算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历
算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历实现

深度优先遍历过程

1、图的遍历

和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。它是许多图的算法的基础。

深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。它们对无向图和有向图均适用。

注意:

以下假定遍历过程中访问顶点的操作是简单地输出顶点。

2、布尔向量visited[0..n-1]的设置

图中任一顶点都可能和其它顶点相邻接。在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。为了避免重复访问同一个顶点,必须记住每个已访问的顶点。为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。

--------------------------

深度优先遍历(Depth-First Traversal)

1.图的深度优先遍历的递归定义

假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。

2、深度优先搜索的过程

设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的

边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到

顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。此时,若x不是源点,则回溯到在x之前被访问过的顶点;否则图中

所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若图G是连

通图,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的

搜索过程。

3、深度优先遍历的递归算法

(1)深度优先遍历算法

typedef enum{FALSE,TRUE}Boolean;//FALSE为0,TRUE为1

Boolean visited[MaxVertexNum]; //访问标志向量是全局量

void DFSTraverse(ALGraph *G)

{ //深度优先遍历以邻接表表示的图G,而以邻接矩阵表示G时,算法完全与此相同

int i;

for(i=0;in;i++)

visited[i]=FALSE; //标志向量初始化

for(i=0;in;i++)

if(!visited[i]) //vi未访问过

DFS(G,i); //以vi为源点开始DFS搜索

}//DFSTraverse

(2)邻接表表示的深度优先搜索算法

void DFS(ALGraph *G,int i){

//以vi为出发点对邻接表表示的图G进行深度优先搜索

EdgeNode *p;

printf("visit vertex:%c",G->adjlist[i].vertex);//访问顶点vi

visited[i]=TRUE; //标记vi已访问

p=G->adjlist[i].firstedge; //取vi边表的头指针

while(p){//依次搜索vi的邻接点vj,这里j=p->adjvex

if (!visited[p->adjvex])//若vi尚未被访问

DFS(G,p->adjvex);//则以Vj为出发点向纵深搜索

p=p->next; //找vi的下一邻接点

}

}//DFS

(3)邻接矩阵表示的深度优先搜索算法

void DFSM(MGraph *G,int i)

{ //以vi为出发点对邻接矩阵表示的图G进行DFS搜索,设邻接矩阵是0,l矩阵

int j;

printf("visit vertex:%c",G->vexs[i]);//访问顶点vi

visited[i]=TRUE;

for(j=0;jn;j++) //依次搜索vi的邻接点

if(G->edges[i][j]==1&&!visited[j])

DFSM(G,j)//(vi,vj)∈E,且vj未访问过,故vj为新出发点

}//DFSM

注意:

遍历操作不会修改图G的内容,故上述算法中可将G定义为ALGraph或MGraph 类型的参数,而不一定要定义为ALGraph和MGraph的指针类型。但基于效率上的考虑,选择指针类型的参数为宜。

4、深度优先遍历序列

对图进行深度优先遍历时,按访问顶点的先后次序得到的顶点序列称为该图的深度优先遍历序列,或简称为DFS序列。

(1)一个图的DFS序列不一定惟一

当从某顶点x出发搜索时,若x的邻接点有多个尚未访问过,则我们可任选一个访问之。

(2)源点和存储结构的内容均已确定的图的DFS序列惟一

①邻接矩阵表示的图确定源点后,DFS序列惟一

DFSM算法中,当从vi出发搜索时,是在邻接矩阵的第i行上从左至右选择下一个未曾访问过的邻接点作为新的出发点,若这样的邻接点多于一个,则选中的总是序号较小的那一个。

②只有给出了邻接表的内容及初始出发点,才能惟一确定其DFS序列

邻接表作为给定图的存储结构时,其表示不惟一。因为邻接表上边表里的邻接点域的内容与建表时的输入次序相关。

因此,只有给出了邻接表的内容及初始出发点,才能惟一确定其DFS序列。

3)栈在深度优先遍历算法中的作用

深度优先遍历过程中,后访问的顶点其邻接点被先访问,故在递归调用过程中使用栈(系统运行时刻栈)来保存已访问的顶点。

5、算法分析

对于具有n个顶点和e条边的无向图或有向图,遍历算法DFSTraverse对图中每顶点至多调用一次DFS或DFSM。从DFSTraverse中调用DFS(或DFSM)及DFS(或

