2〕由〔1〕得:a=300×0.3=90〔人〕,b==0.15,c==0.2;如下列图;〔3〕画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P〔抽到甲和乙〕==.点评:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.20.〔9分〕〔2022•莱芜〕为保护渔民的生命财产平安,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D处进行躲避.避风港D在观测点A的正北方向,台风中心B在观测点A的北偏西67.5°的方向,渔船C与观测点A相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?〔sin36.9°≈0.6,tan36.9≈0.75,sin67.5≈0.92,tan67.5≈2.4〕考点:解直角三角形的应用-方向角问题.分析:先解Rt△ADC,求出CD=AC•sin∠DAC≈350×0.6=210海里,AD==280海里,那么渔船到的避风港D处所用时间:210÷18=11小时.再解Rt△ADB,求出BD=AD•tan∠BAD≈280×2.4=672海里,那么BC=BD﹣CD≈672﹣210=462海里.设强台风移动到渔船C后面200海里时所需时间为x小时,根据追及问题的等量关系列出方程〔40﹣18〕x=462﹣200,解方程求出x=11,由于11<11,所以渔船能顺利躲避本次台风的影响.解答:解:由题意可知∠BAD=67.5°,∠CAD=36.9°,AC=350海里.在Rt△ADC中,∵∠ADC=90°,∠DAC=36.9°,AC=350海里,∴CD=AC•sin∠DAC≈350×0.6=210海里,AD==280海里.∴渔船到的避风港D处所用时间:210÷18=11小时.在Rt△ADB中,∵∠ADB=90°,∠BAD=67.5°,∴BD=AD•tan∠BAD≈280×2.4=672海里,∴BC=BD﹣CD≈672﹣210=462海里.设强台风移动到渔船C后面200海里时所需时间为x小时,根据题意得〔40﹣18〕x=462﹣200,解得x=11,∵11<11,∴渔船能顺利躲避本次台风的影响.点评:此题考查了解直角三角形的应用﹣方向角问题,难度中等,求出强台风移动到渔船C后面200海里时所需时间是解题的关键.21.〔9分〕〔2022•莱芜〕如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.〔1〕判断四边形ACGD的形状,并说明理由.〔2〕求证:BE=CD,BE⊥CD.考点:全等三角形的判定与性质;等腰直角三角形;平行四边形的判定.专题:证明题.分析:〔1〕利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD为平行四边形;〔2〕利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE 为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.解答:〔1〕解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AB=BC,∵△ABD和△ACE均为等腰直角三角形,∴BD==BC=2BC,∵G为BD的中点,∴BG=BD=BC,∴△CBG为等腰直角三角形,∴∠CGB=45°,∵∠ADB=45°,AD∥CG,∵∠ABD=45°,∠ABC=45°∴∠CBD=90°,∵∠ACB=90°,∴∠CBD+∠ACB=180°,∴AC∥BD,∴四边形ACGD为平行四边形;∴∠EAB=∠CAD,在△DAC与△BAE中,,∴△DAC≌△BAE,∴BE=CD;∵∠EAC=∠BCA=90°,EA=AC=BC,∴四边形ABCE为平行四边形,∴CE=AB=AD,在△BCE与△CAD中,,∴△BCE≌△CAD,∴∠CBE=∠ACD,∵∠ACD+∠BCD=90°,∴∠CBE+∠BCD=90°,∴∠CFB=90°,即BE⊥CD.点评:此题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键.22.〔10分〕〔2022•莱芜〕今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.〔1〕试问去年每吨大蒜的平均价格是多少元?〔2〕该公司可将大蒜加工成蒜粉或蒜片,假设单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;假设单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?考点:一元一次不等式组的应用;分式方程的应用.分析:〔1〕设去年每吨大蒜的平均价格是x元,那么第一次采购的平均价格为〔x+500〕元,第二次采购的平均价格为〔x﹣500〕元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;〔2〕先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.解答:解:〔1〕设去年每吨大蒜的平均价格是x元,由题意得,×2=,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意,答:去年每吨大蒜的平均价格是3500元;〔2〕由〔1〕得,今年的大蒜数为:×3=300〔吨〕,设应将m吨大蒜加工成蒜粉,那么应将〔300﹣m〕吨加工成蒜片,由题意得,,解得:100≤m≤120,总利润为:1000m+600〔300﹣m〕=400m+180000,当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.点评:此题考查了分式方程和一元一次不等式耳朵应用,解答此题的关键是读懂题意,设出未知数,找出适宜的等量关系,列方程求解.23.〔10分〕〔2022•莱芜〕如图,AB是⊙O的直径,C是⊙O上任一点〔不与A,B重合〕,AB⊥CD于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.〔1〕求证:FC是⊙O的切线;〔2〕求证:GC=GE;〔3〕假设cos∠AOC=,⊙O的半径为r,求CH的长.考点:圆的综合题.专题:计算题.分析:〔1〕首先根据OF∥AC,OA=OC,判断出∠BOF=∠COF;然后根据全等三角形判定的方法,判断出△BOF≌△COF,推得∠OCF=∠OBF=90°,再根据点C在⊙O上,即可判断出FC是⊙O的切线.〔2〕延长AC、BF交点为M.由△BOF≌△COF可知:BF=CF然后再证明:FM=CF,从而得到BF=MF,因为DC∥BM,所以△AEG∽△ABF,△AGC∽△AFM,然后依据相似三角形的性质可证GC=GE;〔3〕因为cos∠AOC=,OE=,AE=.由勾股定理可求得EC=.AC=.因为EG=GC,所以EG=.由〔2〕可知△AEG∽△ABF,可求得CF=BF=.在Rt△ABF中,由勾股定理可求得AF=3r.然后再证明△CFH∽△AFC,由相似三角形的性质可求得CH的长.解答:〔1〕证明:∵OF∥AC,∴∠BOF=∠OAC,∠COF=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BOF=∠COF,在△BOF和△COF中,,∴△BOF≌△COF,∴∠OCF=∠OBF=90°,又∵点C在⊙O上,∴FC是⊙O的切线.〔2〕如以下列图:延长AC、BF交点为M.由〔1〕可知:△BOF≌△COF,∴∠OFB=∠CFO,BF=CF.∵AC∥OF,∴∠M=∠OFB,∠MCF=∠CFO.∴∠M=∠MCF.∴CF=MF.∴BF=FM.∵DC∥BM,∴△AEG∽△ABF,△AGC∽△AFM.∴,.∴又∵BF=FM,∴EG=GC.〔3〕如以下列图所示:∵cos∠AOC=,∴OE=,AE=.在Rt△GOC中,EC==.在Rt△AEC中,AC==.∵EG=GC,∴EG=.∵△AEG∽△ABF,∴,即.∴BF=.∴CF=.在Rt△ABF中,AF===3r.∵CF是⊙O的切线,AC为弦,∴∠HCF=∠HAC.又∵∠CFH=∠AFC,∴△CFH∽△AFC.∴,即:.∴CH=.点评:此题主要考查的是圆的综合应用,同时还涉及了勾股定理,锐角三角形函数,相似三角形的性质和判定,全等三角形的性质和判定,证得BF=FM是解答此题的关键.24.〔12分〕〔2022•莱芜〕如图,抛物线y=ax2+bx+c〔a≠0〕经过点A〔﹣3,2〕,B〔0,﹣2〕,其对称轴为直线x=,C〔0,〕为y轴上一点,直线AC与抛物线交于另一点D.〔1〕求抛物线的函数表达式;〔2〕试在线段AD下方的抛物线上求一点E,使得△ADE的面积最大,并求出最大面积;〔3〕在抛物线的对称轴上是否存在一点F,使得△ADF是直角三角形?如果存在,求点F的坐标;如果不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:〔1〕利用待定系数法求抛物线解析式;〔2〕作EP∥y轴交AD于P,如图1,先利用待定系数法求出直线AD的解析式为y=﹣x+,再通过解方程组得D〔5,﹣2〕,设E〔x,x2﹣x﹣2〕〔﹣3<x<5〕,那么P〔x,﹣x+〕,所以PE=﹣x2+x+,根据三角形面积公式和S△AED=S△AEP+S△DEP可得S△AED=﹣〔x﹣1〕2+,然后根据二次函数的最值问题求出△ADE的面积最大,且求出对应的E点坐标;〔3〕设F〔,t〕,根据两点间的距离公式得到AD2=〔5+3〕2+〔﹣2﹣2〕2=80,AF2=〔+3〕2+〔t﹣2〕2,DF2=〔5﹣〕2+〔﹣t﹣2〕2,然后根据勾股定理的逆定理分类讨论:当AD2+AF2=DF2,△ADF是直角三角形,那么80+〔+3〕2+〔t﹣2〕2=〔5﹣〕2+〔﹣t﹣2〕2;当AD2+DF2=AF2,△ADF是直角三角形,那么80+〔5﹣〕2+〔﹣t﹣2〕2=〔+3〕2+〔t﹣2〕2;当DF2+AF2=AD2,△ADF是直角三角形,那么〔+3〕2+〔t﹣2〕2+〔5﹣〕2+〔﹣t﹣2〕2,=80,再分别解关于t的方程确定t的值,从而得到F点的坐标.解答:解:〔1〕根据题意得,解得,所以抛物线解析式为y=x2﹣x﹣2;〔2〕作EP∥y轴交AD于P,如图1,设直线AD的解析式为y=mx+n,把A〔﹣3,2〕,C〔0,〕分别代入得,解得,所以直线AD的解析式为y=﹣x+,解方程组得或,那么D〔5,﹣2〕,设E〔x,x2﹣x﹣2〕〔﹣3<x<5〕,那么P〔x,﹣x+〕,∴PE=﹣x+﹣〔x2﹣x﹣2〕=﹣x2+x+,∴S△AED=S△AEP+S△DEP=•〔5+3〕〕•〔﹣x2+x+〕=﹣〔x﹣1〕2+,当x=1时,△ADE的面积最大,最大面积为,此时E点坐标为〔1,﹣〕;〔3〕存在.设F〔,t〕,如图2,∵A〔﹣3,2〕,D〔5,﹣2〕,∴AD2=〔5+3〕2+〔﹣2﹣2〕2=80,AF2=〔+3〕2+〔t﹣2〕2,DF2=〔5﹣〕2+〔﹣t﹣2〕2,当AD2+AF2=DF2,△ADF是直角三角形,那么80+〔+3〕2+〔t﹣2〕2=〔5﹣〕2+〔﹣t﹣2〕2,解得t=13,此时F点坐标为〔,13〕;当AD2+DF2=AF2,△ADF是直角三角形,那么80+〔5﹣〕2+〔﹣t﹣2〕2=〔+3〕2+〔t﹣2〕2,解得t=﹣7,此时F点坐标为〔,﹣7〕;当DF2+AF2=AD2,△ADF是直角三角形,那么〔+3〕2+〔t﹣2〕2+〔5﹣〕2+〔﹣t﹣2〕2,=80,解得t=±,此时F点坐标为〔,〕或〔,﹣〕,综上所述,F点的坐标为〔,13〕或〔,﹣7〕或〔,〕或〔,﹣〕.点评:此题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和勾股定理的逆定理;会利用待定系数法求函数解析式;理解坐标与图形性质;会利用两点间的距离公式计算线段的长;注意分类讨论思想的应用.。
2022届山东省莱芜莱城区五校联考中考数学模拟试题(含答案解析)

2022届山东省莱芜莱城区五校联考中考数学模拟测试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2y 8 3 0 ﹣1 0则抛物线的顶点坐标是()A.(﹣1,3)B.(0,0)C.(1,﹣1)D.(2,0)2.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为().A.100︒B.90︒C.80︒D.70︒3.下列图标中,是中心对称图形的是()A.B.C.D.4.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8 B.﹣8 C.﹣12 D.125.下列各式正确的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣2018 6.若等式x2+ax+19=(x﹣5)2﹣b成立,则a+b的值为()A.16 B.﹣16 C.4 D.﹣47.函数y=12x-的自变量x的取值范围是()A.x≠2B.x<2 C.x≥2D.x>28.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为()A.﹣13B.﹣3 C.13D.39.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13 14 15 25 28 30 35 其他人数30 533 17 12 20 9 2 3A.平均数B.众数C.方差D.标准差10.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:①图1中a的值为500;②乙车的速度为35 m/s;③图1中线段EF应表示为5005x+;④图2中函数图象与x轴交点的横坐标为1.其中所有的正确结论是()A.①④B.②③C .①②④D .①③④11.如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位;天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )A .第24天的销售量为200件B .第10天销售一件产品的利润是15元C .第12天与第30天这两天的日销售利润相等D .第27天的日销售利润是875元12.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( ) A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:3﹣1﹣30=_____.14.某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.15.某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制了如图1和图2所示的统计图,则B 品牌粽子在图2中所对应的扇形的心角的度数是_____.16.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用_____秒钟.17.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.18.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)20.(6分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?21.(6分)如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).22.(8分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.23.(8分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:A.书法比赛,B.绘画比赛,C.乐器比赛,D.象棋比赛,E.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1 各项报名人数扇形统计图:图2 各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为 人;(2)如图1项目D 所在扇形的圆心角等于 ;(3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.24.(10分)先化简,再求值:()2111x x ⎛⎫-÷- ⎪+⎝⎭,其中x 为方程2320x x ++=的根. 25.(10分)在△ABC 中,∠ACB =45°.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB =AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,BC =3,CD =x ,求线段CP 的长.(用含x 的式子表示)26.(12分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).27.(12分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=25.(1)求反比例函数y=mx和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【答案解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标. 详解:当0x =或2x =时,0y =,当1x =时,1y =-,04201c a b c a b c =⎧⎪∴++=⎨⎪++=-⎩ ,解得120a b c =⎧⎪=-⎨⎪=⎩,∴二次函数解析式为222(1)1y x x x =-=--,∴抛物线的顶点坐标为()1,1-,故选C .点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.2、B【答案解析】如图所示,过O 点作a 的平行线d ,根据平行线的性质得到∠2=∠3,进而求出将木条c 绕点O 旋转到与直线a 平行时的最小旋转角.【题目详解】如图所示,过O 点作a 的平行线d ,∵a ∥d ,由两直线平行同位角相等得到∠2=∠3=50°,木条c 绕O 点与直线d重合时,与直线a 平行,旋转角∠1+∠2=90°.故选 B【答案点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.3、B【答案解析】根据中心对称图形的概念 对各选项分析判断即可得解.【题目详解】解:A 、不是中心对称图形,故本选项错误;B 、是中心对称图形,故本选项正确;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误.故选B.