最小二乘参数辨识方法

合集下载

各类最小二乘算法

各类最小二乘算法

β N −1 H* = N 0
β N −2
β 2( N −1) WN = 0
β 2( N −2)
0 ⋱ 1
三、递推算法 ∵
k θ(k ) = ∑ β i =1

2(k −i) h (i )h T (i )
2随着采样次数的增多数据量不断增加ls估计有可能出现所谓的数据饱和现象导致递推算法不能接近参数真二关于数据饱和现象的分析所谓数据饱和现象就是随着时间的推移采集到的数据越来越多新数据所提供的信息被淹没在老数据的海洋之中
Ⅴ 各种最小二乘类参数辨识算法 §1 概 述
最小二乘类参数辨识算法(一次完成算法、递推算法) 最小二乘类参数辨识算法 (一次完成算法 、 递推算法 ) 是一种 最基本和常用的参数估计方法。但研究和应用表明, 最基本和常用的参数估计方法。 但研究和应用表明, 这一算 法仍存在明显的不足。 法仍存在明显的不足。 一、LS 算法的主要不足之处 1、当模型噪声为有色噪声时,LS 估计不再是无偏估计、一致 、当模型噪声为有色噪声时, 估计不再是无偏估计、 估计。 估计。 2、随着采样次数的增多,数据量不断增加,LS估计有可能出 、随着采样次数的增多,数据量不断增加, 估计有可能出 现所谓的“数据饱和”现象, 现所谓的“数据饱和”现象,导致递推算法不能接近参数真 值。
于是有: 于是有:
α P ( k ) P − 1 ( k − 1) = I − P ( k ) h ( k ) h T ( k )
则:
ˆ θ ( k ) = P ( k ) H * T Z * = P ( k ) α H * −1T Z * −1 + h ( k ) z ( k ) k k k k

现代控制理论_第14章_最小二乘法辨识

现代控制理论_第14章_最小二乘法辨识
i 1 n i 0 n n
y n 2 ai y n 2 i bi u n 2 i n 2
i 1 i 0
n
y n N ai y n N i bi u n N i n N

y k ai y k i bi u k i v k ai v k i
i 1 i 0 i 1
n
n
n
(14-3)
假设v k k 1,2,, n 是均值为零的独立分布的平稳随机序列,且与 序列u k k 1,2,, n 相互独立。设
ˆ 表示 y 的最优估值,则有 设ˆ 表示 的最优估值, y
ˆ ˆ y
(14-12)
式中
ˆ n 1 y a ˆ ˆ y n 2 ˆ ˆ y , b ˆ ˆ y n N
T 的展开式如下所示:
y n 1 y n y n y n 1 y 1 y 2 T u n 1 u n 2 u n 1 u n u 2 u 1 y n N 1 n 1 y n N 2 n 2 yN u n N u n N 1 n N uN
1
因为ˆ 有解与 T 正定等价,所以可以保证 T 正定来确定对输 入 u k 序列的要求。由式(14-9)可知
Y U
(14-20)

YT U YT U Y T Y U T T T U Y U U U

参数辨识方法

参数辨识方法

参数辨识方法指通过实验数据或观测结果,推断或估计系统或模型的参数值的一类方法。

这些方法通常用于建立数学模型、探索系统行为、优化控制策略等领域。

以下是几种常见的参数辨识方法:
1. 最小二乘法(Least Squares Method):最小二乘法是一种常见的参数辨识方法,通过最小化实际观测值与模型预测值之间的差异来估计参数。

它适用于线性和非线性模型,并可考虑测量误差。

2. 极大似然估计(Maximum Likelihood Estimation):极大似然估计是一种统计方法,用于通过最大化观测数据的似然函数来估计参数。

它适用于概率模型和随机过程的参数辨识。

3. 遗传算法(Genetic Algorithms):遗传算法是一种优化算法,可以用于参数辨识问题。

它模拟生物进化过程中的选择、交叉和变异等操作,通过迭代搜索来找到最优参数组合。

4. 粒子群优化算法(Particle Swarm Optimization):粒子群优化算法是一种启发式优化算法,模拟鸟群或鱼群的行为,通过协作和信息共享来寻找最优参数组合。