DFSM)内部递归调用自己的总次数为n。

当访问某顶点vi时,DFS(或DFSM)的时间主要耗费在从该顶点出发搜索它的所有邻接点上。用邻接矩阵表示图时,其搜索时间为O(n);用邻接表表示图时,需搜索第i

个边表上的所有结点。因此,对所有n个顶点访问,在邻接矩阵上共需检查n2个矩阵元素,在邻接表上需将边表中所有O(e)个结点检查一遍。

所以,DFSTraverse的时间复杂度为O(n2) (调用DFSM)或0(n+e)(调用DFS)。---------------------------------------------------------------------------

1、广度优先遍历的递归定义

设图G的初态是所有顶点均未访问过。在G中任选一顶点v为源点,则广度优先

遍历可以定义为:首先访问出发点v,接着依次访问v的所有邻接点w1,w2,…,wt,然后再依次访问与wl,w2,…,wt邻接的所有未曾访问过的顶点。依此类推,直至图中所有和源点v有路径相通的顶点都已访问到为止。此时从v开始的搜索过程结束。

若G是连通图,则遍历完成;否则,在图C中另选一个尚未访问的顶点作为新源

点继续上述的搜索过程,直至G中所有顶点均已被访问为止。

广度优先遍历类似于树的按层次遍历。采用的搜索方法的特点是尽可能先对横向进行搜索,故称其为广度优先搜索(Breadth-FirstSearch)。相应的遍历也就自然地称为广度优先遍历。

2、广度优先搜索过程

在广度优先搜索过程中,设x和y是两个相继要被访问的未访问过的顶点。它们的

邻接点分别记为x1,x2,…,xs和y1,y2,…,yt。

为确保先访问的顶点其邻接点亦先被访问,在搜索过程中使用FIFO队列来保存已

访问过的顶点。当访问x和y时,这两个顶点相继入队。此后,当x和y相继出队时,我们分别从x和y出发搜索其邻接点x1,x2,…,xs和y1,y2,…,yt,对其中未访

者进行访问并将其人队。这种方法是将每个已访问的顶点人队,故保证了每个顶点至

多只有一次人队。

3、广度优先搜索算法

(1)邻接表表示图的广度优先搜索算法

void BFS(ALGraph*G,int k)

{// 以vk为源点对用邻接表表示的图G进行广度优先搜索

int i;

CirQueue Q; //须将队列定义中DataType改为int

EdgeNode *p;

InitQueue(&Q);//队列初始化

//访问源点vk

printf("visit vertex:%e",G->adjlist[k].vertex);

visited[k]=TRUE;

EnQueue(&Q,k);//vk已访问,将其人队。(实际上是将其序号人队) while(!QueueEmpty(&Q)){//队非空则执行

i=DeQueue(&Q); //相当于vi出队

p=G->adjlist[i].firstedge; //取vi的边表头指针

while(p){//依次搜索vi的邻接点vj(令p->adjvex=j)

if(!visited[p->adivex]){ //若vj未访问过

printf("visitvertex:%c",C->adjlistlp->adjvex].vertex); //访问vj visited[p->adjvex]=TRUE;

EnQueue(&Q,p->adjvex);//访问过的vj人队

}//endif

p=p->next;//找vi的下一邻接点

}//endwhile

}//endwhile

}//end of BFS

(2)邻接矩阵表示的图的广度优先搜索算法

void BFSM(MGraph *G,int k)

{以vk为源点对用邻接矩阵表示的图G进行广度优先搜索

int i,j;

CirQueue Q;

InitQueue(&Q);

printf("visit vertex:%c",G->vexs[k]); //访问源点vk

visited[k]=TRUE;

EnQueue(&Q,k);

while(!QueueEmpty(&Q)){

i=DeQueue(&Q); //vi出队

for(j=0;jn;j++)//依次搜索vi的邻接点vj

if(G->edges[i][j]==1&&!visited[j]){//vi未访问

printf("visit vertex:%c",G->vexs[j]);//访问vi

visited[j]=TRUE;

EnQueue(&Q,j);//访问过的vi人队

}

}//endwhile

}//BFSM

(3)广度优先遍历算法

类似于DFSTraverse。

4、图的广度优先遍历序列

广度优先遍历图所得的顶点序列,定义为图的广度优先遍历序列,简称BFS序列。(1)一个图的BFS序列不是惟一的

(2)给定了源点及图的存储结构时,算法BFS和BFSM所给出BFS序列就是惟一的。

5、算法分析

对于具有n个顶点和e条边的无向图或有向图,每个顶点均入队一次。广度优先遍历(BFSTraverse)图的时间复杂度和DFSTraverse算法相同。

当图是连通图时,BFSTraverse算法只需调用一次BFS或BFSM即可完成遍历操作,此时BFS和BFSM的时间复杂度分别为O(n+e)和0(n2)。来源:

(https://www.360docs.net/doc/619096619.html,/s/blog_625f01000100ffmz.html) - 深度优先搜索遍历与广度

优先搜索遍历_christina_新浪博客

-------------------------- ------------------------------

//深度优先遍历算法实现:

//返回顶点v在顶点向量中的位置

int LocateVex(ALGraph G, char v)

{

int i;

for(i = 0; v != G.vertices[i].data && i < G.vexnum; i++)

;

if(i >= G.vexnum)

return -1;

return i;

}

//构造邻接链表

Status CreateDN(ALGraph &G)

{

int i,j;

ArcNode *s;

printf("输入有向图顶点数: ");

scanf("%d", &G.vexnum);

printf("输入有向图边数: ");

scanf("%d", &G.arcnum);

getchar();

for(i = 0; i < G.vexnum; i++)

{

printf("输入第%d个顶点信息:", i+1);

scanf("%c", &G.vertices[i]); //构造顶点向量

G.vertices[i].firstarc = NULL;

getchar();

}

char v1, v2;

for(int k = 0; k < G.arcnum; k++)

{

printf("输入第 %d 条边依附的顶点v1: ", k+1);

scanf("%c", &v1);

getchar();

printf("输入第 %d 条边依附的顶点v2: ", k+1);

scanf("%c", &v2);

getchar();

int i = LocateVex(G, v1);

int j = LocateVex(G, v2); //确定v1 , v2在G中的位置 s = (ArcNode*) malloc (sizeof(ArcNode));

s->adjvex = j; //该边所指向的顶点的位置为j

s->nextarc = G.vertices[i].firstarc;

G.vertices[i].firstarc =s;

}

return OK;

}

Status PrintAdjList(ALGraph &G)

{

int i;

ArcNode *p;

printf("%4s%6s%12s\n", "编号", "顶点", "相邻边编号");

for(i = 0; i < G.vexnum; i++)

{

printf("%4d%6c", i, G.vertices[i].data);

for(p = G.vertices[i].firstarc; p; p = p->nextarc)

printf("%4d", p->adjvex);

printf("\n");

}

return OK;

}

void DFS(ALGraph G, int v, int *visited)

{

int w;

ArcNode *s;

visited[v] = 1;

printf("%c ->", G.vertices[v].data);

s = G.vertices[v].firstarc;

while(s != NULL)

{

w = s->adjvex;

if(visited[w] == 0)

DFS(G, w, visited);

s = s->nextarc;

}

}

//对图G做深度优先遍历

Status DFSTraverse(ALGraph G)

{

int v;

int visited[MAX_VERTEX_NUM];

for(v = 0; v < G.vexnum; ++v)

visited[v] = 0; //初始化visited[v]

for(v = 0; v < G.vexnum; ++v)

if(visited[v] == 0)

DFS(G, v, visited); //对未访问的顶点调用DFS() printf("完成\n");

return OK;

}

-------------------------------------- ----------------------------

广度优先遍历算法实现。

//返回顶点v在顶点向量中的位置

int LocateVex(ALGraph G, char v)

{

int i;

for(i = 0; v != G.vertices[i].data && i < G.vexnum; i++)

;

if(i >= G.vexnum)

return -1;

return i;

}

//构造无向图邻接链表

Status CreateUDN(ALGraph &G)

{

int i, j;

ArcNode *s, *t;

printf("输入有向图顶点数: ");

scanf("%d", &G.vexnum);

printf("输入有向图边数: ");

scanf("%d", &G.arcnum);

getchar();

for(int i = 0; i < G.vexnum; i++)

{

printf("输入第%d个顶点信息:", i+1);

scanf("%c", &G.vertices[i]); //构造顶点向量

G.vertices[i].firstarc = NULL;

getchar();

}

char v1, v2;

for(int k = 0; k < G.arcnum; k++)

{

printf("输入第 %d 条边依附的顶点v1: ", k+1);

scanf("%c", &v1);

getchar();

printf("输入第 %d 条边依附的顶点v2: ", k+1);

scanf("%c", &v2);

getchar();

int i = LocateVex(G, v1);

int j = LocateVex(G, v2); //确定v1 , v2在G中的位置 s = (ArcNode*) malloc (sizeof(ArcNode));

t = (ArcNode*) malloc (sizeof(ArcNode));

s->adjvex = j; //该边所指向的顶点的位置为j

s->nextarc = G.vertices[i].firstarc;

