高二数学文科双曲线测试题

合集下载

高二数学文科双曲线测试题1

高二数学文科双曲线测试题1

高二数学【文科】双曲线周练卷一.选择题1.(2021·长春高二检测)双曲线-=1的焦距为( )A. B.22.“mn<0”是“方程mx2+ny2=1表示焦点在x轴上的双曲线〞的( )3.假设方程-=1表示双曲线,那么实数m的取值范围是( )≠1且m≠-3 B.m>1C.m<-3或m>1D.-3<m<14.(2021·南昌高二检测)设双曲线-=1上的点P到点(4,0)的距离为10,那么点P到点(-4,0)的距离为( )A.16B.16+2C.10+2或10-25.(2021·济宁高二检测)F1,F2为双曲线C:x2-y2=1的左、右焦点,点P 在C上,∠F1PF2=60°,那么P到x轴的距离为( )A. B. C. D.6.以下曲线中离心率为的是( )A.-=1B.-=1C.-=1D.-=17.双曲线-=1的右焦点为(3,0),那么该双曲线的离心率等于A. B. C. D.8.(2021·兰州高二检测)对称轴为坐标轴的双曲线有一条渐近线平行于直线x+2y-3=0,那么该双曲线的离心率为( )A. 5或B.或C.或D. 5或9.(2021·温州高二检测)双曲线x2-y2=1的渐近线方程是( )A.x=±1B.y=±xC.y=±xD.y=±x10.(2021·太原高二检测)双曲线的离心率为2,焦点是(-4,0),(4,0),那么双曲线方程为( )A.-=1B.-=1C.-=1D.-=111.(2021·福建高考)双曲线-y2=1的顶点到渐近线的距离等于( )A. B. C. D.12.(2021·兰州高二检测)直线y=kx+2与双曲线x2-y2=2有且只有一个交点,那么k的值是( )A.k=±1B.k=±C.k=±1或k=±D.k=±13.过点A(4,3)作直线l,如果它与双曲线-=1只有一个公共点,那么直线l的条数为( )A.1B.2C.314.(2021·重庆高二检测)双曲线x2-y2=2,过定点P(2,0)作直线l与双曲线有且只有一个交点,那么这样的直线l的条数为( )A.1B.215.过双曲线x2-=1的右焦点作直线与双曲线交于A,B两点,假设|AB|=16,这样的直线有( )16.(2021·长春高二检测)双曲线E的中心在原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为N(-12,-15),那么E 的方程为( )A.-=1B.-=1C.-=1D.-=117.(2021·郑州高二检测)双曲线-=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,假设MF2⊥x轴,那么双曲线的离心率为( )A. B. C. D.18.F1,F2是双曲线-y2=1的两个焦点,过右焦点F2作倾斜角为的弦AB,那么△F1AB的面积为( )A. B.2 C. D.二、填空题19.点F1,F2分别是双曲线-=1(a>0)的左、右焦点,P是该双曲线上的一点,且|PF1|=2|PF2|=16,那么△PF1F2的周长是.20.(2021·唐山高二检测)P是双曲线-=1上一点,F1,F2是双曲线的两个焦点,假设|PF1|=17,那么|PF2|的值为.21.(2021·双鸭山高二检测)双曲线-=1(a>0,b>0)的两个焦点分别为F1(-2,0),F2(2,0),点P(3,)在双曲线上,那么双曲线方程为______________.22.(2021·黄石高二检测)F是双曲线-=1的左焦点,A(1,4),点P 是双曲线右支上的动点,那么|PF|+|PA|的最小值是.23.(2021·白山高二检测)设双曲线-=1(a>0)的渐近线方程为3x±2y=0,那么该双曲线的离心率为.24.过点A(6,1)作直线与双曲线x2-4y2=16相交于两点B,C,且A为线段BC的中点,那么直线的方程为.三、解答题25.如图,双曲线中c=2a,F1,F2为左、右焦点,P是双曲线上的点,∠F1PF2=60°,=12.求双曲线的标准方程.26.焦点在x轴上的双曲线,它的两条渐近线的夹角为,焦距为12,求此双曲线的方程及离心率.高二数学【文科】双曲线周练卷答案1.【解析】-=1,得a2=9,b2=7,所以c2=a2+b2=16,即c=4,所以焦距2c=8.2.【解析】2+ny2=1表示焦点在x轴上的双曲线,那么有m>0,n<0,故mn<0,假设m·n<0,那么m>0,n<0或m<0,n>0.应选B.3.【解析】选C.由(m-1)(m+3)>0,得m>1或m<-3.4.【解析】-=1,得a2=7,b2=9,所以c2=a2+b2=16,c=4,a=,所以F2(4,0)和F1(-4,0)为双曲线的焦点.由||PF1|-|PF2||=2a=2,故|PF1|=10+2或10-2.5.【解析】选B.因为||PF1|-|PF2||=2,所以|PF1|2-2|PF1|·|PF2|+|PF2|2=4,所以|PF1|2+|PF2|2=4+2|PF1|·|PF2|,由余弦定理知|PF1|2+|PF2|2-|F1F2|2=2|PF1|·|PF2|cos 60°,得|PF1|2+|PF2|2=|F1F2|2+|PF1|·|PF2|,又a=1,b=1,所以c==,所以|F1F2|=2c=2,所以4+2|PF1||PF2|=|PF1|·|PF2|+8,所以|PF1|·|PF2|=4.