【答案点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、D【答案解析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【题目详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故选D.【答案点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.5、A【答案解析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.【题目详解】选项A,﹣(﹣2018)=2018,故选项A正确;选项B,|﹣2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,2018﹣1=12018,故选项D错误.故选A.【答案点睛】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.6、D【答案解析】分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,则a+b=-10+6=-4,故选D.点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7、D【答案解析】根据被开放式的非负性和分母不等于零列出不等式即可解题.【题目详解】解:∵函数有意义,∴x-2>0,即x>2故选D【答案点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.8、B【答案解析】设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.【题目详解】设该点的坐标为(a,b),则|b|=1|a|,∵点(a,b)在正比例函数y=kx的图象上,∴k=±1.又∵y值随着x值的增大而减小,∴k=﹣1.故选:B.【答案点睛】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.9、B【答案解析】分析:根据平均数的意义,众数的意义,方差的意义进行选择.详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.故选B.点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.10、A【答案解析】分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF 的长;④利用待定系数法求直线的解析式,令y=0可得结论.详解:①y 是两车的距离,所以根据图2可知:图1中a 的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得:50075125b k b =⎧⎨+=⎩ ,解得5500k b =-⎧⎨=⎩ ,∴y=-5x+500, 当y=0时,-5x+500=0,x=1,即图2中函数图象与x 轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键. 11、C【答案解析】测试卷解析:A 、根据图①可得第24天的销售量为200件,故正确;B 、设当0≤t≤20,一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系为z=kx+b ,把(0,25),(20,5)代入得:25205b k b ⎧⎨+⎩==, 解得:125k b -⎧⎨⎩==, ∴z=-x+25,当x=10时,y=-10+25=15,故正确;C 、当0≤t≤24时,设产品日销售量y (单位:件)与时间t (单位;天)的函数关系为y=k 1t+b 1,把(0,100),(24,200)代入得:11110024200b k b ⎧⎨+⎩==, 解得:11256100k b ⎧⎪⎨⎪⎩==,∴y=256t +100, 当t=12时,y=150,z=-12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选C12、B【答案解析】画出函数图象,利用图象法解决问题即可;【题目详解】由题意,函数的图象为:∵抛物线的对称轴x=12,设抛物线与x轴交于点A、B,∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,故选B.【答案点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、﹣2 3 .【答案解析】原式利用零指数幂、负整数指数幂法则计算即可求出值.【题目详解】原式=13﹣1=﹣23. 故答案是:﹣23. 【答案点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.14、5750【答案解析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答【题目详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b 元, ∴72-b b=20%, ∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元,∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩ , ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有W =60m +40n +xn ,∴W =60m +40n +20n ﹣250=60(m +n )﹣250,∵m +n ≤100,∴W ≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【答案点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格15、120°【答案解析】根据图1中C品牌粽子1200个,在图2中占50%,求出三种品牌粽子的总个数,再求出B品牌粽子的个数,从而计算出B品牌粽子占粽子总数的比例,从而求出B品牌粽子在图2中所对应的圆心角的度数.【题目详解】解:∵三种品牌的粽子总数为1200÷50%=2400个,又∵A、C品牌的粽子分别有400个、1200个,∴B品牌的粽子有2400-400-1200=800个,则B品牌粽子在图2中所对应的圆心角的度数为360×8001360120 24003=⨯=︒.故答案为120°.【答案点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.16、2.5秒.【答案解析】把此正方体的点A所在的面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得.【题目详解】解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB=;(2)展开底面右面由勾股定理得AB=5cm;所以最短路径长为5cm,用时最少:5÷2=2.5秒.【答案点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.17、1.【答案解析】根据立体图形画出它的主视图,再求出面积即可.【题目详解】主视图如图所示,∵主视图是由1个棱长均为1的正方体组成的几何体,∴主视图的面积为1×12=1.故答案为:1.【答案点睛】本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图.18、2π【答案解析】考点:弧长的计算;正多边形和圆.分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.解:方法一:先求出正六边形的每一个内角=()621806-⨯︒=120°, 所得到的三条弧的长度之和=3×120180r π=2πcm ; 方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为2πcm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)5.6(2)货物MNQP 应挪走,理由见解析.【答案解析】(1)如图,作AD ⊥BC 于点DRt△ABD中,AD=ABsin45°=4在Rt△ACD中,∵∠ACD=30°∴ 5.6≈即新传送带AC的长度约为5.6米.(2)结论:货物MNQP应挪走.在Rt△ABD中,BD=ABcos45°=42⨯在Rt△ACD中,CD=ACcos30°=2∴CB=CD—BD= 2.1≈∵PC=PB—CB ≈4—2.1=1.9<2∴货物MNQP应挪走.20、(1)200元和100元(2)至少6件【答案解析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.【题目详解】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得4600351100x yx y+=⎧⎨+=⎩,解得:200100xy=⎧⎨=⎩,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.21、(1)3.13cm(2)铅笔芯折断部分的长度约是0.98cm【答案解析】测试卷分析:(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC 的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.测试卷解析:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.考点:解直角三角形的应用;探究型.22、(1).(2).【答案解析】测试卷分析:(1)根据取出黑球的概率=黑球的数量÷球的总数量得出答案;(2)根据概率的计算方法得出方程,从求出函数关系式.测试卷解析:(1)取出一个黑球的概率(2)取出一个白球的概率与的函数关系式为:.考点:概率23、(1)200;(2)54°;(3)见解析;(4)1 6【答案解析】(1)根据A的人数及所占的百分比即可求出总人数;(2)用D的人数除以总人数再乘360°即可得出答案;(3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;(4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可.【题目详解】解:(1)学生报名总人数为5025%200(人),故答案为:200;(2)项目D所在扇形的圆心角等于3036054200︒⨯=︒,故答案为:54°;(3)项目C的人数为200(50603020)40-+++=,补全图形如下:(4)画树状图得:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴恰好选中甲、乙两名同学的概率为21 126=.【答案点睛】本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键.24、1【答案解析】先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值.【题目详解】解:原式=()()()21111111x x x x x x x --+-÷=-⋅=--+--. 解2320x x ++=得,122,?1x x =-=-,∵1x =-时,21x +无意义, ∴取2x =-.当2x =-时,原式=()211---=.25、(1)CF 与BD 位置关系是垂直,理由见解析;(2)AB≠AC 时,CF ⊥BD 的结论成立,理由见解析;(3)见解析【答案解析】 (1)由∠ACB=15°,AB=AC ,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF ,可得∠DAF=90°,AD=AF ,∠DAF=∠DAC+∠CAF ;∠BAC=∠BAD+∠DAC ;得∠CAF=∠BAD .可证△DAB ≌△FAC (SAS ),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF ⊥BD . (2)过点A 作AG ⊥AC 交BC 于点G ,可得出AC=AG ,易证:△GAD ≌△CAF ,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF ⊥BD .(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC= ,BC=3,CD=x ,求线段CP 的长.考虑点D 的位置,分两种情况去解答.①点D 在线段BC 上运动,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x ,易证△AQD ∽△DCP ,再根据相似三角形的性质求解问题.②点D 在线段BC 延长线上运动时,由∠BCA=15°,可求出AQ=CQ=1,则DQ=1+x .过A 作AQ ⊥BC 交CB 延长线于点Q ,则△AGD ∽△ACF ,得CF ⊥BD ,由△AQD ∽△DCP ,得再根据相似三角形的性质求解问题.【题目详解】(1)CF 与BD 位置关系是垂直;证明如下:∵AB=AC ,∠ACB=15°,∴∠ABC=15°.由正方形ADEF 得AD=AF ,∵∠DAF=∠BAC=90°,∴∠DAB=∠FAC ,∴△DAB≌△FAC(SAS),∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)AB≠AC时,CF⊥BD的结论成立.理由是:过点A作GA⊥AC交BC于点G,∵∠ACB=15°,∴∠AGD=15°,∴AC=AG,同理可证:△GAD≌△CAF∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)过点A作AQ⊥BC交CB的延长线于点Q,①点D在线段BC上运动时,∵∠BCA=15°,可求出AQ=CQ=1.∴DQ=1﹣x,△AQD∽△DCP,∴,∴,∴.②点D在线段BC延长线上运动时,∵∠BCA=15°,∴AQ=CQ=1,∴DQ=1+x.过A作AQ⊥BC,∴∠Q=∠FAD=90°,∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,∴∠ADQ=∠AFC′,则△AQD∽△AC′F.∴CF⊥BD,∴△AQD∽△DCP,∴,∴,∴.【答案点睛】综合性题型,解题关键是灵活运用所学全等、相似、正方形等知识点.26、5.6千米【答案解析】设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=yx,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【题目详解】设PD的长为x千米,DA的长为y千米,在Rt△PAD中,tan∠DPA=DA DP,即tan18°=yx,∴y=0.33x,在Rt△PDB中,tan∠DPB=64 5.6g)56x⨯-(,即tan53°=5.6yx+,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【答案点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.27、(1)6y x -=,2y x 25=-(2)AC ⊥CD (3)∠BMC=41° 【答案解析】分析:(1)由A 点坐标可求得OA 的长,再利用三角函数的定义可求得OC 的长,可求得C 、D 点坐标,再利用待定系数法可求得直线AC 的解析式;(2)由条件可证明△OAC ≌△BCD ,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC ⊥CD ;(3)连接AD ,可证得四边形AEBD 为平行四边形,可得出△ACD 为等腰直角三角形,则可求得答案. 本题解析:(1)∵A (1,0),∴OA=1.∵tan ∠OAC=25,∴25OC OA =,解得OC=2, ∴C (0,﹣2),∴BD=OC=2,∵B (0,3),BD ∥x 轴,∴D (﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x, 设直线AC 关系式为y=kx+b ,∵过A (1,0),C (0,﹣2),∴052k b b =+⎧⎨-=⎩,解得252k b ⎧=⎪⎨⎪=-⎩,∴y=25x ﹣2; (2)∵B (0,3),C (0,﹣2),∴BC=1=OA ,在△OAC 和△BCD 中OA BC AOC DBC OC BD =⎧⎪∠=∠⎨⎪=⎩,∴△OAC ≌△BCD (SAS ),∴AC=CD , ∴∠OAC=∠BCD ,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC ⊥CD ;(3)∠BMC=41°.如图,连接AD ,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=41°.。
【中考专题】2022年山东省莱芜市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析)