5. 系统辨识理论(System Identification Theory):系统辨识理论提供了一系列数学和统计方法,用于从实验数据中推断系统的结构和参数。

它涵盖了许多方法,包括参数估计、频域分析、时域分析等。

这些方法的选择取决于具体的应用和问题领域。

不同方法有不同的假设和适用条件,需要根据实际情况选择合适的参数辨识方法来获得准确的参数估计。

第五章 最小二乘法辨识

第五章 最小二乘法辨识

服从正态分
❖ 4)有效性
❖ 定理4:假设 (k) 是均值为零,方差为 2I 的正态
白噪声,则最小二乘参数估计量
^
是有效估计
量,即参数估计误差的协方差达到Cramer-Rao不
等式的下界
E (^
^
)(
)T
2E
(
T N
N
) 1
M 1
❖ 其中M为Fisher信息矩阵。
4、适应算法
❖ 随着更多观测数据的处理,递推最小二乘法对线性 定常系统的参数估计并非越来越精确,有时会发现
❖ 现举例说明最小二乘法的估计精度 ❖ 例5.1:设单输入-单输出系统的差分方程为
y(k) a1y(k 1) a2 y(k 2) b1u(k 1) b2u(k 2) (k)
❖ 设 u(k)是幅值为1的伪随机二位式序列,噪声 (k)是 一个方差 2可调的正态分布 N(0, 2 )随机序列。
❖ 为了克服数据饱和现象,可以用降低旧数据影响的 办法来修正算法。而对于时变系统,估计k时刻的 参数最好用k时刻附近的数据估计较准确。否则新 数据所带来的信息将被就数据所淹没。
❖ 几种算法:渐消记忆法,限定记忆法与振荡记忆法
❖ 矩阵求逆引理:设A为 n n 矩阵,B和C为 n m 矩阵,
并且A, A和 BCT I CT都A是1B 非奇异矩阵,则有矩
阵恒等式
A BCT 1 A1 A1B(I CT A1B)1CT A1


A
PN1
,B
N 1
,C
T N 1
,根据引理有
PN1
T N 1 N 1
1
❖ 算法中,^ N 为2n+1个存贮单元(ai ,bi ,i 1,2, , n), 而 PN 是 (2n 1) (2n 1)维矩阵,显然,将 N 换成 PN 后,存贮量大为减少(因为n为模型的阶数,一般 远远小于N)

第四章-最小二乘参数辨识方法及原理

第四章-最小二乘参数辨识方法及原理

脉冲传递函数描述:
Y ( z ) b0 b1 z 1 bn z n B( z 1 ) G( z) = 1 n 1 U ( z ) 1 a1 z an z A( z )
2.随机模型
v(k )
u(k )
G (k )
x(k )
y(k )
观测值可表示为:
本章的学习目的
1、掌握最小二乘参数辨识方法的基本原理
2、掌握常用的最小二乘辨识方法 3、熟练应用最小二乘参数辨识方法进行模型参数辨识 4、能够编程实现最小二乘参数辨识


辨识目的:根据过程所提供的测量信息,在某种准则意 义下,估计模型的未知参数。 Input
Process 目 的
Output
工程实践
88 1010
95.7 1032
表 1 热敏电阻的测量值
t (C ) R ()
20.5 765
26 790
32.7 826
40 850
51 873
61 910
73 942
80 980
88 1010
95.7 1032
R a bt
N N N N ˆ Ri 2 R a 702ti.762i ti ti i 1 i 1 a i 1 i 1 ˆ 2 N N ˆ N. t i2 t i b 3 4344 i 1 i 1 N N N N Ri t i Ri t i i 1 i 1 b i 1 ˆ R 943 .1682 N N 2 N ti ti i 1 i 1
上述N个方程可写成下列向量-矩阵形式
y (n) y (1) u (n 1) y (n 1) y (n 2) y (n 1) y (2) u ( n 2) y (n N ) y (n N 1) y ( N ) u (n N )