设P到x轴的距离为|y0|,=|PF1||PF2|sin 60°=|F1F2|·|y0|,所以×4×=×2|y0|,所以y0==.6.【解析】选B.选项B中,a2=4,b2=2,所以c2=a2+b2=6,所以a=2,c=,故e==.7.【解析】2+5=32,得a=2,所以e==.8.【解析】选B.因为双曲线的一条渐近线平行于直线x+2y-3=0,所以=-或=-,所以e==或.9.【解析】2-y2=1,得a2=1,b2=1,即a=1,b=1,所以渐近线方程为y=±x=±x.10.【解析】-=1(a>0,b>0),由所以a=2,又b2=c2-a2=12,所以双曲线的标准方程为-=1.11.【解析】选C.双曲线的右顶点为(2,0),渐近线方程为x-2y=0,那么顶点到渐近线的距离为=.12.【解析】选 C.联立直线y=kx+2与双曲线x2-y2=2,消元,得:(1-k2)x2-4kx-6=0,当1-k2=0时,k=±1,此时方程只有一解;当1-k2≠0时,要满足题意,Δ=16k2+24(1-k2)=0,即k=±.综上知:k的值是k=±1或k=±.13.【解析】l的条数为3.14.【解析】选B.因为点P(2,0)在双曲线含焦点的区域内,故只有当直线l与渐近线平行时才会与双曲线只有一个交点,故这样的直线只有两条.15.【解析】选C.过右焦点且垂直于x轴的弦长为16,因为|AB|=16,所以当l与双曲线的两交点都在右支上时只有一条.又因为实轴长为2,16>2,所以当l与双曲线的两交点在左、右两支上时应该有两条,共三条.16.【解析】l的斜率k==1,设双曲线方程为-=1(a>0,b>0),A(x1,y1),B(x2,y2),那么-=1,-=1,两式相减并结合x1+x2=-24,y1+y2=-30得=,从而=1,又因为a2+b2=c2=9,故a2=4,b2=5,所以E的方程为-=1.17.【解析】选B.将x=c代入双曲线的方程得y=,即M,在△MF1F2中,tan30°=,即=,解得e==.18.【解析】-y2=1,得a2=3,b2=1,c2=a2+b2=4,所以c=2,F1(-2,0),F2(2,0),直线AB:y=x-2.由得2x2-12x+15=0.设A(x1,y1),B(x2,y2),那么x1+x2=6,x1·x2=,所以|AB|=|x1-x2|=·=2.又F1到直线AB:x-y-2=0的距离为:d==2,所以=×d×|AB|=×2×2=2.19.【解析】因为|PF1|=2|PF2|=16,所以|PF1|-|PF2|=16-8=8=2a,所以a=4.又因为b2=9,所以c2=25,所以2c=10.所以△PF1F2的周长为|PF1|+|PF2|+|F1F2|=16+8+10=34.答案:3420.【解析】由条件知a2=64,即a=8,c2=b2+a2=100,c=10,所以双曲线右支上的点到左焦点F1的最短距离a+c=18>17,故点P在双曲线左支上.所以|PF2|-|PF1|=2a=16,即|PF2|=16+|PF1|=33.答案:3321.【解析】|PF1|==4,|PF2|==2,|PF1|-|PF2|=2=2a,所以a=,又c=2,故b2=c2-a2=2,所以双曲线的方程为-=1.答案:-=122.【解析】由双曲线-=1,得c=4,所以左焦点F(-4,0),右焦点F′(4,0),由双曲线的定义得:|PF|-|PF′|=2a=4,所以|PF|+|PA|=4+|PF′|+|PA|≥4+|AF′|=4+=9,此时P为AF′与双曲线的交点,即|PF|+|PA|的最小值为9.答案:923.【解析】因为双曲线的焦点在x轴上,且渐近线方程为3x±2y=0,所以=,所以该双曲线的离心率e==.答案:24.【解析】依题意可得直线的斜率存在,设为k(k≠0),那么直线的方程为y-1=k(x-6).设B(x1,y1),C(x2,y2),因为点A(6,1)为线段BC的中点,所以x1+x2=12,y1+y2=2.因为点B,C在双曲线x2-4y2=16上,所以由②-①得:(x2-x1)(x2+x1)-4(y2-y1)(y2+y1)=0,所以k====,所以经检验,直线的方程为y-1=(x-6),即3x-2y-16=0.答案:3x-2y-16=025.【解析】由题意可知双曲线的标准方程为-=1.由于||PF1|-|PF2||=2a,在△F1PF2中,由余弦定理得cos60°==,所以|PF1|·|PF2|=4(c2-a2)=4b2,所以=|PF1|·|PF2|·sin60°=2b2·=b2,从而有b2=12,所以b2=12,c=2a,结合c2=a2+b2,得a2=4.所以双曲线的标准方程为-=1.26.【解析】由可设双曲线的方程为-=1(a>0,b>0),所以两条渐近线为y=±x.因为两条渐近线的夹角为,故分两种情况,即y=x的倾斜角为或.当y=x的倾斜角为时,所以=tan=,所以=,即a2=3b2.又2c=12,所以c=6.由c2=a2+b2,得b2=9,a2=27.所以双曲线方程为-=1,e===.当y=x的倾斜角为时,所以=tan=,所以b2=3a2.又2c=12,所以c=6.由c2=a2+b2,得a2=9,b2=27.所以双曲线方程为-=1,e===2.。