2022年山东省莱芜市中考数学备考真题模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知5a b +=,3ab =,则b a a b +的值为( ) A .6 B .193 C .223 D .8 2、如图,在矩形ABCD 中,6AB =,8AD =,点O 在对角线BD 上,以OB 为半径作O 交BC 于点E ,连接DE ;若DE 是O 的切线,此时O 的半径为( )A .716B .2110C .2116D .3516 3、代数式2()a b c +的意义是( ) A .a 与b 的平方和除c 的商 B .a 与b 的平方和除以c 的商 C .a 与b 的和的平方除c 的商 D .a 与b 的和的平方除以c 的商 ·线○封○密○外4、如图是一个运算程序,若x的值为1-,则运算结果为()A.4-B.2-C.2 D.4 5、下列图标中,轴对称图形的是( )A.B.C.D.6、如图,在△ABC中,DE∥BC,DEBC=13,则下列结论中正确的是()A.13AEEC=B.12ADAB=C.13ADEABC的周长的周长∆=∆D.13ADEABC的面积的面积∆=∆7、整式mx n-的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:AE与BC的交点,AD平分)).5∠第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,射线BD ,CE 相交于点A ,则B 的内错角是__.2、如图,围棋盘的方格内,白棋②的位置是()5,2--,白棋④的位置是()4,6--,那么黑棋①的位置应该表示为______.3、如图,在ABC 中,中线,AD BE 相交于点O ,如果AOE 的面积是4,那么四边形OECD 的面积是_________4、A 、B 、C 三个城市的位置如右图所示,城市C 在城市A 的南偏东60°方向,且155BAC ∠=︒,则城市B 在城市A 的______方向.5、比较大小:2351x x ++______2251x x +-(用“>、=或<”填空). 三、解答题(5小题,每小题10分,共计50分) 1、如图所示的正方形网格中,每个小正方形的边长都为1,ABC △的顶点都在网格线的交点上,点B 坐标为()2,0-,点C 的坐标为()1,2-. (1)根据上述条件,在网格中画出平面直角坐标系xOy ;(2)画出ABC 关于x 轴对称图形111A B C △;(3)点A 绕点B 顺时针旋转90°,点A 对应点的坐标为______.2、如图,在ABC 中,AB AC =,AD BC ⊥于点D ,E 为AC 边上一点,连接BE 与AD 交于点F .G 为ABC 外一点,满足ACG ABE ∠=∠,FAG BAC ∠=∠,连接EG . ·线○封○密○外(1)求证:ABF ACG ≅△△;(2)求证:BE CG EG =+.3、尺规作图:已知:如图1,直线MN 和直线MN 外一点P .求作:直线PQ ,使直线PQ ∥MN .小智的作图思路如下:①如何得到两条直线平行?小智想到,自己学习线与角的时候,有4个定理可以证明两条直线平行,其中有“内错角相等,两条直线平行”.②如何得到两个角相等?小智先回顾了线与角的内容,找到了几个定理和1个概念,可以得到两个角相等.小智又回顾了三角形的知识,也发现了几个可以证明两个角相等的定理.最后,小智选择了角平分线的概念和“等边对等角”.③画出示意图:④根据示意图,确定作图顺序.(1)使用直尺和圆规,按照小智的作图思路补全图形1(保留作图痕迹); (2)完成下面的证明: 证明:∵AB 平分∠PAN , ∴∠PAB =∠NAB . ∵PA =PQ , ∴∠PAB =∠PQA ( ① ). ∴∠NAB =∠PQA . ∴PQ ∥MN ( ② ). (3)参考小智的作图思路和流程,另外设计一种作法,利用直尺和圆规在图2中完成.(温馨提示:保留作图痕迹,不用写作法和证明) ·线○封○密○外4、若2x=4y+1,27y=3x﹣1,试求x与y的值.5、问题发现:(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,①求证:△ACD≌△BCE;②求∠AEB的度数.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高交AE于M,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.-参考答案-一、单选题1、B【解析】【分析】将原式同分,再将分子变形为2()2a b ab ab +-后代入数值计算即可. 【详解】 解:∵5a b +=,3ab =, ∴2222()25231933b a a b a b ab a b ab ab ++--⨯+====, 故选:B . 【点睛】 此题考查了分式的化简求值,正确掌握完全平方公式的变形计算是解题的关键. 2、D 【解析】 【分析】 设O 半径为r ,如解图,过点O 作OF BE ⊥,根据等腰三角形性质BF EF =,根据四边形ABCD 为矩形,得出∠C =90°=∠OFB ,∠OBF =∠DBC ,可证BOF BDC ∽.得出BF BO BC BD =,根据勾股定理10BD ,代入数据810BF BO =,得出4455BF EF OB r ===,根据勾股定理在Rt DCE 中,222EC CD DE +=,即2225688r DE ⎛⎫- ⎪⎝⎭+=,根据DE 为O 的切线,利用勾股定理()222222618850E E r r O D r ⎛⎫+=++=⎭-- ⎪⎝,解方程即可. 【详解】 解:设O 半径为r ,如解图,过点O 作OF BE ⊥,∵OB =OE ,∴BF EF =,∵四边形ABCD 为矩形, ·线○封○密·○外∴∠C =90°=∠OFB ,∠OBF =∠DBC , ∴BOF BDC ∽. ∴BF BO BC BD=, ∵6,8AB AD ==,∴10BD ==, ∴810BF BO =, ∴4455BF EF OB r ===, ∴885EC r =-. 在Rt DCE 中,222EC CD DE +=,即2225688r DE ⎛⎫- ⎪⎝⎭+=, 又∵DE 为O 的切线,∴OE DE ⊥, ∴()222222618850E E r r O D r ⎛⎫+=++=⎭-- ⎪⎝, 解得3516r =或0(不合题意舍去). 故选D .【点睛】本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键. 3、D 【解析】 【分析】 (a +b )2表示a 与b 的和的平方,然后再表示除以c 的商. 【详解】 解:代数式2()a b c +的意义是a 与b 的和的平方除以c 的商, 故选:D . 【点睛】 此题主要考查了代数式的意义,关键是根据计算顺序描述. 4、A 【解析】 【分析】 根据运算程序,根据绝对值的性质计算即可得答案. 【详解】 ∵1-<3, ∴31---=4-, 故选:A . 【点睛】 ·线○封○密○外本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.5、A【解析】【详解】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.6、C【解析】【分析】根据DE∥BC,可得ADE ABC,再由相似三角形对应边成比例,周长之比等于相似比,面积之比等于相似比的平方,逐项判断即可求解.【详解】解:∵DE∥BC,∴ADE ABC,∴13AE DEAC BC==,故A错误,不符合题意;∴13AD DEAB BC==,故B错误,不符合题意;∴13ADE ABC 的周长的周长∆=∆,故C 正确,符合题意; ∴221139ADE DE ABC BC ∆⎛⎫⎛⎫=== ⎪ ⎪∆⎝⎭⎝⎭的面积的面积,故D 错误,不符合题意; 故选:C 【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形对应边成比例,周长之比等于相似比,面积之比等于相似比的平方是解题的关键. 7、A 【解析】 【分析】 根据等式的性质把8mx n -+=变形为8mx n -=-;再根据表格中的数据求解即可. 【详解】 解:关于x 的方程8mx n -+=变形为8mx n -=-, 由表格中的数据可知,当8mx n -=-时,1x =-; 故选:A . 【点睛】 本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解. 8、C 【解析】 【分析】 利用三角形的中线平分三角形的面积求得S △ABD =S △BDE =96,利用角平分线的性质得到△ACD 与△ABD 的高相等,进一步求解即可. 【详解】·线○封○密○外解:∵AD=DE,S△BDE=96,∴S△ABD=S△BDE=96,过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,∵AD平分∠BAC,∴DG=DF,∴△ACD与△ABD的高相等,又∵AB=3AC,∴S△ACD=13S△ABD=196323⨯=.故选:C.【点睛】本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.9、B【解析】【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可【详解】设中间的数是x,则上面的数是x-7,下面的数是x+7,则这三个数的和是(x -7)+x +(x +7)=3x ,∴3x =28, 解得:283x =不是整数, 故选项A 不是; ∴3x =54, 解得:18x = , 中间的数是18,则上面的数是11,下面的数是28, 故选项B 是; ∴3x =65, 解得:653x =不是整数, 故选项C 不是; ∴3x =75,解得:25x =, 中间的数是25,则上面的数是18,下面的数是32, 日历中没有32, 故选项D 不是; 所以这三个数的和可能为54, 故选B . 【点睛】 本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点. 10、A ·线○封○密○外【解析】【分析】根据平行线的判定逐个判断即可.【详解】解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,∴∠3=∠5,因为”同旁内角互补,两直线平行“,所以本选项不能判断AB∥CD;B、∵∠3=∠4,∴AB∥CD,故本选项能判定AB∥CD;∠+∠=︒,C、∵35180∴AB∥CD,故本选项能判定AB∥CD;D、∵∠1=∠5,∴AB∥CD,故本选项能判定AB∥CD;故选:A.【点睛】本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.二、填空题1、EAB∠##∠BAE【解析】【分析】根据内错角的意义,结合具体的图形进行判断即可.【详解】解:由内错角的意义可得,B 与EAB ∠是内错角, 故答案为:EAB ∠. 【点睛】 本题考查内错角,掌握内错角的意义是正确解答的前提. 2、()1,5-- 【解析】 【分析】 先根据白棋②的位置是()5,2--,白棋④的位置是()4,6--确定坐标系,然后再确定黑棋①的坐标即可. 【详解】 根据图形可以知道,黑棋①的位置应该表示为()1,5-- 故答案为:()1,5-- 【点睛】 此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系. 3、8 【解析】【分析】如图所示,连接DE ,先推出DE 是△ABC 的中位线,得到12DE AB =,DE ∥AB ,即可证明·线○封○密○外△ABO ∽△DEO ,△CDE ∽△CBA ,得到12OE DE OB AB ==,从而推出8ABO S =△,即可得到224ABC ABE S S ==△△,再由21=4DEO ABO S DE S AB ⎛⎫= ⎪⎝⎭△△,即可得到=2DEO S △,由21=4CDE ABC S DE S AB ⎛⎫= ⎪⎝⎭△△,得到6CDE S =△,则8DEO CDE OECD S S S =+=△△四边形.【详解】解:如图所示,连接DE ,∵AD ,BE 分别是BC ,AC 边上的中线,∴D 、E 分别是BC 、AC 的中点,∴DE 是△ABC 的中位线, ∴12DE AB =,DE ∥AB , ∴△ABO ∽△DEO ,△CDE ∽△CBA , ∴12OE DE OB AB ==, ∴==2ABO AOE S BO S EO△△, ∴8ABO S =△,∴=12ABE ABO AOE S S S =+△△△,∴224ABC ABE S S ==△△ ∵21=4DEO ABO S DE S AB ⎛⎫= ⎪⎝⎭△△, ∴=2DEO S △, ∵21=4CDE ABC S DE S AB ⎛⎫= ⎪⎝⎭△△, ∴6CDE S =△,∴8DEO CDE OECD S S S =+=△△四边形,故答案为:8.【点睛】 本题主要考查了相似三角形的性质与判定,三角形中位线定理,熟知相似三角形的性质与判定条件是解题的关键. 4、35°##35度 【解析】 【分析】 根据方向角的表示方法可得答案. 【详解】 解:如图,∵城市C 在城市A 的南偏东60°方向, ∴∠CAD =60°, ∴∠CAF =90°-60°=30°, ∵∠BAC =155°, ·线○封○密○外∴∠BAE =155°-90°-30°=35°,即城市B 在城市A 的北偏西35°,故答案为:35°.【点睛】本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.5、>【解析】【分析】先求两个多项式的差,再根据结果比较大小即可.【详解】解:∵22351(251)x x x x ++-+-,=22351251x x x x ++--+,=220x +>∴22351251x x x x ++>+-,故答案为:>.【点睛】本题考查了整式的加减,解题关键是熟练运用整式加减法则进行计算,根据结果判断大小.三、解答题1、 (1)见解析(2)见解析(3)(2,2)【解析】【分析】 (1)根据点B 坐标为()2,0-,点C 的坐标为()1,2-确定原点,再画出坐标系即可; (2)画出三角形顶点的对称点,再顺次连接即可; (3)画出旋转后点的位置,写出坐标即可. (1) 解:坐标系如图所示, (2)解:如图所示,111A B C △就是所求作三角形; ·线○封○密·○外(3)解:如图所示,点A绕点B顺时针旋转90°的对应点为A ,坐标为(2,2);故答案为:(2,2)【点睛】 本题考查了平面直角坐标系作图,解题关键是明确轴对称和旋转的性质,准确作出图形,写出坐标. 2、 (1)见解析 (2)见解析 【解析】 【分析】 (1)如图,先证明1=2∠∠,再根据全等三角形的判定证明结论即可; (2)根据全等三角形的性质和等腰三角形的三线合一证明2=3∠∠,再根据全等三角形的判定与性质证明()AEF AEG SAS ≅△△即可. (1) 证明:(1)证明:∵BAC FAG ∠=∠, ∴33BAC FAG ∠-∠=∠-∠, ·线○封○密○外即1=2∠∠,在ABF 和ACG 中,∵12AB AC ABF ACG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABF ACG ASA ≅△△;(2)证明:∵ABF ACG ≅△△,∴AF AG =,BF CG =,∵AB AC =,AD BC ⊥于点D ,∴1=3∠∠.∵1=2∠∠,∴2=3∠∠,在AEF 和AEG △中,∵32AF AG AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()AEF AEG SAS ≅△△,∴EF EG =,∴BE BF FE CG EG =+=+.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质,熟练掌握全等三角形的判定与性质是解答的关键. 3、(1)图见解析(2)等边对等角;内错角相等,两直线平行;(3)图见解析 【解析】 【分析】 (1)根据题意即可尺规作图进行求解; (2)根据角平分线与等腰三角形的性质得到内错角相等,故可求解; (3)作PH ⊥MN 于H 点,再作PH ⊥PQ 即可. 【详解】 (1)如图1,PQ 即为所求;(2)证明:∵AB 平分∠PAN ,∴∠PAB =∠NAB . ∵PA =PQ , ∴∠PAB =∠PQA (等边对等角). ∴∠NAB =∠PQA . ·线○封○密○外∴PQ ∥MN (内错角相等,两直线平行).故答案为:等边对等角;内错角相等,两直线平行;(3)如图2,PQ 为所求.【点睛】此题主要考查尺规作图的运用,解题的关键是熟知等腰三角形的性质、平行线的判定、垂直平分线的作法.4、{x =4x =1【解析】【分析】根据幂的乘方的意义得到二元一次方程组,再进行计算即可.【详解】解:∵2x =4y +1,27y =3x ﹣1,∴2x =22(x +1),33x =3x −1∴{x =2(x +1)3x =x −1整理得,{x −2x =2①3x −x =−1②①+②得,x =1把x =1代入①得,x −2=2∴x =4 ∴方程组的解为{x =4x =1【点睛】 本题主要考查了幂的乘方和解二元一次方程组,熟练掌握解题步骤是解答本题的关键. 5、 (1)①见解析;②∠AEB =60° (2)∠AEB =90°,AE =BE +2CM .理由见解析 【解析】 【分析】 (1)①先证明∠xxx =∠xxx , 再结合等边三角形的性质,利用xxx 证明△ACD ≌△BCE 即可;②先求解∠xxx =120°, 由△ACD ≌△BCE 可得∠ADC =∠BEC ,再利用角的和差关系可得答案; (2)先证明△xxx ≌△xxx ,∠xxx =135°, 再结合全等三角形的性质与等腰直角三角形的性质可得∠xxx =90°, 由xx ⊥xx , 结合等腰直角三角形的性质,可得xx =xx =xx , 结合全等三角形的性质可得xx =xx +2xx .(1) 证明:①∵△ACB 和△DCE 均为等边三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°, ∴∠ACD =60°﹣∠DCB =∠BCE . 在△ACD 和△BCE 中,{xx =xx ∠xxx =∠xxx xx =xx , ∴△ACD ≌△BCE (SAS ). ·线○封○密○外解:②∵△ACD≌△BCE,∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)解:∠AEB=90°,AE=BE+2CM.理由如下:如图2所示:由题意得:xx⊥xx,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,{xx=xx∠xxx=∠xxxxx=xx,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一直线上,∴∠ADC =135°,∴∠BEC =135°.∴∠AEB =∠BEC ﹣∠CED =90°.∵CD =CE ,CM ⊥DE ,∴DM =ME .∵∠DCE =90°,∴DM =ME =CM .∴AE =AD +DE =BE +2CM .【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,确定每一问中的两个全等三角形是解本题的关键. ·线○封○密·○外。
2022年山东省莱芜市中考数学试题及答案(解析版)