电机动态参数的鲁棒最小二乘辨识方法研究

电机动态参数的鲁棒最小二乘辨识方法研究

电机动态参数的鲁棒最小二乘辨识方法研究电机动态参数的鲁棒最小二乘辨识方法是一种常用的电机参数辨识方法,它可以通过对电机的输入输出数据进行处理,得到电机的动态参数,从而实现对电机的控制和优化。

本文将介绍电机动态参数的鲁棒最小二乘辨识方法的研究。

一、电机动态参数的鲁棒最小二乘辨识方法的基本原理电机动态参数的鲁棒最小二乘辨识方法是一种基于最小二乘法的电机参数辨识方法。

它的基本原理是利用电机的输入输出数据,通过最小二乘法对电机的动态参数进行辨识。

具体来说,它可以通过以下步骤实现:1. 收集电机的输入输出数据,包括电机的电流、电压、速度、位置等参数。

2. 建立电机的动态模型,包括电机的电路模型和机械模型。

3. 利用最小二乘法对电机的动态参数进行辨识,包括电机的电阻、电感、转动惯量、摩擦系数等参数。

4. 对辨识结果进行鲁棒性分析,评估辨识结果的可靠性和精度。

二、电机动态参数的鲁棒最小二乘辨识方法的研究进展电机动态参数的鲁棒最小二乘辨识方法是一种经典的电机参数辨识方法,已经得到了广泛的应用和研究。

近年来,随着电机控制技术的不断发展和电机应用领域的不断拓展,电机动态参数的鲁棒最小二乘辨识方法也得到了进一步的研究和改进。

1. 基于神经网络的电机参数辨识方法神经网络是一种强大的模式识别和数据处理工具,已经被广泛应用于电机参数辨识领域。

基于神经网络的电机参数辨识方法可以通过对电机的输入输出数据进行训练,得到电机的动态参数,具有较高的精度和鲁棒性。

2. 基于模糊逻辑的电机参数辨识方法模糊逻辑是一种基于模糊集合理论的推理方法,可以处理不确定性和模糊性问题。

基于模糊逻辑的电机参数辨识方法可以通过对电机的输入输出数据进行模糊化处理,得到电机的动态参数,具有较高的鲁棒性和可靠性。

3. 基于深度学习的电机参数辨识方法深度学习是一种基于神经网络的机器学习方法,可以处理大规模、高维度的数据。

基于深度学习的电机参数辨识方法可以通过对电机的输入输出数据进行深度学习,得到电机的动态参数,具有较高的精度和鲁棒性。

递归最小二乘法辨识参数

递归最小二乘法辨识参数递归最小二乘法(Recursive Least Squares, RLS)是一种参数辨识方法,它使用递归算法来求解最小二乘法中的参数。

在许多领域中,例如系统辨识、自适应控制、信号处理等,递归最小二乘法都是一个广泛使用的方法。

递归最小二乘法的基本思想是:通过递归迭代来更新参数估计值,使其逼近最优解。

在递归过程中,每一次迭代时,都会通过当前的测量值来更新参数的估计值,同时保留历史测量值的影响,从而获得更精确的估计值。

具体地说,在递归过程中,首先需要定义一个初始参数向量,然后通过观测数据序列来递归更新参数向量。

假设有一个如下所示的线性关系:y(k) = Φ(k) * θ + v(k)其中,y(k)是被观测到的输出值,Φ(k)是与该输出值相关的输入向量,θ是待辨识的参数向量,v(k)是误差项。