高二数学 双曲线综合训练题.doc

高二数学 双曲线综合训练题.doc

双曲线综合训练题
1. 在双曲线113
122
2=-x y 的一支上有三个点),(11y x A 、)6,(2x B 、),(33y x C 与焦点)5,0(F 的距离成等差数列.(1)求31y y +;(2)求证线段AC 的垂直平分线经过某个定点,并求出定点的坐标.
2. 已知双曲线122
22=-b
y a x 的离心率21+>e ,左、右焦点分别为1F 、2F ,左准线为l ,能否在双曲线的左支上找到一点P ,使得1PF 是P 到l 的距离d 与2PF 的等比中项?
3. 直线1+=kx y 与双曲线12
2=-y x 的左支相交于A ,B 两点,设过点)0,2(-和AB 中点的直线l 在y 轴上的截距为b ,求b 的取值范围.
4.已知双曲线S 的两条渐近线过坐标原点,且与以)0,2(A 为圆心,1为半径的圆相切,双曲线S 的一个顶点'A 和A 关于直线x y =对称,设直线l 过点A ,斜率为k .(1)求双曲线S 的方程;(2)当1=k 时,在双曲线S 的上支求点B ,使其与直线l 的距离为2;
5. 如下图,给出定点)0,(a A )0(>a 和直线1-=x l :,B 是直线l 上的动点,BOA ∠的角平分线交AB 于C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.
6. 已知双曲线C 的实轴在直线2=x 上,由点)4,4(-A 发出的三束光线射到x 轴上的点P 、Q 及坐标原点O 被x 轴反射,反射线恰好分别通过双曲线的左、右焦点1F 、2F 和双曲线的中心M .若4=PQ ,过右焦点的反射光线与右准线交点的纵坐标为9
8,求双曲线C 的方程和入射光线AP 、AQ 所在直线的方程.。

高二数学双曲线练习题及答案

高二数学双曲线练习题及答案

高二数学双曲线练习题及答案下面是一份高二数学双曲线练习题及答案的文章,请你仔细阅读:高二数学双曲线练习题及答案双曲线是数学中重要的曲线之一,在高二数学学习中也占有重要地位。

为了帮助同学们更好地掌握双曲线知识,我们提供一些练习题以及答案,供同学们进行巩固和练习。

题目一:已知双曲线C的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,焦点F在y轴上,顶点坐标为(0, a),离心率为 $\frac{1}{\sqrt{2}}$,求双曲线C的方程。

答案一:由双曲线的性质可知,焦点到顶点的距离与焦点到曲线上一点的距离之比等于离心率。

设F的坐标为(0, c),则离心率为:$\frac{CF}{Ca}=\frac{1}{\sqrt{2}}$由焦点的坐标可得c=a(1/√2)由离心率的定义可得:$\sqrt{a^2-c^2}=\frac{a}{\sqrt{2}}$解得a^2=4c^2。

将焦点的坐标带入,得到方程:$\frac{x^2}{a^2}-\frac{y^2}{4c^2}=1$题目二:已知双曲线C的一支渐近线方程为y=3x-2,焦点的坐标为(1,0),求双曲线C的方程。

答案二:由双曲线的性质可得,双曲线的渐近线的斜率为圆心到焦点连线的斜率。

设焦点坐标为(F, 0),则斜率为:k = tan⁡α,其中α为双曲线的倾斜角又由渐近线y=3x-2可得,圆心到焦点连线的斜率为3因此,k=3=tan⁡α,则α为60度,倾斜角为60度。