2022年山东省莱芜市中考数学试题及答案(解析版)山东省莱芜市2022年中考数学试卷一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂写在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分).1.(3分)(2022莱芜)在A.B.,,﹣2,﹣1这四个数中,最大的数是()C.﹣2D.﹣1考点:有理数大小比较.分析:求出每个数的绝对值,根据两个负数比较大小,其绝对值大的反而小比较即可.解答:解:∵|﹣|=,|﹣|=,|﹣2|=2,|﹣1|=1,∴<<1<2,∴﹣>﹣>﹣1>﹣2,即最大的数是﹣,故选B.点评:本题考查了绝对值和有理数的大小比较的应用,注意:两个负数比较大小,其绝对值大的反而小.2.(3分)(2022莱芜)在网络上用“Google”搜索引擎搜索“中国梦”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为()5670.451某10A.B.C.D.451某1045.1某104.51某10考点:科学记数法—表示较大的数.n分析:科学记数法的表示形式为a某10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.7解答:解:45100000=4.51某10,故选:C.n点评:此题主要考查科学记数法的表示方法.科学记数法的表示形式为a某10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2022莱芜)下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个考点:简单几何体的三视图.分析:四个几何体的左视图:球是圆,圆锥是等腰三角形,正方体是正方形,圆柱是矩形,由此可确定答案.解答:解:由图示可得:球的左视图是圆,圆锥的左视图是等腰三角形,正方体的左视图是正方形,圆柱的左视图是矩形,所以,左视图是四边形的几何体是圆柱和正方体.-1-故选B.点评:本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.4.(3分)(2022莱芜)方程A.﹣22B.=0的解为()±2C.D.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到某的值,经检验即可得到分式方程的解.2解答:解:去分母得:某﹣4=0,解得:某=2或某=﹣2,经检验某=2是增根,分式方程的解为某=﹣2.故选A点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.(3分)(2022莱芜)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10B.10,12.5C.11,12.5D.11,10考点:中位数;加权平均数.分析:根据中位数和平均数的定义结合选项选出正确答案即可.解答:解:这组数据按从小到大的顺序排列为:5,5,10,15,20,故平均数为:=11,中位数为:10.故选D.点评:本题考查了中位数和平均数的知识,属于基础题,解题的关键是熟练掌握其概念.6.(3分)(2022莱芜)如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()10°25°30°A.C.D.考点:平行线的性质.分析:延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.解答:解:如图,延长AB交CF于E,20°B.∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=35°,-2-∴∠AEC=∠ABC﹣∠1=25°,∵GH∥EF,∴∠2=∠AEC=25°,故选C.点评:本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.7.(3分)(2022莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A.B.C.D.考点:圆锥的计算.分析:过O点作OC⊥AB,垂足为D,交⊙O于点C,由折叠的性质可知OD为半径的一半,而OA为半径,可求∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理求∠AOB,然后求得弧AB的长,利用弧长公式求得围成的圆锥的底面半径,最后利用勾股定理求得其高即可.解答:解:过O点作OC⊥AB,垂足为D,交⊙O 于点C,由折叠的性质可知,OD=OC=OA,由此可得,在Rt△AOD中,∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理,得∠AOB=180°﹣∠A﹣∠B=120°∴弧AB的长为=2π设围成的圆锥的底面半径为r,则2πr=2π∴r=1cm∴圆锥的高为=2故选A.点评:本题考查了垂径定理,折叠的性质,特殊直角三角形的判断.关键是由折叠的性质得出含30°的直角三角形.8.(3分)(2022莱芜)下列图形中,既是轴对称图形,又是中心对称图形的个数是()①等边三角形;②矩形;③等腰梯形;④菱形;⑤正八边形;⑥圆.A.2B.3C.4D.5-3-考点:中心对称图形;轴对称图形.分析:根据轴对称及中心对称的定义,结合各项进行判断即可.解答:解:①是轴对称图形,不是中心对称图形,不符合题意;②是轴对称图形,也是中心对称图形,符合题意;③是轴对称图形,不是中心对称图形,不符合题意;④是轴对称图形,也是中心对称图形,符合题意.⑤是轴对称图形,也是中心对称图形,符合题意.⑥是轴对称图形,也是中心对称图形,符合题意.综上可得符合题意的有4个.故选C.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.9.(3分)(2022莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()关定理是解题关键.11.(3分)(2022莱芜)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()4568A.B.C.D.考点:等腰三角形的判定;坐标与图形性质.专题:数形结合.分析:作出图形,利用数形结合求解即可.解答:解:如图,满足条件的点M的个数为6.故选C.),M为坐标轴上点评:本题考查了等腰三角形的判定,利用数形结合求解更形象直观.12.(3分)(2022莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点2M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为某,MN=y,则y关于某的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.分析:注意分析y随某的变化而变化的趋势,而不一定要通过求解析式来解决.解答:解:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1.∴当点M位于点A处时,某=0,y=1.①当动点M从A点出发到AM=1的过程中,y随某的增大而减小,故排除D;②当动点M到达C点时,某=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不-5-。
2022年山东省莱芜市中考数学(word版有解析)

2022年山东省莱芜市中考数学试卷一、选择题1.4的算术平方根为〔〕A.﹣2B.2C.±2D.【解析】∵22=4,∴4的算术平方根是2,应选:B.2.以下运算正确的选项是〔〕A.a7÷a4=a3B.5a2﹣3a=2aC.3a4•a2=3a8D.〔a3b2〕2=a5b4【解析】A、a7÷a4=a3,正确;B、5a2﹣3a,无法计算,故此选项错误;C、3a4•a2=3a6,故此选项错误;D、〔a3b2〕2=a6b4,故此选项错误;应选:A.3.如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D,假设a+c=0,那么b+d〔〕A.大于0B.小于0C.等于0D.不确定【解析】∵a+c=0,∴a,c互为相反数,∴原点O是AC的中点,∴由图可知:点D到原点的距离大于点B到原点的距离,且点D、B分布在原点的两侧,故b+d<0,应选〔B〕.4.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是〔〕A.B.C.D.【解析】根据题意,掷一枚骰子,共6种情况,其中是3的倍数的有3、6,2种情况,故其概率为;应选C.5.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是〔〕A.76°B.81°C.92°D.104°【解析】∵△ABC中,∠A=46°,∠C=74°,∴∠ABC=60°,∵BD为∠ABC平分线,∴∠ABD=∠CBD=30°,∵∠BDC为△ABD外角,∴∠BDC=∠A+∠ABD=76°,应选A6.将函数y=﹣2x的图象向下平移3个单位,所得图象对应的函数关系式为〔〕A.y=﹣2〔x+3〕B.y=﹣2〔x﹣3〕C.y=﹣2x+3D.y=﹣2x﹣3【解析】把函数y=﹣2x的图象向下平移3个单位后,所得图象的函数关系式为y=﹣2x﹣3.应选D.7.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,两个转盘每分钟共转200圈,设甲每分钟转x圈,那么列方程为〔〕A. =B. =C. =D. =【解析】设甲每分钟转x圈,那么乙每分钟转动〔200﹣x〕圈,根据题意得: =,应选D.8.用面积为12π,半径为6的扇形围成一个圆锥的侧面,那么圆锥的高是〔〕A.2B.4C.2D.2【解析】由题意可得,围成的圆锥底面圆的周长为: =4π,设围成的圆锥底面圆的半径为r,那么2πr=4π,解得r=2,∴那么圆锥的高是:,应选B.9.正多边形的内切圆与外接圆的周长之比为:2,那么这个正多边形为〔〕A.正十二边形B.正六边形C.正四边形D.正三角形【解析】正多边形的内切圆与外接圆的周长之比为:2,那么半径之比为:2,设AB是正多边形的一边,OC⊥AB,那么OC=,OA=OB=2,在直角△AOC中,cos∠AOC==,∴∠AOC=30°,∴∠AOB=60°,那么正多边形边数是 =6.应选:B.10.△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,假设其中有一个三角形是等腰三角形,那么这样的直线最多有〔〕A.3条B.5条C.7条D.8条【解析】分别以A、B、C为等腰三角形的顶点的等腰三角形有4个,如图1,分别为△ABD、△ABE、△ABF、△ACG,∴满足条件的直线有4条;分别以AB、AC、BC为底的等腰三角形有3个,如图2,分别为△ABH、△ACM、△BCN,∴满足条件的直线有3条,综上可知满足条件的直线共有7条,应选C.11.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x〔s〕,△AMN的面积为y〔cm2〕,那么y关于x的函数图象是〔〕A.B.C.D.【解析】由题可得,BN=x,当0≤x≤1时,M在BC边上,BM=3x,AN=3﹣x,那么=AN•BM,S△ANM∴y=•〔3﹣x〕•3x=﹣x2+x,故C选项错误;当1≤x≤2时,M点在CD边上,那么=AN•BC,S△ANM∴y=〔3﹣x〕•3=﹣x+,故D选项错误;当2≤x≤3时,M在AD边上,AM=9﹣x,∴S△ANM=AM•AN,∴y=•〔9﹣3x〕•〔3﹣x〕=〔x﹣3〕2,故B选项错误;应选〔A〕.12.四边形ABCD为矩形,延长CB到E,使CE=CA,连接AE,F为AE的中点,连接BF,DF,DF交AB于点G,以下结论:〔1〕BF⊥DF;〔2〕S△BDG =S△ADF;〔3〕EF2=FG•FD;〔4〕=其中正确的个数是〔〕A.1B.2C.3D.4【解析】如图1,连接CF,设AC与BD的交点为点O,∵点F是AE中点,∴AF=EF,∵CE=CA,∴CF⊥AE,∵四边形ABCD是矩形,∴AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵点F是Rt△ABE斜边上的中点,∴AF=BF,∴∠BAF=∠FBA,∴∠FAC=∠FBD,在△BDF和△ACF中,,∴△BDF≌△ACF,∴∠BFD=∠AFC=90°,∴BD⊥DF,所以①正确;过点F作FH⊥AD交DA的延长线于点H,在Rt△AFH中,FH<AF,在Rt△BFG中,BG>BF,∵AF=BF,∴BG>FH,∵S△ADF =FH×AD,S△BDG=BG×AD,∴S△BDG >S△ADF,所以②错误;∵∠ABF+∠BGF=∠ADG+∠AGD=90°,∴∠ABF=∠ADG,∵∠BAF=∠FBA,∴∠BAF=∠ADG,∵∠AFG=∠DFA,∴△AFG∽△DFA,∴,∴AF2=FG•FD,∵EF=AF,∴EF2=FG•FD,所以③正确;∵BF=EF,∴BF2=FG•FD,∴,∵∠BFG=∠DFB,∴△BFG∽△DFB,∴∠ABF=∠BDF,∵∠BAF=∠ABF,∠BAF=∠ADC∴∠ADC=∠BDF,∴,∵BD=AC,AD=BC,∴,所以④正确,应选C.二、填空题〔此题共5小题,每题4分,共20分〕13.0+﹣〔〕﹣1﹣|tan45°﹣3|=﹣1 .【解析】原式=1+3﹣3﹣2=﹣1.故答案为:﹣114.假设一次函数y=x+3与y=﹣2x的图象交于点A,那么A关于y轴的对称点A′的坐标为〔1,2〕.【解析】∵一次函数y=x+3与y=﹣2x的图象交于点A,∴x+3=﹣2x,解得:x=﹣1,那么y=2,故A点坐标为:〔﹣1,2〕,∴A关于y轴的对称点A′的坐标为:〔1,2〕.故答案为:〔1,2〕.15.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.假设D为OB的中点,△AOD的面积为3,那么k的值为8 .【解析】设点D坐标为〔a,b〕,∵点D为OB的中点,∴点B的坐标为〔2a,2b〕,∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A 的坐标为〔4a ,b 〕,∴AD=4a ﹣a=3a ,∵△AOD 的面积为3, ∴×3a ×b=3,∴ab=2,∴k=4ab=4×2=8.故答案为:816.如图,将Rt △ABC 沿斜边AC 所在直线翻折后点B 落到点D ,过点D 作DE ⊥AB ,垂足为E ,如果AE=3EB ,EB=7,那么BC= 4.【解析】∵DE ⊥AB ,∠B=90°,∴DE ∥BC ,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3, ∴DH=DC ,∵DE ∥BC ,∴△AFH ∽△ABC ,∴,设EH=3x ,BC=DC=DH=4x ,∴DE=7x ,∵AE=3EB ,EB=7,∴AE=21,∵AD=AB=AE+BE=7+21=28,在Rt △ADE 中,DE=,∴7x=7,∴x=,∴BC=4.故答案为:4.17.在Rt △ABC 中,∠ABC=90°,AB=4,BC=2.如图,将直角顶点B 放在原点,点A 放在y 轴正半轴上,当点B 在x 轴上向右移动时,点A 也随之在y 轴上向下移动,当点A 到达原点时,点B 停止移动,在移动过程中,点C 到原点的最大距离为 2+2.【解析】如下列图:取A 1B 1的中点E ,连接OE ,C 1E ,当O ,E ,C 1在一条直线上时,点C 到原点的距离最大,在Rt △A 1OB 1中,∵A 1B 1=AB=4,点OE 为斜边中线,∴OE=B 1E=A 1B 1=2,又∵B 1C 1=BC=2,∴C 1E==2,∴点C 到原点的最大距离为:OE+C 1E=2+2.故答案为:2+2.三、解答题〔本大题共7小题,共64分〕18.先化简,再求值:〔a﹣〕÷,其中a满足a2+3a﹣1=0.【解】∵a2+3a﹣1=0,∴a2+3a=1原式=×=〔a+1〕〔a+2〕=a2+3a+2=3.19.〔8分〕企业举行“爱心一日捐〞活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取局部捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答以下问题:〔1〕宣传小组抽取的捐款人数为50 人,请补全条形统计图;〔2〕统计的捐款金额的中位数是150 元;〔3〕在扇形统计图中,求100元所对应扇形的圆心角的度数;〔4〕该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?【解】〔1〕50,补全条形统计图,故答案为:50;〔2〕150;〔3〕×360°=72°.〔4〕〔50×4+100×10+150×12+200×18+300×6〕×500=100〔元〕.20.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米〔C,A,D在同一条直线上〕.〔1〕求看台最低点A到最高点B的坡面距离;〔2〕一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度〔计算结果保存两位小数〕〔sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65〕【解】〔1〕在Rt△ABC中,AB==6米;〔2〕AC==4.8米,那么CD=4,.8+16=20.8米,作FP⊥ED于P,∴FP=CD=20.8,∴EP=FP×tan∠EFP=13.52,DP=BF+BC=5.2,ED=EP+PD=18.72,EG=ED﹣GH﹣HD=16.52,那么红旗升起的平均速度为:16.52÷30=0.55,答:红旗升起的平均速度为0.55米/秒.21.如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点,连接AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC,F,G,H分别为BC,CD,DE的中点,连接BD,CE,GF,GH.〔1〕求证:GH=GF;〔2〕试说明∠FGH与∠BAC互补.证明:〔1〕∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE〔SAS〕,∴BD=CE,∵F,G,H分别为BC,CD,DE的中点,∴GH∥GF,且GH=CE,GF=BD,∴GH=GF;〔2〕∵△ABD≌△ACE,∴∠ABD=∠ACE,∵HG∥CE,GE∥BD,∴∠HGD=∠ECD,∠GFC=∠DBC,∴∠HGD=∠ACD+∠ECA=∠ACD+∠ABD,∠DGF=∠GFC+∠GCF=∠DBC+∠GCF,∴∠FGH=∠DGF+∠HGD=∠DBC+∠GCF+∠ACD+∠ABD=∠ABC+∠ACB=180°﹣∠BAC,∴∠FGH与∠BAC互补.22.为迎接“国家卫生城市〞复检,某市环卫局准备购置A、B两种型号的垃圾箱,通过市场调研得知:购置3个A型垃圾箱和2个B型垃圾箱共需540元;购置2个A型垃圾箱比购置3个B型垃圾箱少用160元.〔1〕每个A型垃圾箱和B型垃圾箱各多少元?〔2〕现需要购置A,B两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成〔两人同时进行安装〕.甲负责A型垃圾箱的安装,每天可以安装15个,乙负责B型垃圾箱的安装,每天可以安装20个,生产厂家表示假设购置A型垃圾箱不少于150个时,该型号的产品可以打九折;假设购置B 型垃圾箱超过150个时,该型号的产品可以打八折,假设既能在规定时间内完成任务,费用又最低,应购置A型和B型垃圾箱各多少个?最低费用是多少元?