递归最小二乘法的目标就是通过观测数据来估计θ的值。

在递归最小二乘法中,首先需要定义一个初始的参数向量θ0,然后通过数据序列递归地更新θ的值。

每一次迭代时,都会用最新的观测数据来更新参数向量,使得估计值更接近真实值。

具体来说,每次观测到新的数据之后,都会根据当前参数估计值和新的观测值来计算估计误差,并更新参数向量。

具体的迭代步骤如下:1.从数据序列中读取观测值y(k)和输入向量Φ(k);2.计算估计值y(k)hat和估计误差e(k):y(k)hat = Φ(k) * θ(k-1)e(k) = y(k) - y(k)hat3.计算卡尔曼增益K(k)和参数估计值θ(k):K(k) = P(k-1) * Φ(k) / (λ + Φ(k)' * P(k-1) * Φ(k))θ(k) = θ(k-1) + K(k) * e(k)其中,P(k-1)是先前迭代步骤中的误差协方差矩阵,λ是一个小的正数,用于确保逆矩阵的存在性。

需要注意的是,递归最小二乘法的计算量相对较大,因此通常需要对算法进行优化,以提高计算效率和精度。

最小二乘法

第3章 线性动态模型参数辨识-最小二乘法3.1 辨识方法分类根据不同的辨识原理,参数模型辨识方法可归纳成三类: ① 最小二乘类参数辨识方法,其基本思想是通过极小化如下准则函数来估计模型参数:min )()ˆ(ˆ==∑=θθLk k J 12ε 其中)(k ε代表模型输出与系统输出的偏差。

典型的方法有最小二乘法、增广最小二乘法、辅助变量法、广义最小二乘法等。

② 梯度校正参数辨识方法,其基本思想是沿着准则函数负梯度方向逐步修正模型参数,使准则函数达到最小,如随机逼近法。

③ 概率密度逼近参数辨识方法,其基本思想是使输出z 的条件概率密度)|(θz p 最大限度地逼近条件0θ下的概率密度)|(0θz p ,即)|()ˆ|(0m a x θθz p z p −−→−。

典型的方法是极大似然法。

3.2 最小二乘法的基本概念● 两种算法形式 ① 批处理算法:利用一批观测数据,一次计算或经反复迭代,以获得模型参数的估计值。

② 递推算法:在上次模型参数估计值)(ˆ1-k θ的基础上,根据当前获得的数据提出修正,进而获得本次模型参数估计值)(ˆk θ,广泛采用的递推算法形式为() ()()()~()θθk k k k d z k =-+-1K h其中)(ˆk θ表示k 时刻的模型参数估计值,K (k )为算法的增益,h (k -d ) 是由观测数据组成的输入数据向量,d 为整数,)(~k z 表示新息。

● 最小二乘原理定义:设一个随机序列)},,,(),({L k k z 21∈的均值是参数θ 的线性函数E{()}()T z k k θ=h其中h (k )是可测的数据向量,那么利用随机序列的一个实现,使准则函数21()[()()]LT k J z k k θθ==-∑h达到极小的参数估计值θˆ称作θ的最小二乘估计。

● 最小二乘原理表明,未知参数估计问题,就是求参数估计值θˆ,使序列的估计值尽可能地接近实际序列,两者的接近程度用实际序列与序列估计值之差的平方和来度量。

锂离子电池等效电路参数辨识最小二乘法

锂离子电池等效电路参数辨识最小二乘法全文共四篇示例,供读者参考第一篇示例:锂离子电池是现代电子设备中常用的电池类型之一,其能量密度高、重量轻、使用寿命长等优点使其得到广泛应用。