G.vertices[i].firstarc =s;

t->adjvex = i; //该边所指向的顶点的位置为j

t->nextarc = G.vertices[j].firstarc;

G.vertices[j].firstarc =t;

}

return OK;

}

Status InitQueue(SqQueue &Q)

{

Q.base = (QElemType *) malloc (MAXQSIZE * sizeof(QElemType)); if(!Q.base)

{

printf("分配地址失败!");

return 0;

}

Q.front = Q.rear = 0;

return OK;

}

//已访问图顶点入队

Status EnQueue(SqQueue &Q, QElemType e)

{

if((Q.rear+1) % MAXQSIZE == Q.front) //队列已满

{

printf("队列已满!");

return 0;

}

Q.base[Q.rear] = e;

Q.rear = (Q.rear+1) % MAXQSIZE;

return OK;

}

//判断队列是否为空

Status QueueEmpty(SqQueue Q)

{

if(Q.front == Q.rear)

return OK;

else

return 0;

}

//辅助队列队头顶点出队

char DeQueue(SqQueue &Q)

{

QElemType e;

if(Q.front == Q.rear) //队列为空

{

printf("队列为空!");

return 0;

}

e = Q.base[Q.front];

Q.front = (Q.front+1) % MAXQSIZE;

return e;

}

Status PrintAdjList(ALGraph &G)

{

int i;

ArcNode *p;

printf("%4s%6s%12s\n", "编号", "顶点", "相邻边编号");

for(int i = 0; i < G.vexnum; i++)

{

printf("%4d%6c", i, G.vertices[i].data);

for(p = G.vertices[i].firstarc; p; p = p->nextarc)

printf("%4d", p->adjvex);

printf("\n");

}

return OK;

}

void DFS(ALGraph G, int v, int *visited)

{

int w;

ArcNode *s;

visited[v] = 1;

printf("%c ->", G.vertices[v].data);

s = G.vertices[v].firstarc;

while(s != NULL)

{

w = s->adjvex;

if(visited[w] == 0)

DFS(G, w, visited);

s = s->nextarc;

}

}

//对图G做广度优先遍历

Status BFSTraverse(ALGraph G)

{

int v, u, w;

int visited[MAX_VERTEX_NUM];

ArcNode *s;

char e;

SqQueue Q; //辅助队列

for(v = 0; v < G.vexnum; ++v)

visited[v] = 0; //初始化visited[v]

InitQueue(Q);

for(v = 0; v < G.vexnum; ++v)

if(visited[v] == 0) //尚未访问的顶点

{

visited[v] = 1;

printf("%c ->", G.vertices[v].data);

EnQueue(Q, G.vertices[v].data); //已访问顶点入队 while(!QueueEmpty(Q)) //辅助队列非空

{

e = DeQueue(Q); //返回辅助队列中的头结点

u = LocateVex(G, e);

s = (ArcNode *) malloc (sizeof(ArcNode));

s = G.vertices[u].firstarc;

while(s != NULL) //*顶点e还有邻接顶点

{

w = s->adjvex;

if(visited[w] == 0)

{

visited[w] = 1;

printf("%c ->", G.vertices[w].data); EnQueue(Q, G.vertices[w].data); }

s = s->nextarc;

}

}

}

printf("完成\n");

return OK;

}

图的深度广度优先遍历操作代码

一、实验目的 1.掌握图的各种存储结构,特别要熟练掌握邻接矩阵和邻接表存储结构; 2.遍历是图各种应用的算法的基础,要熟练掌握图的深度优先遍历和宽度优先遍历算法,复习栈和队列的应用; 3.掌握图的各种应用的算法:图的连通性、连通分量和最小生成树、拓扑排序、关键路径。 二、实验内容 实验内容1**图的遍历 [问题描述] 许多涉及图上操作的算法都是以图的遍历为基础的。写一个程序,演示在连通无向图上遍历全部顶点。 [基本要求] 建立图的邻接表的存储结构,实现无向图的深度优先遍历和广度优先遍历。以用户指定的顶点为起点,分别输出每种遍历下的顶点访问序列。 [实现提示] 设图的顶点不超过30个,每个顶点用一个编号表示(如果一个图有N个顶点,则它们的编号分别为1,2,…,N)。通过输入图的全部边输入一个图,每条边是两个顶点编号对,可以对边依附顶点编号的输入顺序作出限制(例如从小到大)。 [编程思路] 首先图的创建,采用邻接表建立,逆向插入到单链表中,特别注意无向是对称插入结点,且要把输入的字符在顶点数组中定位(LocateVex(Graph G,char *name),以便后来的遍历操作,深度遍历算法采用递归调用,其中最主要的是NextAdjVex(Graph G, int v, int w);FirstAdjVex ()函数的书写,依次递归下去,广度遍历用队列的辅助。 [程序代码] 头文件: #include #include #define MAX_VERTEX_NUM 30 #define MAX_QUEUE_NUMBER 30 #define OK 1 #define ERROR 0 #define INFEASIBLE -1