【解】〔1〕设每个A型垃圾箱和B型垃圾箱分别为x元和y元,根据题意得,解得,∴每个A型垃圾箱和B型垃圾箱分别为100元和120元;〔2〕设购置A型垃圾箱m个,那么购置B型垃圾箱〔300﹣m〕个,购置垃圾箱的费用为w元,根据题意得,解得60≤m≤180,假设60≤m<150,w=100m+120×0.8×〔300﹣m〕=4m+28800,当m=60时,w最小,w的最小值=4×60+28800=29040〔元〕;假设150≤m≤180,w=100×0.9×m+120×〔300﹣m〕=﹣30m+3600,当m=1800,w最小,w的最小值=﹣30×180+36000=30600〔元〕;∵29040<30600,∴购置A型垃圾箱60个,那么购置B型垃圾箱240个时,既能在规定时间内完成任务,费用又最低,最低费用为29040元.23.AB、CD是⊙O的两条弦,直线AB、CD互相垂直,垂足为E,连接AC,过点B作BF⊥AC,垂足为F,直线BF交直线CD于点M.〔1〕如图1,当点E在⊙O内时,连接AD,AM,BD,求证:AD=AM;〔2〕如图2,当点E在⊙O外时,连接AD,AM,求证:AD=AM;〔3〕如图3,当点E在⊙O外时,∠ABF的平分线与AC交于点H,假设tan∠C=,求tan∠ABH的值.〔1〕证明:∵AB⊥CD,BF⊥AC,∴∠BEM=∠BFA=90°,∴∠EBM+∠BME=90°,∠ABF+∠BAF=90°,∴∠BME=∠BAC,∴∠BDM=∠BMD,∴BD=BM,∵AB⊥CD,∴AB是MD的垂直平分线,∴AD=AM;〔2〕证明:如图2,连结BD,∵AB⊥CD,BF⊥AC,∴∠BEM=∠BFA=90°,∵∠EBM=∠FBA,∴∠BME=∠BAF,∴四边形ABDC是圆内接四边形,∴∠BDM=∠BAC,∴∠BDM=∠BMD,∴BD=BM,∵AB⊥CD,∴AB是MD的垂直平分线,∴AD=AM;〔3〕解:如图3,过点H作HN⊥AB,垂足为N.易知∠AHN=∠ABF=∠C,在Rt△ANH中,设HM=3m,∵tan∠AHN=tan∠C==,∴AN=4m,∴AH=5m,∵BH平分∠ABF,∴HN=HF=3m,∴AF=AH+HF=8m,在Rt△ABF中,∵tan∠ABF=tan∠C==,∴BF=6m,∴AB=10m,∴BN=AB﹣AN=6m,∴在Rt△BNH中,tan∠NBH===,∴tan∠ABH=.24.如图,二次函数y=ax2+bx+c的图象经过点A〔﹣1,0〕,B〔4,0〕,C〔﹣2,﹣3〕,直线BC与y 轴交于点D,E为二次函数图象上任一点.〔1〕求这个二次函数的解析式;〔2〕假设点E在直线BC的上方,过E分别作BC和y轴的垂线,交直线BC于不同的两点F,G〔F在G的左侧〕,求△EFG周长的最大值;〔3〕是否存在点E,使得△EDB是以BD为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.【解】〔1〕如图1,把A〔﹣1,0〕,B〔4,0〕,C〔﹣2,﹣3〕代入y=ax2+bx+c中,得:,解得:,那么二次函数的解析式y=﹣x2+x+2;〔2〕如图2,设直线BC的解析式为y=kx+b,把B〔4,0〕,C〔﹣2,﹣3〕代入y=kx+b中得:,解得:,∴直线BC的解析式为y=x﹣2,设E〔m,﹣ m2+m+2〕,﹣2<m<4,∵EG⊥y轴,∴E和G的纵坐标相等,∵点G在直线BC上,当y=﹣m2+m+2时,﹣ m2+m+2=x﹣2,x=﹣m2+3m+8,那么G〔﹣m2+3m+8,﹣ m2+m+2〕,∴EG=﹣m2+3m+8﹣m=﹣m2+2m+8,∵EG∥AB,∴∠EGF=∠OBD,∵∠EFG=∠BOD=90°,∴△EFG∽△DOB,∴=,∵D〔0,﹣2〕,B〔4,0〕,∴OB=4,OD=2,∴BD==2,∴=﹣,∴△EFG的周长=〔﹣m2+2m+8〕= [﹣〔m﹣1〕2+9],∴当m=1时,△EFG周长最大,最大值是;〔3〕存在点E,分两种情况:①假设∠EBD=90°,那么BD⊥DE,如图3,设BD的解析式为:y=kx+b,把B〔4,0〕、D〔0,﹣2〕代入得:,解得:,∴BD的解析式为:y=x﹣2,∴设直线EB的解析式为:y=﹣2x+b,把B〔4,0〕代入得:b=8,∴直线EB的解析式为:y=﹣2x+8,∴,﹣x2+x+2=﹣2x+8,解得:x1=3,x2=4〔舍〕,当x=3时,y=﹣2×3+8=2,∴E〔3,2〕,②当BD⊥DE时,即∠EDB=90°,如图4,同理得:DE的解析式为:y=﹣2x+b,把D〔0,﹣2〕代入得:b=﹣2,∴DE的解析式为:y=﹣2x﹣2,∴,解得:,∴E〔8,﹣18〕或〔﹣1,0〕,③当∠DEB=90°时,以BD为直径画圆,如图5,发现与抛物线无交点,所以此种情况不存在满足条件的E点;综上所述,点E〔3,2〕或〔8,﹣18〕或〔﹣1,0〕,故存在满足条件的点E,点E的坐标为〔3,2〕或〔﹣1,0〕或〔8,18〕.。
莱芜市2022年中考联考数学试题含解析

莱芜市2022年中考联考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)1.计算33xx x-+的结果是()A.6xx+B.6xx-C.12D.12.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、B C,如果∠P=∠C,⊙O 的半径为1,则劣弧弧AB的长为()A.13πB.14πC.16πD.112π3.如图所示的两个四边形相似,则α的度数是()A.60°B.75°C.87°D.120°4.如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于()A.60°B.35°C.25°D.20°5.如图钓鱼竿AC长6m,露在水面上的鱼线BC长2m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A .3mB .33 mC .23 mD .4m6.如图,△ABC 中,BC =4,⊙P 与△ABC 的边或边的延长线相切.若⊙P 半径为2,△ABC 的面积为5,则△ABC 的周长为( )A .8B .10C .13D .147.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是( ) A .2B .3C .4D .58.关于x 的一元二次方程x 2+8x +q =0有两个不相等的实数根,则q 的取值范围是( ) A .q <16 B .q >16 C .q ≤4D .q ≥49.下列计算正确的是( ) A .a 3•a 2=a 6B .(a 3)2=a 5C .(ab 2)3=ab 6D .a +2a =3a10.如图,矩形ABOC 的顶点A 的坐标为(﹣4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43) B .(0,53) C .(0,2) D .(0,103)二、填空题(本大题共6个小题,每小题3分,共18分)11.使分式的值为0,这时x=_____.12.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC于点M、N.若M 在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为_____13.如图,Rt△ABC的直角边BC在x轴上,直线y=23x﹣23经过直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y=kx图象上,则k=_______.14.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.15.如图,在圆心角为90°的扇形OAB中,半径OA=1cm,C为AB的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_____cm1.16.已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.三、解答题(共8题,共72分)17.(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.18.(8分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.19.(8分)已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD.(1)试判断AB与⊙O的位置关系,并加以证明;(2)若tan E=12,⊙O的半径为3,求OA的长.20.(8分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5BD的长.21.(8分)如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.22.(10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y与x的函数关系式,并写出自变量x的取值范围.求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?23.(12分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计/tA 200B x 300总计/t 240 260 500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m >0),其余线路的运费不变,试讨论总运费最小的调动方案.24.如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k >0,x >0)交于点B .(1)设点B 的横坐标分别为b ,试用只含有字母b 的代数式表示k ; (2)若OA=3BC ,求k 的值.参考答案一、选择题(共10小题,每小题3分,共30分) 1、D 【解析】根据同分母分式的加法法则计算可得结论. 【详解】33x x x -+=33x x -+=xx=1. 故选D . 【点睛】本题考查了分式的加减法,解题的关键是掌握同分母分式的加减运算法则. 2、A 【解析】利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=12∠O ,加上∠P=∠C 可计算写出∠O=60°,然后根据弧长公式计算劣弧AB 的长. 【详解】解:∵PA 切⊙O 于点A ,∴OA⊥PA,∴∠OAP=90°,∵∠C=12∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的长=60?•11 1803ππ=.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.3、C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.4、C【解析】先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C的度数即可.【详解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故选C.【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.5、B【解析】因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C ′AB ′的度数,然后可以求出鱼线B 'C '长度. 【详解】解:∵sin ∠CAB =BC AC ==∴∠CAB =45°. ∵∠C ′AC =15°, ∴∠C ′AB ′=60°.∴sin60°=''6B C =解得:B ′C ′= 故选:B . 【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题. 6、C 【解析】根据三角形的面积公式以及切线长定理即可求出答案. 【详解】连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =12BC•PE =12×4×2=4, ∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =12S 四边形AFPG =132, ∴132=12×AG•PG , ∴AG =132,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC+AB+CE+BE =AC+AB+CF+BG =AF+AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.7、D【解析】设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.【详解】设这个数是a,把x=1代入得:13(-2+1)=1-5a3-,∴1=1-5a3-,解得:a=1.故选:D.【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.8、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.9、D【解析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.解:A.x4•x4=x4+4=x8≠x16,故该选项错误;B.(a3)2=a3×2=a6≠a5,故该选项错误;C.(ab2)3=a3b6≠ab6,故该选项错误;D.a+2a=(1+2)a=3a,故该选项正确;故选D.考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.10、B【解析】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小.∵四边形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中点,∴D(﹣2,0).设直线DA′的解析式为y=kx+b,∴5402k bk b=+⎧⎨=-+⎩,∴5653kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线DA′的解析式为5563y x=+.当x=0时,y=53,∴E(0,53).故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法12、115°根据三角形的内角和得到∠BAC+∠ACB=130°,根据线段的垂直平分线的性质得到AM=PM,PN=CN,由等腰三角形的性质得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=12×130°=65°,于是得到结论.【详解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂线上,N在PC的中垂线上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=12×130°=65°,∴∠APC=115°,故答案为:115°【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.13、1【解析】分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值.详解:根据一次函数可得:点B的坐标为(1,0),∵BD平分△ABC的面积,BC=3∴点D的横坐标1.5,∴点D的坐标为512⎛⎫⎪⎝⎭,,∵DE:AB=1:1,∴点A的坐标为(1,1),∴k=1×1=1.点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型.得出点D的坐标是解决这个问题的关键.【解析】先求出OA 的长,再由垂径定理求出AC 的长,根据勾股定理求出OC 的长,进而可得出结论.【详解】解:∵⊙O 的直径为1000mm ,∴OA=OA=500mm .∵OD ⊥AB ,AB=800mm ,∴AC=400mm ,∴OC=22OA AC -=22500400- =300mm ,∴CD=OD-OC=500-300=200(mm ).答:水的最大深度为200mm .故答案为:200 【点睛】本题考查的是垂径定理的应用,根据勾股定理求出OC 的长是解答此题的关键. 15、12π+22﹣12 【解析】试题分析:如图,连接OC ,EC ,由题意得△OCD ≌△OCE ,OC ⊥DE ,DE==,所以S 四边形ODCE =×1×=,S △OCD =,又S △ODE =×1×1=,S 扇形OBC ==,所以阴影部分的面积为:S 扇形OBC +S △OCD ﹣S △ODE =+﹣;故答案为.考点:扇形面积的计算.16、x≥1.【解析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点: 一次函数与一元一次不等式.三、解答题(共8题,共72分)17、(1)证明见试题解析;(2)1.【解析】试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.试题解析:(1)∵AB=DC,∴AC=DB,在△AEC和△DFB中{AC DB A D AE DF=∠=∠=,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,∴当BE=1时,四边形BFCE是菱形,故答案为1.【考点】平行四边形的判定;菱形的判定.18、作图见解析.【解析】由题意可知,先作出∠ABC的平分线,再作出线段BD的垂直平分线,交点即是P点. 【详解】∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上;∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,如图所示:【点睛】此题主要考查了尺规作图,正确把握角平分线的性质和线段垂直平分线的性质是解题的关键.19、(1)AB与⊙O的位置关系是相切,证明见解析;(2)OA=1.【解析】(1)先判断AB与⊙O的位置关系,然后根据等腰三角形的性质即可解答本题;(2)根据题三角形的相似可以求得BD的长,从而可以得到OA的长.【详解】解:(1)AB与⊙O的位置关系是相切,证明:如图,连接OC.∵OA=OB,C为AB的中点,∴OC⊥AB.∴AB是⊙O的切线;(2)∵ED是直径,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴BC BD CD BE BC EC==.∴BC2=BD•BE.∵1 tan2E∠=,∴12 CDEC=.∴12 BD CDBC EC==.设BD=x,则BC=2x.又BC2=BD•BE,∴(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=2+3=1.【点睛】本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、BD=41【解析】作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.