由焦点坐标可知,焦点在(x1, y1)上,即(1,0)由双曲线的方程性质可得,双曲线的公式为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$根据双曲线标准方程,我们可以将双曲线方程改写为:$\frac{(y-y1)^2}{a^2}-\frac{(x-x1)^2}{b^2}=1$代入焦点坐标(1,0)得到:$\frac{y^2}{a^2}-\frac{(x-1)^2}{b^2}=1$将双曲线的倾斜角代入,可得:$\frac{y^2}{a^2}-\frac{(x-1)^2}{b^2}-\frac{(y-x)^2}{a^2}=1$化简得:$\frac{2x^2+2xy+2x+2y^2-4y}{a^2}=0$这样得到了双曲线C的方程。

高二数学练习题双曲线

高二数学练习题双曲线

高二数学练习题双曲线高二数学练习题:双曲线一、选择题1. 双曲线的标准方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = -1C. x^2 - y^2 = 1D. x^2 - y^2 = -12. 双曲线的离心率e满足的条件是:A. e > 1B. e < 1C. e = 1D. e ≥ 13. 双曲线的渐近线的斜率是:A. 1B. -1C. 0D. 不存在斜率4. 双曲线的渐近线方程是:A. y = xB. y = -xC. y = 0D. y = ±(x/a)5. 双曲线的焦点F1和F2到直线2x + y = 0的距离之和为6,焦点到直线的距离之差为4,则双曲线的离心率e为:A. 1B. 2C. 3D. 4二、计算题1. 求双曲线 x^2/9 - y^2/4 = 1 的离心率和焦点坐标。

2. 已知双曲线的焦点是 (4, 0) 和 (-4, 0),离心率为 2/3,求该双曲线的标准方程。

3. 设双曲线的离心率为 3/2,焦点到直线 y = 2x 的距离为 5/2,求该双曲线的方程。

4. 已知双曲线的渐近线方程为 y = x + 1 和 y = -x - 1,求该双曲线的标准方程。

5. 求双曲线 4x^2 - 9y^2 + 16x - 54y + 61 = 0 的中心坐标和离心率。

三、解答题1. 证明:对于双曲线,其任意点到两个焦点的距离之差等于该点到两个渐近线的距离之差。

2. 若直线 y = 2x - 3 与双曲线 x^2/a^2 - y^2/b^2 = 1 相交于两个不同的点,求双曲线的离心率。

3. 双曲线 y^2/a^2 - x^2/b^2 = 1 的离心率为 e,证明该双曲线的焦点到原点的距离为 ae。

4. 已知双曲线的中心为原点,离心率为 2,焦点在第一、三象限,且与 x 轴的交点为 (5, 0),求该双曲线的标准方程。

5. 求过点 (2, -3) 的双曲线,且其两个焦点分别在 x 轴正半轴和 y 轴负半轴上。

高二数学双曲线试题答案及解析

高二数学双曲线试题答案及解析

高二数学双曲线试题答案及解析1.双曲线的渐近线方程是A.B.C.D.【答案】A【解析】因为双曲线的方程为,令,所以渐近线方程是.【考点】双曲线的渐近线方程.2.双曲线的虚轴长等于( )A.B.-2t C.D.4【答案】C【解析】由于双曲线,所以其虚轴长,故选C.【考点】双曲线的标准方程.3.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.4.已知、是双曲线(,)的左右两个焦点,过点作垂直于轴的直线与双曲线的两条渐近线分别交于,两点,是锐角三角形,则该双曲线的离心率的取值范围是()A.B.C.D.【答案】B是锐【解析】根据题意,易得,由题设条件可知为等腰三角形,2角三角形,只要为锐角,即即可;所以有,即解出故选B【考点】双曲线的简单性质5.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于()A.2B.18C.2或18D.16【答案】C【解析】整理准线方程得,∴,a=4,∴=2a=8或=2a=8,∴=2或18,故选C..【考点】双曲线的简单性质;双曲线的应用.6.双曲线的渐近线方程为( )A.B.C.D.【答案】C【解析】令,解得【考点】双曲线渐近线的求法.7.如图,动点到两定点、构成,且,设动点的轨迹为。

(1)求轨迹的方程;(2)设直线与轴交于点,与轨迹相交于点,且,求的取值范围。

【答案】(1)(2)【解析】(1)求动点轨迹方程,一般有四步.第一步,设所求动点的坐标,第二步,将条件转化为坐标表示,本题,两边取正切,转化为斜率关系,第三步,化简关系式为常见方程形式,第四步,根据方程表示图像,去掉不满足的部分.(2)研究取值范围,首先将表示为函数关系式.因为等于,所以先求出,从而有,利用直线与双曲线有两个交点这一限制条件,得到m>1,且m2,这作为所求函数定义域,求出值域即为的取值范围是试题解析:解(1)设M的坐标为(x,y),显然有x>0,.当∠MBA=90°时,点M的坐标为(2,, ±3)当∠MBA≠90°时;x≠2.由∠MBA=2∠MAB,有tan∠MBA=,即化简得:3x2-y2-3=0,而又经过(2,,±3)综上可知,轨迹C 的方程为3x2-y2-3=0(x>1) 5分 (2)由方程消去y ,可得。