在电子设备设计和性能优化过程中,我们常常需要对锂离子电池的等效电路参数进行辨识。

等效电路参数是描述锂离子电池内部特性的重要参数,包括电阻、电容、电压源等。

辨识锂离子电池的等效电路参数可以帮助我们更准确地模拟锂电池在不同电荷和放电状态下的特性,从而优化电子设备设计,提高性能和效率。

最小二乘法是一种常用的参数辨识方法,可以通过拟合实测数据来估计锂离子电池的等效电路参数。

最小二乘法是一种通过最小化观测值与模型预测值之间的误差平方和来确定参数估计值的方法。

在锂离子电池的等效电路参数辨识中,我们可以将实测数据与模型之间的误差定义为残差,然后通过最小化残差的平方和来求解最优参数估计值。

锂离子电池的等效电路模型一般包括电阻、电容和电压源三个主要参数。

电阻代表电池内部电阻,影响电流的流动;电容代表电池内的电荷存储能力,影响电压的变化;电压源代表电池的电动势,影响电池的输出电压。

通过最小二乘法,我们可以估计出这三个参数的最优值,实现对锂离子电池等效电路的准确描述。

第二篇示例:锂离子电池是当今最为普遍应用于电动汽车、手机、笔记本电脑等设备中的一种电池类型。

为了更好地管理和控制锂离子电池的性能,我们需要了解其等效电路参数。

而通过最小二乘法来辨识锂离子电池的等效电路参数就是一种常用的方法。

一、锂离子电池的等效电路模型锂离子电池的等效电路模型通常包括电池的内阻、电池的电压和电池的容量。

一般来说,我们可以将锂离子电池抽象成一个电压源和一个内阻的串联电路。

其等效电路模型如下图所示:\[V(t) = E(t) - R_i I(t) - R_v \frac{\partial Q(t)}{\partial t}\]\(V(t)\)是电池的电压,\(E(t)\)是电池的开路电压,\(R_i\)是电池的内阻,\(R_v\)是电池的电压响应,\(Q(t)\)是电池的电量,\(I(t)\)是电池的电流。

系统辨识—最小二乘法_3

---------------------------------------------------------------最新资料推荐------------------------------------------------------系统辨识—最小二乘法最小二乘法参数辨识 1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。

现代控制理论中的一个分支。

通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。

对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。

对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。

而系统辨识所研究的问题恰好是这些问题的逆问题。

通常,预先给定一个模型类={M}(即给定一类已知结构的模型),一类输入信号 u 和等价准则 J=L(y,yM)(一般情况下,J 是误差函数,是过程输出 y 和模型输出 yM 的一个泛函);然后选择使误差函数J 达到最小的模型,作为辨识所要求的结果。

系统辨识包括两个方面:结构辨识和参数估计。

在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。

2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使1 / 17用模型的目的是至关重要的。

它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。

通过辨识建立数学模型通常有四个目的。

①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。

这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。

②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。

用于系统分析的仿真模型要求能真实反映系统的特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《系统辨识基础》第17讲要点第5章 最小二乘参数辨识方法5.9 最小二乘递推算法的逆问题辨识是在状态可测的情况下讨论模型的参数估计问题,滤波是在模型参数已知的情况下讨论状态估计问题,两者互为逆问题。

5.10 最小二乘递推算法的几种变形最小二乘递推算法有多种不同的变形,常用的有七种情况:① 基于数据所含的信息内容不同,对数据进行有选择性的加权; ② 在认为新近的数据更有价值的假设下,逐步丢弃过去的数据; ③ 只用有限长度的数据;④ 加权方式既考虑平均特性又考虑跟综能力; ⑤ 在不同的时刻,重调协方差阵P (k ); ⑥ 设法防止协方差阵P (k )趋于零; 5.10.1 选择性加权最小二乘法 把加权最小二乘递推算法改写成[]⎪⎪⎩⎪⎪⎨⎧--=+--=--+-=-)1()]()([)(1)()1()()()()1()()()]1(ˆ)()()[()1(ˆ)(ˆ1k k k k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI ΛΛ算法中引进加权因子,其目的是便于考虑观测数据的可信度.选择不同的加权方式对算法的性质会有影响,下面是几种特殊的选择:① 一种有趣的情况是Λ()k 取得很大,在极限情况下,算法就退化成正交投影算法。