【详解】作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=55,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM =90°,∴∠ACB =∠CDM ,∵∠ABC =∠M =90°,∴△ABC ∽△CMD , ∴12AB CM =, ∴CM =2AB =6,DM =2BC =8,∴BM =BC+CM =10,∴BD =22BM DM +=22108+=241,【点睛】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD 是直角三角形是解决问题的关键.21、65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.∵AP 平分∠EAB ,∴∠PAB=12∠EAB.同理可得,∠ABP=12∠ABC. ∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-12∠EAB-12∠ABC=180°-12(∠EAB+∠ABC )=180°-12×230°=65°. 22、(1)y=-2x+200(30≤x≤60)(2)w=-2(x -65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b,根据题意得806010050k bk b=+⎧⎨=+⎩解得:k2b200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2 +2000)(3)W =-2(x-65)2 +2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.23、(1)见解析;(2)w=2x+9200,方案见解析;(3)0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小.【解析】(1)根据题意可得解.(2)w与x之间的函数关系式为:w=20(240−x)+25(x−40)+15x+18(300−x);列不等式组解出40≤x≤240,可由w随x 的增大而增大,得出总运费最小的调运方案.(3)根据题意得出w与x之间的函数关系式,然后根据m的取值范围不同分别分析得出总运费最小的调运方案.【详解】解:(1)填表:依题意得:20(240−x)+25(x−40)=15x+18(300−x).解得:x=200.(2)w与x之间的函数关系为:w=20(240−x)+25(x−40)+15x+18(300−x)=2x+9200.依题意得:24004000 3000xxxx-⎧⎪-⎪⎨⎪⎪-⎩∴40⩽x⩽240在w=2x+9200中,∵2>0,∴w随x的增大而增大,故当x=40时,总运费最小,此时调运方案为如表.(3)由题意知w=20(240−x)+25(x−40)+(15-m)x+18(300−x)=(2−m)x+9200∴0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小,其调运方案如表二.【点睛】此题考查一次函数的应用,解题关键在于根据题意列出w与x之间的函数关系式,并注意分类讨论思想的应用. 24、(1)k=b2+4b;(2).【解析】试题分析:(1)分别求出点B的坐标,即可解答.(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x 试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=+4,∵点B在直线y=+4上,∴B(b,b+4),∵点B在双曲线y=上,∴B(b,),令b+4=得(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点A、B在双曲线y=上,∴3b•b=,解得b=1,∴k=3×1××1=.考点:反比例函数综合题.。
真题汇总2022年山东省莱芜市中考数学真题汇总 卷(Ⅱ)(含答案及详解)
2022年山东省莱芜市中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点F 在BC 上,BC =EF ,AB =AE ,∠B =∠E ,则下列角中,和2∠C 度数相等的角是( ) A .AFB ∠ B .EAF ∠ C .EAC ∠ D .EFC ∠2、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P 点照射到抛物线上的光线,PA PB 等反射以后沿着与直线PF 平行的方向射出,若CAP α∠=︒,DBP β∠=︒,则APB ∠的度数为( )°·线○封○密○外A .2αB .2βC .αβ+D .5()4αβ+ 3、如图,在ABC 中,AD BC ⊥,62B ∠=︒,AB BD CD +=,则BAC ∠的度数为( )A .87°B .88°C .89°D .90°4、把方程2x 2﹣3x +1=0变形为(x +a )2=b 的形式,正确的变形是( )A .(x ﹣32)2=16 B .(x ﹣34)2=116 C .2(x ﹣34)2=116 D .2(x ﹣32)2=16 5、如图,AD BC ⊥于点D ,GC BC ⊥于点C ,CF AB ⊥于点F ,下列关于高的说法错误的是( )A .在ABC 中,AD 是BC 边上的高B .在GBC 中,CF 是BG 边上的高 C .在ABC 中,GC 是BC 边上的高D .在GBC 中,GC 是BC 边上的高6、下列各条件中,不能够判定两个三角形必定全等的是( )A .两边及其夹角对应相等B .三边对应相等C .两角及一角的对边对应相等D .两边及﹣边的对角对应相等7、已知5a b +=,3ab =,则b a a b +的值为( ) A .6 B .193 C .223 D .88、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )A .B .C .D .9、下列图形中,能用AOB ∠,1∠,O ∠三种方法表示同一个角的是( ) A .B .C .D . 10、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为( ).A .16 B .13 C .12 D .23 ·线○封○密○外第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在下图中,AB是O的直径,要使得直线AT是O的切线,需要添加的一个条件是________.(写一个条件即可)2、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作EF AD⊥,垂足为点F.若AF=,53EC=,则正方形ABCD的面积为______.3、等腰三角形有两条边长分别为cm、,它的周长为 _____.4、如图,在边长相同的小正方形组成的网格中,点A、B、O都在这些小正方形的顶点上,那么sin∠AOB的值为______.5、班主任从甲、乙、丙、丁四位同学中选择一位同学参加学校的演讲比赛.甲同学被选中的概率是______. 三、解答题(5小题,每小题10分,共计50分) 1、汽车盲区是造成交通事故的罪魁祸首之一,它是指驾驶员位于正常驾驶座位置,其视线被车体遮挡而不能直接观察到的那部分区域,有一种汽车盲区叫做内轮差盲区,内轮差是车辆在转弯时前内轮转弯半径与后内轮转弯半径之差;由于内轮差的存在而形成的这个区域(下图所示)是司机视线的盲区.卡车,货车等车身较长的大型车在转弯时都会产生这种盲区.为了解决这个问题,现在许多路口都开始设置“右转危险区”标线.下图是我区某一路口“右转危险区”的示意图,经过测量后内轮转弯半径1110O A O D ==米,前内轮转弯半径224O B O C ==米,圆心角1290DO A CO B ∠=∠=︒,求此“右转危险区”的面积和周长. 2、先把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来.﹣212,-(﹣4),0,+(﹣1),1,﹣|﹣312|·线○封○密○外3、如图1,点D、O、A共线且20∠和∠=,80COD︒∠=,射线OM,ON分别平分AOBBOC︒∠.BOD∠以每秒4︒的速度绕点O顺如图2,将射线OD以每秒6︒的速度绕点O顺时针旋转一周,同时将BOC∠停止运动.设射线OD的运动时间为t.时针旋转,当射线OC与射线OA重合时,BOC∠=________︒(1)运动开始前,如图1,AOM∠=________︒,DON∠?(2)旋转过程中,当t为何值时,射线OB平分AON(3)旋转过程中,是否存在某一时刻使得35MON︒∠=?若存在,请求出t的值;若不存在,请说明理由.4、计算:(﹣3a2)3+(4a3)2﹣a2•a4.5、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:(1)本次调查共抽取了多少名学生?(2)①请补全条形统计图;②求出扇形统计图中表示“及格”的扇形的圆心角度数.(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名? -参考答案-一、单选题 1、D 【解析】 【分析】 根据SAS 证明△AEF ≌△ABC ,由全等三角形的性质和等腰三角形的性质即可求解. 【详解】 解:在△AEF 和△ABC 中, AB AE B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△ABC (SAS ), ∴AF =AC ,∠AFE =∠C , ∴∠C =∠AFC , ∴∠EFC =∠AFE +∠AFC =2∠C . 故选:D . 【点睛】 本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键. 2、C·线○封○密○外【解析】【分析】根据平行线的性质可得,EPA PAC EPB PBD ∠=∠∠=∠,进而根据APB APE BPE ∠=∠+∠即可求解【详解】 解:,PF AC PF BD ∥∥∴,EPA PAC EPB PBD ∠=∠∠=∠∴APB APE BPE ∠=∠+∠αβ=+故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.3、A【解析】【分析】延长DB 至E ,使BE =AB ,连接AE ,则DE =CD ,从而可求得∠C =∠E =31°,再根据三角形内角和可求度数.【详解】解:延长DB 至E ,使BE =AB ,连接AE ,∴∠BAE =∠E ,∵62ABD ∠=︒,∴∠BAE =∠E =31°,∵AB +BD =CD∴BE +BD =CD即DE =CD ,∵AD⊥BC,∴AD垂直平分CE,∴AC=AE,∴∠C=∠E=31°,∴18087BAC C ABC∠=︒-∠-∠=︒;故选:A.【点睛】此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键.4、B【解析】【分析】先移项,再将二次项系数化为1,最后配上一次项系数一半的平方即可.【详解】解:2x2﹣3x=﹣1,x2﹣32x=﹣12,x2﹣32x+916=﹣12+916,即(x﹣34)2=116,·线○封○密○外故选:B.【点睛】本题主要考查配方法解方程,熟练掌握完全平方公式是解题的关键.5、C【解析】【详解】解:A、在ABC中,AD是BC边上的高,该说法正确,故本选项不符合题意;B、在GBC中,CF是BG边上的高,该说法正确,故本选项不符合题意;C、在ABC中,GC不是BC边上的高,该说法错误,故本选项符合题意;D、在GBC中,GC是BC边上的高,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.6、D【解析】【分析】针对选项提供的已知条件要认真分析,符合全等三角形判定方法要求的是正确的,反之,是错误的,本题中选项D,满足的是SSA是不能判定三角形全等的,与是答案可得.【详解】解:A、符合SAS,能判定两个三角形全等;B、符合SSS,能判定两个三角形全等;C、符合AAS,能判定两个三角形全等;D 、符合SSA ,所以不能够判定.故选:D .【点睛】本题考查了三角形全等的判定方法,做题时根据已知条件,结合全等的判定方法逐一验证,由易到难,不重不漏. 7、B 【解析】 【分析】 将原式同分,再将分子变形为2()2a b ab ab +-后代入数值计算即可. 【详解】 解:∵5a b +=,3ab =, ∴2222()25231933b a a b a b ab a b ab ab ++--⨯+====, 故选:B . 【点睛】 此题考查了分式的化简求值,正确掌握完全平方公式的变形计算是解题的关键. 8、A 【解析】 【分析】 根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答. 【详解】 解:B 是俯视图,C 是左视图,D 是主视图, ·线○封○密○外故四个平面图形中A 不是这个几何体的三视图.故选:A .【点睛】本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.9、A【解析】【分析】根据角的表示的性质,对各个选项逐个分析,即可得到答案.【详解】A 选项中,可用AOB ∠,1∠,O ∠三种方法表示同一个角;B 选项中,AOB ∠能用1∠表示,不能用O ∠表示;C 选项中,点A 、O 、B 在一条直线上,∴1∠能用O ∠表示,不能用AOB ∠表示;D 选项中,AOB ∠能用1∠表示,不能用O ∠表示;故选:A .【点睛】本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.10、C【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有6个小球,其中白球有3个, ∴摸出一个球是白球的概率是3162 . 故选:C . 【点睛】 本题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 二、填空题 1、∠ABT =∠ATB =45°(答案不唯一) 【解析】 【分析】 根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT =∠ATB =45°即可. 【详解】 解:添加条件:∠ABT =∠ATB =45°, ∵∠ABT =∠ATB =45°, ∴∠BAT =90°, 又∵AB 是圆O 的直径, ∴AT 是圆O 的切线, 故答案为:∠ABT =∠ATB =45°(答案不唯一). ·线○封○密○外【点睛】本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键. 2、49【解析】【分析】延长FE 交AB 于点M ,则EM BC ⊥,3AF BM ==,由正方形的性质得45CDB ∠=︒,推出BME 是等腰直角三角形,得出3EM BM ==,由勾股定理求出CM ,故得出BC ,由正方形的面积公式即可得出答案.【详解】如图,延长FE 交AB 于点M ,则EM BC ⊥,3AF BM ==,∵四边形ABCD 是正方形,∴45CDB ∠=︒,∴BME 是等腰直角三角形,∴3EM BM ==,在Rt EMC 中,4CM =,∴347BC BM CM =+=+=,∴22749ABCD S BC ===正方形. 故答案为:49. 【点睛】 本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键. 3、(cm##(cm 【解析】 【分析】 根据、可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解. 【详解】 解:当,当((cm ). 故答案为:(cm . 【点睛】 本题考查了二次根式加减和三角形三边关系,解题关键是熟练运用二次根式加减法则进行计算,注意能否构成三角形. 4【解析】 【分析】 ·线○封○密○外如图,过点B 向AO 作垂线交点为C ,勾股定理求出OB ,OA 的值,1122AOB SAB h AO BC =⨯=⨯求出BC 的长,sin BC AOB OB∠=求出值即可. 【详解】解:如图,过点B 向AO 作垂线交点为C ,O 到AB 的距离为h∵2AB =,2h =,222425OA ,OB ==1122AOB S AB h AO BC =⨯=⨯BC ∴=∴sinBC AOB OB ∠===【点睛】 本题考查了锐角三角函数值,勾股定理.解题的关键是表示出所需线段长.5、14或0.25【解析】【分析】由题意得出从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果,根据概率公式可得. 【详解】 解:从4位同学中选取1位共有4种等可能结果, 其中选中甲同学的只有1种结果, ∴恰好选中乙同学的概率为14, 故答案为:14. 【点睛】 本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 三、解答题 1、 “右转危险区”的面积为:8421π-(平方米),周长为127π+(米) 【解析】 【分析】 根据图形可知“右转危险区”的周长等于AB CD AD BC +++,根据扇形的周长的求法及正方形的性质分别求出来,关于“右转危险区”的面积,先求出ABECD 的面积及BEC 的面积,再作差即可. 【详解】 解:根据题意得:121046AB O D O C =-=-=, 121046CD O A O B =-=-=,121054AD ππ=⨯⨯=, 12424BC ππ=⨯⨯=, ·线○封○密○外∴“右转危险区”的周长为:6652127πππ+++=+(米),延长,AB DC 交于点E ,22,//O B CE O B CE =,且290BO C ∠=︒,∴四边形2O BEC 为正方形,根据图形之间的关系,ABECD 的面积为:110101010100254ππ⨯-⨯⨯=-, BEC 的面积为:144441644ππ⨯-⨯⨯=-, ∴“右转危险区”的面积为:10025(164)8421πππ---=-(平方米).【点睛】本题考查了不规则图形的面积,解题的关键是利用规则的图形面积进行求解不规则图形的面积.2、数轴见解析,-|-312|<-212<+(-1)<0<1<-(-4)【解析】【分析】先根据相反数,绝对值进行计算,再在数轴上表示出各个数,再比较大小即可.【详解】解:-(-4)=4,+(-1)=-1,-|-312|=-312,-|-312|<-212<+(-1)<0<1<-(-4). 