整理高二数学文科双曲线测试题

整理高二数学文科双曲线测试题

高二年级数学双曲线单元检测题整理表姓名:职业工种:申请级别:受理机构:填报日期:A4打印/ 修订/ 内容可编辑高二年级数学双曲线单元检测题一、选择题(本大题共12小题,每小题5分,共60分.)1.双曲线的焦距为()A.3B.4C.3D.42.“双曲线的方程为”是“双曲线的准线方程为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.已知双曲线的一个顶点到它的一条渐近线的距离为,则()A.1B.2C.3D.44.双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为()A.B.C.D.5.与曲线x224+y249=1共焦点,而与曲线x236−y264=1共渐近线的双曲线方程为()A.y216−x29=1B.x216−y29=1C.y29−x216=1D.x29−y216=16.已知双曲线(a>0,b>0)的一条渐近线为y=kx(k>0),离心率e=,则双曲线方程为()A.-=1B.C.D.7.如果双曲线上一点P到双曲线右焦点的距离是2,那么点P到y轴的距离是A.4√63B.2√63C.2√6D.2√38.(理)若双曲线(a>0,b>0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( )A.(1,2)B.(2,+)C.(1,5)D.(5,+)(文)双曲线x 2a2−y2b2=1(a>0,b>0)的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A.B.C.D.9.已知双曲线的左右焦点分别为,为的右支上一点,且,则的面积等于( )A.B.C.D.10.连接双曲线x2a2−y2b2=1与y2b2−x2a2=1的四个顶点构成的四边形的面积为S1,连接它们的的四个焦点构成的四边形的面积为S2,则S1:S2的最大值是A.2B.1C.12D.1411.设椭圆C1的离心率为513,焦点在X轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为()A.x242−y232=1B.x2132−y252=1C.x232−y242=1D.x2132−y2122=112.为双曲线的右支上一点,,分别是圆和上的点,则的最大值为()A.B.C.D.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13.若曲线表示双曲线,则14.已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为.15.过双曲线的右顶点为A,右焦点为F。

双曲线练习题 (文科)

双曲线练习题 (文科)

高二(文科)双曲线周测试题姓名____________学号_____ 班别_______一.选择题:每小题5分,共50分1、双曲线221102x y -=的焦距为2. 双曲线2214x y k-=的离心率e ∈(1, 2),则k 的取值范围是 A .(0, 6) B . (3, 12) C . (1, 3) D . (0, 12) 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4. “ab<0”是“方程ax 2+by 2=c 表示双曲线”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.双曲线221169x y -=上的点P 到点(5, 0)的距离是15则点P 到点(-5, 0)的距离是 A.7 B.23 C.5或25 D.7或236.双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]7 .椭圆222212x y m n +=与双曲线222212x y m n-=有公共焦点,则椭圆的离心率是AB C D8.已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为(A )22x a -224y a=1(B)222215x y a a -= (C)222214x y b b -= (D)222215x y b b-=9.设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112132222=-y x10、已知双曲线22:1916x y C -=的左右焦点分别为F 1、F 2 ,P 为C 的右支上一点,且||||212PF F F =,则△PF 1F 2 的面积等于 (A )24 (B )36 (C )48 (D )96二填空题: 每小题5分,共25分11.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 。

高二数学双曲线试题(有答案)

高二数学双曲线试题(有答案)