也就是说,当选择⎩⎨⎧=-≠-∞=0)()1()(,00)()1()(,)(k k k k k k k h P h h P h ττΛ 构成了正交投影算法⎪⎪⎩⎪⎪⎨⎧--=--=--+-=)1()]()([)()()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆk k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI 算法初始值取P ()0=I 及 ()θε0=(任定值),且当0)()1()(=-k k k h P h τ时,令K ()k =0。

② 第①种加权因子的选择显然是一种极端情况,算法的鲁棒性比较差。

为了使算法具有较好的鲁棒性,可把第①种加权因子的选择修改为⎩⎨⎧<-≥-=εεττ)()1()(,)()1()(,)(21k k k k k k k h P h h P h ΛΛΛ 其中ΛΛ120≥>,ε是指定的阀值。

这时算法对数据作了不同的加权,但不排斥任何数据. ③ 按下式选择加权因子,意味着它是过去数据信息量的一种度量⎪⎩⎪⎨⎧=≠-=0)()(,00)()(,)()()()1()()(k k k k k k k k k k h h h h h h h P h ττττΛ ④ 如果由噪声、建模不准确等因素引起的误差上界已知,则可按下式选择加权因子⎪⎪⎩⎪⎪⎨⎧><-+-->≥-+--=0)()1()(1)]1(ˆ)()([,00)()1()(1)]1(ˆ)()([,1)(2222∆∆Λk k k k k k z k k k k k k z k h P h h h P h h ττττθθ 5.10.2 遗忘因子法遗忘因子算法通过对数据加遗忘因子的办法来降低老数据的信息量,为补充新数据的信息创造条件。

取准则函数为2])()([)(θμθτ∑=--=L1k kL k k z J h其中μ称遗忘因子,取值为01<<μ.极小化这个准则函数,可得到参数辨识算法:**1**FF )(ˆL LLLz HH Hττθ-=式中⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==----μβββββττττ221*21*)()2()1()](,),2(),1([L L z z z L L L L L L h h h H z这种参数辨识方法称作遗忘因子法,记作FF(Forgetting Factor algorithm)。

如果遗忘因子μ=1,算法退化成普通最小二乘法。

与推导加权最小二乘递推算法一样,同样可以推导出遗忘因子算法的递推计算形式[]⎪⎪⎩⎪⎪⎨⎧--=+--=--+-=-)1()]()([1)()()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆ1k k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI μμ式中遗忘因子μ可按下面的原则取值: ① 若要求T c 步后数据衰减至36%,则μ=-11T c;② μ取作时变因子μμμμ()()()k k =-+-0011,其中μμ00990095==.,().。

遗忘因子μ的取值大小对算法的性能会产生直接的影响。

μ值增加时,算法的跟踪能力下降,但算法的鲁棒性增强;μ值减少时,算法的跟踪能力增强,但算法的鲁棒性下降,对噪声更显得敏感。

遗忘因子法和加权最小二乘算法主要的差别:① 加权方式不同.加权最小二乘法各时刻权重是不相关的,也不随时间变化;遗忘因子法各时刻权重是有关联的,满足ΛΛ()()k k =-11μ关系,各时刻权重的大小随时间变化,当前时刻的权重总为1。

② 加权的效果不一样.加权最小二乘法获得的是系统的平均特性;遗忘因子法能实时跟踪系统明显的变化,具有跟踪能力。

③ 算法的协方差矩阵P (k )的内容不一样,两者的关系为P P FF WLS ()()()k k k =Λ。

和加权最小二乘递推算法一样,遗忘因子算法下的残差ε()k 与新息~()z k 关系:)()1()()(~)(k k k k z k h P h -+=τμμε或)(~)]()()(1[)(k z k k k k h P h τε-=由此可推出准则函数J (k )的递推计算式:⎥⎦⎤⎢⎣⎡+-+-=μμτ)()1()()(~)1()(2k k k k z k J k J h P h式中)1(ˆ)()()(~--=k k k z k z θτh , 是k 时刻的新息,它与k -1 时刻的参数估计值有关。