【点睛】 本题考查了数轴,有理数的大小比较,绝对值和相反数等知识点,能正确在数轴上表示出各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大. 3、 (1) 40 50 (2)10 (3)t =553 【解析】 【分析】 (1)由题意结合图形可得∠ttt =100°,利用补角的性质得出∠ttt =80°,根据角平分线进行计算即可得出; (2)分两种情况进行讨论:①射线OD 与射线OB 重合前;②射线OD 与射线OB 重合后;作出相应图形,结合运动时间及角平分线进行计算即可得;(3)由(2)过程可得,分两种情况进行讨论:①当0<t ≤1303t 时,②当1303<t ≤60时;结合相应图形,根据角平分线进行计算即可得. (1) 解:∵∠ttt =20°,∠ttt =80°,∴∠ttt =∠ttt +∠ttt =100°, ∴∠ttt =180°−∠ttt =80°, ∵射线OM 平分∠ttt , ·线○封○密○外∠ttt=40°,∴∠ttt=12∵射线ON平分∠ttt,∠ttt=50°,∴∠ttt=12故答案为:40;50;(2)解:如图所示:当射线OC与射线OA重合时,∴∠ttt=180°−∠ttt=160°,∵∠ttt以每秒4°的速度绕点O顺时针旋转,∴OC以每秒4°的速度绕点O顺时针旋转,=40t,∴运动时间为:t=1604①射线OD与射线OB重合前,根据题中图2可得:∠ttt=100°+4t−6t=100°−2t,∵ON平分∠ttt,∠ttt=50°−t,∴∠ttt=12∴∠ttt =80°−4t ,∵射线OB 平分∠ttt ,∴∠ttt =∠ttt ,即80°−4t =50°−t ,解得:t =10t ; 当t >40t 时,∠ttt 不运动,OD 一直运动,射线OB 平分∠ttt, 当射线OD 与射线OB 重合时,6t =180°+∠ttt =260°,t =1303t,射线OD 旋转一周的时间为:t =3606=60t ,②射线OD 与射线OB 重合后,当1303<t ≤60时,设当OD 转到如图所示位置时,OB 平分∠ttt,∵∠ttt =80°,∴∠ttt =∠ttt =80°,∵ON 平分∠ttt ,∴∠ttt =∠ttt =80°,·线○封○密·○外∴∠ttt=∠ttt+∠ttt+∠ttt=240°>180°,不符合题意,舍去;综上可得:当t为10s时,射线OB平分∠ttt;(3)解:①当0<t≤1303t时,∵射线OM平分∠ttt,∴∠ttt=12∠ttt=12(80°−4t)=40°−2t,由(2)可得:∠ttt=50°−t,∠ttt=∠ttt+∠ttt=40°−2t+50°−t=90°−3t,当∠ttt=35°时,90°−3t=35°,解得:t=553t<40t,∴t=553t时,∠ttt=35°;②当1303<t≤60时,∠ttt=12∠ttt=12×80°=40°>35°,不符合题意,舍去,综上可得:t =553t 时,∠ttt =35°.【点睛】 题目主要考查角平分线的计算及角度的计算问题,理解题意,作出相应图形是解题关键. 4、−12t 6 【解析】 【分析】 原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果. 【详解】 解:(﹣3a 2)3+(4a 3)2﹣a 2•a 4 =−27t 6+16t 6−t 6 =(−27+16−1)t 6 =−12t 6 【点睛】 本题主要考查了幂的乘方与积的乘方运算,熟练掌握运算法则是解答本题的关键. 5、 (1)100名 (2)①见解析;②108 (3)1440名 【解析】 【分析】 (1)用不及格的人数除以不及格的人数占比即可得到总人数; (2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案; ·线○封○密·○外(3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.(1)解:由题意得抽取的学生人数为:1010100÷%=(名);(2)解:①由题意得:良好的人数为:1004040⨯=%(名),∴优秀的人数为:10040103020---=(名),∴补全统计图如下所示:②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=30360108100︒⨯=︒;(3)解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有4020 24001440100+⨯=(名).【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.。
真题解析2022年山东省济宁市莱芜区中考数学历年真题定向练习 卷(Ⅰ)(含答案详解)
2022年山东省济宁市莱芜区中考数学历年真题定向练习 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列几何体中,截面不可能是长方形的是( ) A .长方体 B .圆柱体 C .球体D .三棱柱 2、把方程2x 2﹣3x +1=0变形为(x +a )2=b 的形式,正确的变形是( ) A .(x ﹣32)2=16 B .(x ﹣34)2=116 C .2(x ﹣34)2=116 D .2(x ﹣32)2=16 3、下列单项式中,32a b 的同类项是( ) ·线○封○密○外A .323a b -B .232a bC .3a bD .2ab4、如图,AD BC ⊥于点D ,GC BC ⊥于点C ,CF AB ⊥于点F ,下列关于高的说法错误的是( )A .在ABC 中,AD 是BC 边上的高B .在GBC 中,CF 是BG 边上的高 C .在ABC 中,GC 是BC 边上的高D .在GBC 中,GC 是BC 边上的高5、下列等式变形中,不正确的是( )A .若a b =,则55a b +=+B .若a b =,则33a b =C .若23a b =,则32a b =D .若a b =,则a b =6、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )A .16B .19C .24D .367、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )A .1B .2020C .2021D .2022 8、如图所示,一座抛物线形的拱桥在正常水位时,水而AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A. B .10米 C. D .12米 9、如图,PA 、PB 是O 的切线,A 、B 是切点,点C 在O 上,且58ACB ∠=︒,则APB ∠等于( )A .54°B .58°C .64°D .68°10、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,点E 为·线○封○密○外对角线BD 上任意一点,连接AE 、CE . 若AB =5,BC =3,则AE 2-CE 2等于( )A .7B .9C .16D .25第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,等腰直角ABO 和等腰直角BCD △的位置如图所示,顶点A ,C 在x 轴上,OA OB =,CB CD =.若点D 的坐标为713,33⎛⎫- ⎪⎝⎭,则线段AC 的长为__________.2、已知:直线34y x b =-与直线6y mx =+的图象交点如图所示,则方程组346x y b mx y ⎧-=⎪⎨⎪-=-⎩的解为______.3、如图,ABC 和ADE 均为等边三角形,D ,E 分别在边AB ,AC 上,连接BE ,CD,若15ACD =︒∠,则CBE =∠__________.4、如图,已知△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3…△P n A n ﹣1A n 都是等腰直角三角形,点P 1、P 2、P 3…P n 都在函数y =4x (x >0)的图象上,斜边OA 1、A 1A 2、A 2A 3…A n ﹣1A n 都在x 轴上.则点A 2021的坐标为____.5、下列各数①-2.5,②0,③π3,④227,⑤()24-,⑥-0.52522252225…,是无理数的序号是______. 三、解答题(5小题,每小题10分,共计50分) 1、如图,在同一剖面内,小明在点A 处用测角仪测得居民楼的顶端F 的仰角为27°,他水平向右前进了30米来到斜坡的坡脚B 处,沿着斜坡BC 上行25米到达C 点,用测角仪测得点F 的仰角为54°,然后,水平向右前进一段路程来到了居民楼的楼底E 处,若斜坡BC 的坡度为3:4,请你求出居民楼EF 的高度. (测角仪的高度忽略不计,计算结果精确到0.1米.参考数据:sin 270.45︒≈,tan 270.51︒≈,sin540.81︒≈,tan54 1.38︒≈)·线○封○密·○外2、数学课上,王老师准备了若干个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1: ;方法2: ;(2)观察图2,请你写出代数式:(a +b )2,a 2+b 2,ab 之间的等量关系 ;(3)根据(2)题中的等量关系,解决如下问题:①已知:a +b =5,(a ﹣b )2=13,求ab 的值;②已知(2021﹣a )2+(a ﹣2020)2=5,求(2021﹣a )(a ﹣2020)的值.3、如图,已知直线EF GH ∥,AC BC ⊥,BC 平分DCH ∠.(1)求证:ACD DAC ∠=∠;(2)若ACG ∠比BCH ∠的2倍少3度,求DAC ∠的度数.4、定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1,在∆ABC 中,若AB 2+AC 2-AB ⋅AC =BC 2,则∆ABC 是“和谐三角形”.(1)等边三角形一定是“和谐三角形”,是______命题(填“真”或“假”). (2)若Rt ∆ABC 中,∠C =90︒,AB =c ,AC =b ,BC =a ,且b >a ,若∆ABC 是“和谐三角形”,求a :b :c . 5、某校兴趣小组想了解球的弹性大小,准备了A 、B 两个球,分别让球从不同高度自由下落到地面,测量球的反弹高度,记录数据后绘制成如图所示的统计图. 请你根据图中提供的信息解答下列问题: (1)当起始高度为80cm 时,B 球的反弹高度是起始高度的____________%. (2)比较两个球的反弹高度的变化情况,____________球弹性大.(填“A ”或“B ”) (3)下列的推断合理的是____________(只填序号) ①根据统计图预测,如果下落的起始高度继续增加,A 球的反弹高度可能会继续增加; ②从统计图上看,两球的反弹高度不会超过它们的起始高度. ·线○封○密○外-参考答案-一、单选题1、C【解析】【分析】根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.【详解】解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,故选:C.【点睛】此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.2、B【解析】【分析】先移项,再将二次项系数化为1,最后配上一次项系数一半的平方即可.【详解】解:2x2﹣3x=﹣1,x2﹣32x=﹣12,x2﹣32x+916=﹣12+916,即(x﹣34)2=116,故选:B .【点睛】本题主要考查配方法解方程,熟练掌握完全平方公式是解题的关键.3、A【解析】【分析】 依据同类项的定义:所含字母相同,相同字母的次数相同,据此判断即可. 【详解】 解:A.32a b 与323a b 是同类项,选项符合题意; B.32a b 与232a b 所含的字母相同,相同字母的次数不相同,不是同类项,故选项不符合题意; C.32a b 与3a b 所含的字母相同,相同字母的次数不相同,不是同类项,故选项不符合题意; D.32a b 与2ab 所含的字母相同,相同字母的次数不相同,不是同类项,故选项不符合题意; 故选:A . 【点睛】 本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键. 4、C 【解析】 【详解】 解:A 、在ABC 中,AD 是BC 边上的高,该说法正确,故本选项不符合题意; B 、在GBC 中,CF 是BG 边上的高,该说法正确,故本选项不符合题意; C 、在ABC 中,GC 不是BC 边上的高,该说法错误,故本选项符合题意; D 、在GBC 中,GC 是BC 边上的高,该说法正确,故本选项不符合题意; ·线○封○密·○外故选:C【点睛】本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.5、D【解析】【分析】根据等式的性质即可求出答案.【详解】解:A.a =b 的两边都加5,可得a +5=b +5,原变形正确,故此选项不符合题意;B.a =b 的两边都除以3,可得33a b =,原变形正确,故此选项不符合题意; C.23a b =的两边都乘6,可得32a b =,原变形正确,故此选项不符合题意; D.由|a |=|b |,可得a =b 或a =−b ,原变形错误,故此选项符合题意.故选:D .【点睛】本题考查等式的性质,解题的关键是熟练运用等式的性质.等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.6、C【解析】【分析】分别求出各视图的面积,故可求出表面积.【详解】由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5故表面积为2×(4+3+5)=24故选C .【点睛】此题主要考查三视图的求解与表面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省莱芜市实验校2022年中考联考数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列事件中是必然事件的是()A.早晨的太阳一定从东方升起B.中秋节的晚上一定能看到月亮C.打开电视机,正在播少儿节目D.小红今年14岁,她一定是初中学生2.2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小3.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG 与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②. B.只有①③. C.只有②③. D.①②③.4.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.35.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移52个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移72个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′6.16=()A.±4 B.4 C.±2 D.27.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )A.2(x-1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x-1)=138.下列运算中,正确的是()A.(a3)2=a5B.(﹣x)2÷x=﹣xC.a3(﹣a)2=﹣a5D.(﹣2x2)3=﹣8x69.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为()A.217B.77C.714D.7710.若关于x的不等式组221x mx m->⎧⎨-<-⎩无解,则m的取值范围()A.m>3 B.m<3 C.m≤3D.m≥3二、填空题(共7小题,每小题3分,满分21分)11.△ABC的顶点都在方格纸的格点上,则sin A=_ ▲ .12.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.13.如图,点A(m,2),B(5,n)在函数kyx(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.14.某物流仓储公司用如图A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A 型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为_____.15.在Rt△ABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_____.16.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为_____.17.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)三、解答题(共7小题,满分69分)18.(10分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,已知M 22),N22),在A(1,0),B(1,1),C2,0)三点中,是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N(32,﹣12),点D是线段MN关于点O的关联点.①∠MDN的大小为;②在第一象限内有一点E3,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E 的坐标;③点F在直线y 3上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.19.(5分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).(1)求抛物线L的顶点坐标和A点坐标.(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.20.(8分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.(1)求此抛物线所对应的函数表达式.(2)求PF的长度,用含m的代数式表示.(3)当四边形PEDF为平行四边形时,求m的值.21.(10分)如图,已知一次函数y=32x﹣3与反比例函数kyx=的图象相交于点A(4,n),与x轴相交于点B.填空:n的值为,k的值为;以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;考察反比函数kyx=的图象,当2y≥-时,请直接写出自变量x的取值范围.22.(10分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的倾斜角∠BAH=30°,AB=20米,AB=30米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.23.(12分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.24.(14分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍.(1)求降价后乙种水果的售价是多少元/斤?(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.【详解】解:B、C、D选项为不确定事件,即随机事件.故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.故选A.【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.2、A【解析】试题分析:根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生。