高二数学双曲线试题一:选择题1.双曲线()2210x y mn m n -=≠的离心率为2,有一个焦点与椭圆2211625x y +=的焦点重合,则m 的值为( ) A . B .C .D .【答案】A2.以112422-=-y x 的焦点为顶点,顶点为焦点的椭圆方程为( ) A .1121622=+y x B .1161222=+y x C .141622=+y x D .116422=+y x 【答案】A3.设12F F 、分别是双曲线2213y x -=的两个焦点,P 是该双曲线上的一点,且123||4||PF PF =,则12PF F ∆的面积等于( ) (A )45(B )315(C )53(D )210【答案】B4.已知双曲线的中心在坐标原点,两个焦点为F 1(﹣,0),F 2(,0),点P 是此双曲线上的一点,且•=0,||•||=4,该双曲线的标准方程是( ) A .B .C .D .解:设双曲线的方程为:﹣=1,∵两焦点F 1(﹣,0),F 2(,0),且•=0,∴⊥,∴△F 1PF 2为直角三角形,∠P 为直角; ∴+===28;①又点P 是此双曲线上的一点, ∴||PF 1|﹣|PF 2||=2a ,∴+﹣2|PF1|•|PF2|=4a2,由||•||=4得|PF1|•|PF2|=4,∴+﹣8=4a2,②由①②得:a2=5,又c2==7,∴b2=c2﹣a2=2.∴双曲线的方程为:﹣=1,故选C.5.已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.解:由已知条件易得直线l的斜率为k=k FN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.6.已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程是()A.x=±B.y=C.x=D.y=解:∵椭圆和双曲线有公共焦点∴3m2﹣5n2=2m2+3n2,整理得m2=8n2,∴=2双曲线的渐近线方程为y=±=±x故选D7.已知中心在原点,焦点在x轴上的双曲线的离心率,其焦点到渐近线的距离为1,则此双曲线的方程为()A.﹣y2=1 B.﹣=1C.﹣y2=1D.x2﹣y2=1解:设双曲线的方程为,渐近线方程为∵双曲线的离心率,其焦点到渐近线的距离为1,∴,=1∴b=1,a=∴双曲线的方程为﹣y2=1故选A.8.已知抛物线y2=8x的准线与双曲线相交于A,B两点,点F是抛物线的焦点,若双曲线的一条渐近线方程是,且△FAB是直角三角形,则双曲线的标准方程是()A.B.C.D.解:依题意知抛物线的准线x=﹣2.代入双曲线方程得y=±.双曲线的一条渐近线方程是,∴则不妨设A(﹣2,),F(2,0)∵△FAB 是等腰直角三角形, ∴=4,解得:a=,b=4∴c 2=a 2+b 2=2+16=20, ∴双曲线的标准方程是故选C9..已知椭圆2222:1(0)x y C a b a b +=>>的离心学率为3.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为(A )22182x y += (B )221126x y += (C )221164x y += (D )221205x y += 【答案】D【解析】因为椭圆的离心率为23,所以23==a c e ,2243a c =,222243b a a c -==,所以2241a b =,即224b a =,双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x ,所以b x b x 52,5422±==,2254b y =,b y 52±=,则第一象限的交点坐标为)52,52(b b ,所以四边形的面积为16516525242==⨯⨯b b b ,所以52=b ,所以椭圆方程为152022=+y x ,选D. 10.设F 1,F 2分别是双曲线的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,则双曲线离心率为( ) A . B . C .D .解:设F 1,F 2分别是双曲线的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|, 设|AF 2|=1,|AF 1|=3,双曲线中2a=|AF 1|﹣|AF 2|=2,,∴离心率,故选B .11.设双曲线的﹣个焦点为F ;虚轴的﹣个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A . B . C . D .解:设双曲线方程为,则F (c ,0),B (0,b )直线FB :bx+cy ﹣bc=0与渐近线y=垂直,所以,即b 2=ac所以c 2﹣a 2=ac ,即e 2﹣e ﹣1=0, 所以或(舍去)12.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( C )A.33(,)-B.(3,3)-C.33[,]-D.[3,3]-【答案】C13.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.23 B 62 D. 3【答案】B【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b y a x b x cb y 得点Q ),(a c bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,b y a x b x cb y 得点P ),(ac bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b ca xbc b c y --=-,令0=y ,得)1(22b ac x +=,所以c ba c 3)1(22=+,所以2222222a cb a -==,即2223c a =,所以26=e 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学【文科】双曲线周练卷一.