5.10.3 限定记忆法限定记忆法依赖于有限长度的数据,每增加一个新的数据信息,就要去掉一个老数据的信息,数据长度始终保持不变。

这种方法的参数估计递推算法如下:[][]⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+++=++-++++-+=+-++-+++-+=++++=+++-+=+++-++-+=++--.)1,()](),([),()()1,()(1)()1,(),()]1,(ˆ)()()[,()1,(ˆ),(ˆ),()](),1([),1()(),()(1)(),(),1()],(ˆ)()()[,1(),(ˆ),1(ˆ11L k k L k L k k L k k L k L k k L k L k L k k L k k L k k L k L k z L k k L k k L k k L k k k L k k L k k k L k k k k L k k L k k L k k k k z L k k L k k L k k P h K P h P h h P K h K P h K P h P h h P K h K ττττττθθθθθθ-I +I 算法前三个式子用于去掉老数据的信息,后三个式子用来增加新数据的信息,初始值取P (,)(,),00002==⎧⎨⎩a I ,θε 其中a 为充分大实数,ε 为充分小实向量.相应的准则函数递推计算式为:],)()1,()(1)(~)(),()(1)(~)1,(),1(2221L k L k k L k L k z k L k k k k z L k k J L k k J +-++++++---+=++h P h h P h ττ其中⎪⎩⎪⎨⎧-++-+=++-=)1,(ˆ)()()(~),(ˆ)()()(~21L k k L k L k z L k z L k k k k z k z θθττh h 5.10.4 折息法折息法把加权最小二乘法和遗忘因子法融合起来,形成如下算法:⎪⎪⎪⎩⎪⎪⎪⎨⎧--=⎥⎦⎤⎢⎣⎡+--=--+-=-)1()]()([)(1)()()()()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆ1k k k k k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI μμΛ折息因子与加权因子和遗忘因子之间的关系为ΓΛ(,)()()k i i j j i k==+∏μ1,当遗忘因子取常数时,折息因子又可表示成ΓΛ(,)()k i i k i =-μ。

折息法同时具备加权最小二乘法和遗忘因子法的作用,既可获得系统的平均特性,又具有时变跟踪能力。

5.10.5 协方差重调最小二乘法 在辨识递推计算过程中,协方差矩阵P (k )衰减很快,此时算法的增益矩阵K (k )也急剧衰减。

这种现象的出现,促使人们去考虑一种修正的方案,即在指定的时刻重新调整协方差矩阵P (k ),使算法始终保持较快的收敛速度。

这种协方差重调的最小二乘算法描述如下:[]⎪⎪⎩⎪⎪⎨⎧--=+--=--+-=-)1()]()([)(1)()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆ1Tk k k k k k k k k k k k k z k k k P h K P h P h h P K h K ττθθθI 当k k k k l ∉{,,,}12 时,P (k )按上式算法计算;当k k k k k i l =∈{,,,}12 时,把P (k )重调为P ()k a i i =I , 0<a m i n ≤≤<∞a a i max 。

5.10.6 协方差修正最小二乘法 对时变系统辨识来说,为了防止矩阵P (k )趋于零,当参数估计值超过某阀值时,矩阵P (k )自动加上附加项Q , 具体算法如下:[]⎪⎪⎩⎪⎪⎨⎧≥+=--=+--=--+-=-0I Q Q P P P h K P h P h h P K h K ,)()()1()]()([)(1)()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆ1k k k k k k k k k k k k k k k z k k k τττθθθ。

相关文档
最新文档