因此。
A、科比罚球投篮2次,不一定全部命中,故本选项正确;B、科比罚球投篮2次,不一定全部命中,正确,故本选项错误;C、∵科比罚球投篮的命中率大约是83.3%,∴科比罚球投篮1次,命中的可能性较大,正确,故本选项错误;D、科比罚球投篮1次,不命中的可能性较小,正确,故本选项错误。
故选A。
3、D【解析】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四边形CMGN=1S△CMG=1×12×12CG×32CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.4、D【解析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数6yx=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=1.∴S△OAC﹣S△BAD=12a2﹣12b2=12(a2﹣b2)=12×1=2.故选D.点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.5、B【解析】∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3),因此将抛物线C向右平移4个单位.故选B.6、B【解析】表示16的算术平方根,为正数,再根据二次根式的性质化简.【详解】4=,故选B.【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.7、A【解析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.【详解】设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,可得方程为:2(x-1)+3x=1.故选A.【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.8、D【解析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.【详解】∵(a3)2=a6,∴选项A不符合题意;∵(-x)2÷x=x,∴选项B不符合题意;∵a3(-a)2=a5,∴选项C不符合题意;∵(-2x2)3=-8x6,∴选项D符合题意.故选D.【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.9、B【解析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD 是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sin∠AFG的值.【详解】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB ∴∠HDE=∠DAB=60°,∵点E是CD中点∴DE=12CD=1在Rt△DEH中,DE=1,∠HDE=60°∴DH=1,3∴AH=AD+DH=5在Rt△AHE中,22AH HE+7∴7AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=1∴3∵CD∥AB∴∠ABE=∠BEC=90°在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.∴EF=7 2由折叠性质可得∠AFG=∠EFG,∴sin∠EFG= sin∠AFG =77772ENEF==,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.10、C【解析】根据“大大小小找不着”可得不等式2+m≥2m -1,即可得出m 的取值范围.【详解】221x m x m ->⎧⎨-<-⎩①② , 由①得:x >2+m ,由②得:x <2m ﹣1,∵不等式组无解,∴2+m≥2m ﹣1,∴m≤3,故选C .【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、55【解析】 在直角△ABD 中利用勾股定理求得AD 的长,然后利用正弦的定义求解.【详解】在直角△ABD 中,BD =1,AB =2,则AD 22AB BD +2221+5 则sin A =BD AD555. 12、(0,0)【解析】根据坐标的平移规律解答即可.【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13、2.【解析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案为2.考点:2.反比例函数系数k的几何意义;2.平移的性质;3.综合题.14、100080020x x=+【解析】设B型机器人每小时搬运x kg物品,则A型机器人每小时搬运(x+20)kg物品,根据“A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等”可列方程.【详解】设B型机器人每小时搬运x kg物品,则A型机器人每小时搬运(x+20)kg物品,根据题意可得100080020x x=+,故答案为100080020x x=+.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出关于x的分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程是关键.15、1【解析】解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.16、2【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出ab的值即可.【详解】∵点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案为2.【点睛】本题考查了关于x轴,y轴对称的点的坐标,解题的关键是熟练的掌握关于y轴对称的点的坐标的性质.17、①②④【解析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ 的值;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图4.则有CP=12,BP=22151()22+=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得BQ=55,则PQ=5535 255-=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S△DPQ=12DP•QH=12×12×35=320.故③错误;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,则有3 12 DNDN=-,解得:DN=35.由DQ=1,得cos∠ADQ=35 DNDQ=.故④正确.综上所述:正确结论是①②④.故答案为:①②④.【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.三、解答题(共7小题,满分69分)18、(1)C;(2)①60;②E3,1);③点F的横坐标x 3F3.【解析】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,22为半径的圆上,所以点C满足条件;(2)①如图3-1中,作NH⊥x轴于H.求出∠MON的大小即可解决问题;②如图3-2中,结论:△MNE是等边三角形.由∠MON+∠MEN=180°,推出M、O、N、E四点共圆,可得∠MNE=∠MOE=60°,由此即可解决问题;③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,首先证明点E在直线y=-33x+2上,设直线交⊙O′于E、F,可得F(32,32),观察图形即可解决问题;【详解】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,22为半径的圆上,所以点C满足条件,故答案为C.(2)①如图3-1中,作NH⊥x轴于H.∵N 3-12),∴tan∠3∴∠NOH=30°,∠MON=90°+30°=120°,∵点D是线段MN关于点O的关联点,∴∠MDN+∠MON=180°,∴∠MDN=60°.故答案为60°.②如图3-2中,结论:△MNE是等边三角形.理由:作EK⊥x轴于K.∵E(3,1),∴tan∠EOK=33,∴∠EOK=30°,∴∠MOE=60°,∵∠MON+∠MEN=180°,∴M、O、N、E四点共圆,∴∠MNE=∠MOE=60°,∵∠MEN=60°,∴∠MEN=∠MNE=∠NME=60°,∴△MNE是等边三角形.③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,易知E31),∴点E在直线y=-33x+2上,设直线交⊙O′于E、F,可得F(32,32),观察图象可知满足条件的点F的横坐标x的取值范围32≤x F3【点睛】此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.19、(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x 2-103x+3, 2239y x x =++,y=x 2-4x+3, 2833y x x =++. 【解析】(1)将点B 和点C 代入求出抛物线L 即可求解.(2)将抛物线L 化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得△PAC 为等腰直角三角形,作出所有点P 的可能性,求出代入23y x dx =++即可求解.【详解】(1)将点B (-3,0),C (0,3)代入抛物线得: {0=9-3b+cc=3,解得{b=4c=3,则抛物线243y x x =++. 抛物线与x 轴交于点A,∴ 2043x x =++,12x =-3x =-1,,A (-1,0),抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1).(2)抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1)抛物线L 1的顶点与抛物线L 的顶点关于原点对称, 1L ∴对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得△PAC 为等腰直角三角形,作出所有点P 的可能性.1P AC ∆是等腰直角三角形1P A CA ∴=,190,90CAO ACO CAO P AE ∠+∠=︒∠+∠=︒,1CAO P AE ∴∠=,190PEA COA =∠=︒, ()1CAO APE AAS ∴∆≅∆,∴求得()14,1P -.,同理得()22,1P -,()33,4P -,()43,2P ,由题意知抛物线23y x dx =++并将点代入得:222228103,43,3,3933y x x y x x y x x y x x =++=-+=++=-+. 【点睛】本题主要考查抛物线综合题,讨论出P 点的所有可能性是解题关键.20、(1)y=-x 2+2x+1;(2)-m 2+1m .(1)2.【解析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C 点坐标,根据平行于y 轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;(1)根据自变量与函数值的对应关系,可得F 点坐标,根据平行于y 轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE 的长,根据平行四边形的对边相等,可得关于m 的方程,根据解方程,可得m 的值.【详解】解:(1)∵点A (-1,0),点B (1,0)在抛物线y=-x 2+bx+c 上,∴10{930b c b c -++=-++=,解得23b c =⎧⎨=⎩, 此抛物线所对应的函数表达式y=-x 2+2x+1;(2)∵此抛物线所对应的函数表达式y=-x 2+2x+1,∴C (0,1).设BC 所在的直线的函数解析式为y=kx+b ,将B 、C 点的坐标代入函数解析式,得303k b b +=⎧⎨=⎩,解得1{3k b =-=,即BC 的函数解析式为y=-x+1.由P 在BC 上,F 在抛物线上,得P (m ,-m+1),F (m ,-m 2+2m+1).PF=-m 2+2m+1-(-m+1)=-m 2+1m .(1)如图,∵此抛物线所对应的函数表达式y=-x 2+2x+1,∴D (1,4).∵线段BC 与抛物线的对称轴交于点E ,当x=1时,y=-x+1=2,∴E (1,2),∴DE=4-2=2.由四边形PEDF 为平行四边形,得PF=DE ,即-m 2+1m=2,解得m 1=1,m 2=2.当m=1时,线段PF 与DE 重合,m=1(不符合题意,舍).当m=2时,四边形PEDF 为平行四边形.考点:二次函数综合题.21、 (1)3,1;133);(3) x 6≤-或x 0>【解析】(1)把点A (4,n )代入一次函数y=32x-3,得到n 的值为3;再把点A (4,3)代入反比例函数k y x=,得到k 的值为1;(2)根据坐标轴上点的坐标特征可得点B 的坐标为(2,3),过点A 作AE ⊥x 轴,垂足为E ,过点D 作DF ⊥x 轴,垂足为F ,根据勾股定理得到13AAS 可得△ABE ≌△DCF ,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比函数的性质即可得到当y≥-2时,自变量x的取值范围.【详解】解:(1)把点A(4,n)代入一次函数y=32x-3,可得n=32×4-3=3;把点A(4,3)代入反比例函数kyx=,可得3=4k,解得k=1.(2)∵一次函数y=32x-3与x轴相交于点B,∴32x-3=3,解得x=2,∴点B的坐标为(2,3),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2,在Rt△ABE中,22223123AE BE++==∵四边形ABCD是菱形,∴13AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=93°,在△ABE与△DCF中,AEB DFC ABE DCF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (ASA ),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2+13+2=4+13,∴点D 的坐标为(4+13,3).(3)当y=-2时,-2=12x,解得x=-2. 故当y≥-2时,自变量x 的取值范围是x ≤-2或x >3.22、 (1) BH 为10米;(2) 宣传牌CD 高约(40﹣203)米【解析】(1)过B 作DE 的垂线,设垂足为G .分别在Rt △ABH 中,通过解直角三角形求出BH 、AH ; (2)在△ADE 解直角三角形求出DE 的长,进而可求出EH 即BG 的长,在Rt △CBG 中,∠CBG=45°,则CG=BG ,由此可求出CG 的长然后根据CD=CG+GE-DE 即可求出宣传牌的高度.【详解】(1)过B 作BH ⊥AE 于H ,Rt △ABH 中,∠BAH =30°,∴BH =12AB =12×20=10(米), 即点B 距水平面AE 的高度BH 为10米;(2)过B 作BG ⊥DE 于G ,∵BH ⊥HE ,GE ⊥HE ,BG ⊥DE ,∴四边形BHEG 是矩形.∵由(1)得:BH =10,AH =3∴BG =AH +AE =(3+30)米,Rt △BGC 中,∠CBG =45°,∴CG =BG =(3+30)米,∴CE =CG +GE =CG +BH =3=3(米),在Rt △AED 中,DE=tan∠DAE=tan60°=3,AEDE=3AE=303∴CD=CE﹣DE=103+40﹣303=40﹣203.答:宣传牌CD高约(40﹣203)米.【点睛】本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.23、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.【解析】(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.【详解】(1)∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2) ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.24、(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤.【解析】(1)设降价后乙种水果的售价是x 元, 30元可购买乙种水果的斤数是30x ,原来购买乙种水果斤数是30x 1+,根据题意即可列出等式;(2)设至少购进乙种水果y 斤,甲种水果(500﹣y )斤,有甲乙的单价,总斤数≤900即可列出不等式,求解即可.【详解】解:(1)设降价后乙种水果的售价是x 元,根据题意可得:3030 1.51x x =⨯+, 解得:x =2,经检验x =2是原方程的解,答:降价后乙种水果的售价是2元/斤;(2)设至少购进乙种水果y 斤,根据题意可得:2(500﹣y )+1.5y≤900,解得:y≥200,答:至少购进乙种水果200斤.【点睛】本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子是解题的关键。