选择题1.(2014·长春高二检测)双曲线-=1的焦距为( )A. B.2 C.4 D.82.“mn<0”是“方程mx2+ny2=1表示焦点在x轴上的双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若方程-=1表示双曲线,则实数m的取值范围是( )A.m≠1且m≠-3B.m>1C.m<-3或m>1D.-3<m<14.(2014·南昌高二检测)设双曲线-=1上的点P到点(4,0)的距离为10,则点P到点(-4,0)的距离为( )A.16B.16+2C.10+2或10-2D.16或45.(2014·济宁高二检测)已知F1,F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为( )A. B. C. D.6.下列曲线中离心率为的是( )A.-=1B.-=1C.-=1D.-=17.已知双曲线-=1的右焦点为(3,0),则该双曲线的离心率等于( )A. B. C. D.8.(2014·兰州高二检测)已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x+2y-3=0,则该双曲线的离心率为( )A. 5或B.或C.或D. 5或9.(2014·温州高二检测)双曲线x2-y2=1的渐近线方程是( )A.x=±1B.y=±xC.y=±xD.y=±x10.(2014·太原高二检测)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )A.-=1B.-=1C.-=1D.-=111.(2013·福建高考)双曲线-y2=1的顶点到渐近线的距离等于( )A. B. C. D.12.(2014·兰州高二检测)直线y=kx+2与双曲线x2-y2=2有且只有一个交点,那么k的值是( )A.k=±1B.k=±C.k=±1或k=±D.k=±13.过点A(4,3)作直线l,如果它与双曲线-=1只有一个公共点,则直线l的条数为( )A.1B.2C.3D.414.(2014·重庆高二检测)已知双曲线x 2-y 2=2,过定点P(2,0)作直线l 与双曲线有且只有一个交点,则这样的直线l 的条数为( ) A.1 B.2 C.3 D.415.过双曲线x 2-=1的右焦点作直线与双曲线交于A,B 两点,若|AB|=16,这样的直线有( )A.一条B.两条C.三条D.四条 16.(2014·长春高二检测)已知双曲线E 的中心在原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A,B 两点,且AB 中点为N(-12,-15),则E 的方程为( )A. -=1 B. -=1 C.-=1 D. - =117.(2014·郑州高二检测)双曲线-=1(a>0,b>0)的左、右焦点分别是F 1,F 2,过F 1作倾斜角为30°的直线交双曲线右支于M 点,若MF 2⊥x 轴,则双曲线的离心率为( )A. B. C.D.18.F 1,F 2是双曲线-y 2=1的两个焦点,过右焦点F 2作倾斜角为π的弦AB,则△F 1AB 的面积为( ) A.B.2C.D.二、填空题19.已知点F 1,F 2分别是双曲线-=1(a>0)的左、右焦点,P 是该双曲线上的一点,且|PF 1|=2|PF 2|=16,则△PF 1F 2的周长是 .20.(2014·唐山高二检测)已知P 是双曲线 -=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为 .21.(2014·双鸭山高二检测)已知双曲线-=1(a>0,b>0)的两个焦点分别为F 1(-2,0),F 2(2,0),点P(3, )在双曲线上,则双曲线方程为 ______________.22.(2014·黄石高二检测)已知F 是双曲线 -=1的左焦点,A(1,4),点P 是双曲线右支上的动点,则|PF|+|PA|的最小值是 . 23. (2014·白山高二检测)设双曲线-=1(a>0)的渐近线方程为3x±2y=0,则该双曲线的离心率为 .24.过点A(6,1)作直线与双曲线x 2-4y 2=16相交于两点B,C,且A 为线段BC 的中点,则直线的方程为 . 三、解答题25.如图,已知双曲线中c=2a,F 1,F 2为左、右焦点,P 是双曲线上的点,∠F 1PF 2=60°, =12 . 求双曲线的标准方程.26.焦点在x 轴上的双曲线,它的两条渐近线的夹角为π,焦距为12,求此双曲线的方程及离心率.高二数学【文科】双曲线周练卷答案1.【解析】选D.由方程-=1,得a2=9,b2=7,所以c2=a2+b2=16,即c=4,所以焦距2c=8.2.【解析】选B.方程mx2+ny2=1表示焦点在x轴上的双曲线,则有m>0,n<0,故mn<0,若m·n<0,则m>0,n<0或m<0,n>0.故选B.3.【解析】选C.由(m-1)(m+3)>0,得m>1或m<-3.4.【解析】选C.由-=1,得a2=7,b2=9,所以c2=a2+b2=16,c=4,a=,所以F2(4,0)和F1(-4,0)为双曲线的焦点.由||PF1|-|PF2||=2a=2,故|PF1|=10+2或10-2.5.【解析】选B.因为||PF1|-|PF2||=2,所以|PF1|2-2|PF1|·|PF2|+|PF2|2=4,所以|PF1|2+|PF2|2=4+2|PF1|·|PF2|,由余弦定理知|PF1|2+|PF2|2-|F1F2|2=2|PF1|·|PF2|cos 60°,得|PF1|2+|PF2|2=|F1F2|2+|PF1|·|PF2|,又a=1,b=1,所以c==,所以|F1F2|=2c=2,所以4+2|PF1||PF2|=|PF1|·|PF2|+8,所以|PF1|·|PF2|=4.设P到x轴的距离为|y0|,=|PF1||PF2|sin 60°=|F1F2|·|y0|,所以×4×=×2|y0|,所以y0==.6.【解析】选B.选项B中,a2=4,b2=2,所以c2=a2+b2=6,所以a=2,c=,故e==.7.【解析】选C.由a2+5=32,得a=2,所以e==.8.【解析】选B.因为双曲线的一条渐近线平行于直线x+2y-3=0,所以=-或=-,所以e==或.9.【解析】选C.由双曲线x2-y2=1,得a2=1,b2=1,即a=1,b=1,所以渐近线方程为y=±x=±x.10.【解析】选A.设双曲线的标准方程为-=1(a>0,b>0),由所以a=2,又b2=c2-a2=12,所以双曲线的标准方程为-=1.11.【解析】选C.双曲线的右顶点为(2,0),渐近线方程为x-2y=0,则顶点到渐近线的距离为=.12.【解析】选 C.联立直线y=kx+2与双曲线x2-y2=2,消元,得:(1-k2)x2-4kx-6=0,当1-k2=0时,k=±1,此时方程只有一解;当1-k2≠0时,要满足题意,Δ=16k2+24(1-k2)=0,即k=±.综上知:k的值是k=±1或k=±.13.【解析】选C.把点A代入双曲线方程可知,点A在双曲线上,所以过点A且与双曲线只有一个公共点的直线有3条,其中一条为切线,另两条分别平行于渐近线.故直线l的条数为3.14.【解析】选B.因为点P(2,0)在双曲线含焦点的区域内,故只有当直线l与渐近线平行时才会与双曲线只有一个交点,故这样的直线只有两条.15.【解析】选C.过右焦点且垂直于x轴的弦长为16,因为|AB|=16,所以当l与双曲线的两交点都在右支上时只有一条.又因为实轴长为2,16>2,所以当l与双曲线的两交点在左、右两支上时应该有两条,共三条.16.【解析】选B.由已知条件易得直线l的斜率k==1,设双曲线方程为-=1(a>0,b>0),A(x1,y1),B(x2,y2),则-=1,-=1,两式相减并结合x1+x2=-24,y1+y2=-30得=,从而=1,又因为a2+b2=c2=9,故a2=4,b2=5,所以E的方程为-=1.17.【解析】选B.将x=c代入双曲线的方程得y=,即M,在△MF1F2中,tan30°=,即=,解得e==.18.【解析】选 B.由双曲线-y2=1,得a2=3,b2=1,c2=a2+b2=4,所以c=2,F1(-2,0),F2(2,0),直线AB:y=x-2.由得2x2-12x+15=0.设A(x1,y1),B(x2,y2),则x1+x2=6,x1·x2=,所以|AB|=|x1-x2|=·=2.又F1到直线AB:x-y-2=0的距离为:d==2,所以=×d×|AB|=×2×2=2.19.【解析】因为|PF1|=2|PF2|=16,所以|PF1|-|PF2|=16-8=8=2a,所以a=4.又因为b2=9,所以c2=25,所以2c=10.所以△PF1F2的周长为|PF1|+|PF2|+|F1F2|=16+8+10=34.答案:3420.【解析】由条件知a2=64,即a=8,c2=b2+a2=100,c=10,所以双曲线右支上的点到左焦点F1的最短距离a+c=18>17,故点P在双曲线左支上.所以|PF2|-|PF1|=2a=16,即|PF2|=16+|PF1|=33.答案:3321.【解析】|PF1|==4,|PF2|==2,|PF1|-|PF2|=2=2a,所以a=,又c=2,故b2=c2-a2=2,所以双曲线的方程为-=1.答案:-=122.【解析】由双曲线-=1,得c=4,所以左焦点F(-4,0),右焦点F′(4,0),由双曲线的定义得:|PF|-|PF′|=2a=4,所以|PF|+|PA|=4+|PF′|+|PA|≥4+|AF′|=4+=9,此时P 为AF′与双曲线的交点,即|PF|+|PA|的最小值为9.答案:923.【解析】因为双曲线的焦点在x轴上,且渐近线方程为3x±2y=0,所以=,所以该双曲线的离心率e==.答案:24.【解析】依题意可得直线的斜率存在,设为k(k≠0),则直线的方程为y-1=k(x-6).设B(x1,y1),C(x2,y2),因为点A(6,1)为线段BC的中点,所以x1+x2=12,y1+y2=2.因为点B,C在双曲线x2-4y2=16上,所以由②-①得:(x2-x1)(x2+x1)-4(y2-y1)(y2+y1)=0,所以k====,所以经检验,直线的方程为y-1=(x-6),即3x-2y-16=0.答案:3x-2y-16=025.【解析】由题意可知双曲线的标准方程为-=1.由于||PF1|-|PF2||=2a,在△F1PF2中,由余弦定理得cos60°==,所以|PF1|·|PF2|=4(c2-a2)=4b2,所以=|PF1|·|PF2|·sin60°=2b2·=b2,从而有b2=12,所以b2=12,c=2a,结合c2=a2+b2,得a2=4. 所以双曲线的标准方程为-=1.26.【解析】由已知可设双曲线的方程为-=1(a>0,b>0),所以两条渐近线为y=±x.因为两条渐近线的夹角为π,故分两种情况,即y=x的倾斜角为π或π.当y=x的倾斜角为π时,所以=tanπ=,所以=,即a2=3b2.又2c=12,所以c=6.由c2=a2+b2,得b2=9,a2=27. 所以双曲线方程为-=1,e===.当y=x的倾斜角为π时,所以=tanπ=,所以b2=3a2.又2c=12,所以c=6.由c2=a2+b2,得a2=9,b2=27.所以双曲线方程为-=1,e===2.。

相关文档
最新文档