图的深度优先遍历算法课程设计报告

合肥学院 计算机科学与技术系 课程设计报告 2013~2014学年第二学期 课程数据结构与算法 课程设计名称图的深度优先遍历算法的实现 学生姓名陈琳 学号1204091022 专业班级软件工程 指导教师何立新 2014 年9 月 一:问题分析和任务定义 涉及到数据结构遍会涉及到对应存储方法的遍历问题。本次程序采用邻接表的存储方法,并且以深度优先实现遍历的过程得到其遍历序列。

深度优先遍历图的方法是,从图中某顶点v 出发: (1)访问顶点v ; (2)依次从v 的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v 有路径相通的顶点都被访问; (3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 二:数据结构的选择和概要设计 设计流程如图: 图1 设计流程 利用一维数组创建邻接表,同时还需要一个一维数组来存储顶点信息。之后利用创建的邻接表来创建图,最后用深度优先的方法来实现遍历。 图 2 原始图 1.从0开始,首先找到0的关联顶点3 2.由3出发,找到1;由1出发,没有关联的顶点。 3.回到3,从3出发,找到2;由2出发,没有关联的顶点。 4.回到4,出4出发,找到1,因为1已经被访问过了,所以不访问。

所以最后顺序是0,3,1,2,4 三:详细设计和编码 1.创建邻接表和图 void CreateALGraph (ALGraph* G) //建立邻接表函数. { int i,j,k,s; char y; EdgeNode* p; //工作指针. printf("请输入图的顶点数n与边数e(以逗号做分隔符):\n"); scanf("%d,%d",&(G->n),&(G->e)); scanf("%c",&y); //用y来接收回车符. for(s=0;sn;s++) { printf("请输入下标为%d的顶点的元素:\n",s); scanf("%c",&(G->adjlist[s].vertex)); scanf("%c",&y); //用y来接收回车符.当后面要输入的是和单个字符有关的数据时候要存贮回车符,以免回车符被误接收。 G->adjlist[s].firstedge=NULL; } printf("请分别输入该图的%d条弧\n",G->e); for(k=0;ke;k++) { printf("请输入第%d条弧的起点和终点(起点下标,终点下标):\n",(k+1)); scanf("%d,%d",&i,&j); p=(EdgeNode*)malloc(sizeof(EdgeNode)); p->adjvex=j; p->next=G->adjlist[i].firstedge; G->adjlist[i].firstedge=p; } } 2.深度优先遍历 void DFS(ALGraph* G,int v) //深度优先遍历 { EdgeNode* p;

数据结构课程设计图的遍历和生成树求解

数学与计算机学院 课程设计说明书 课程名称: 数据结构与算法课程设计 课程代码: 6014389 题目: 图的遍历和生成树求解实现 年级/专业/班: 学生姓名: 学号: 开始时间: 2012 年 12 月 09 日 完成时间: 2012 年 12 月 26 日 课程设计成绩: 指导教师签名:年月日

目录 摘要 (3) 引言 (4) 1 需求分析 (5) 1.1任务与分析 (5) 1.2测试数据 (5) 2 概要设计 (5) 2.1 ADT描述 (5) 2.2程序模块结构 (7) 软件结构设计: (7) 2.3各功能模块 (7) 3 详细设计 (8) 3.1结构体定义 (19) 3.2 初始化 (22) 3.3 插入操作(四号黑体) (22) 4 调试分析 (22) 5 用户使用说明 (23) 6 测试结果 (24) 结论 (26)

摘要 《数据结构》课程主要介绍最常用的数据结构,阐明各种数据结构内在的逻辑关系,讨论其在计算机中的存储表示,以及在其上进行各种运算时的实现算法,并对算法的效率进行简单的分析和讨论。进行数据结构课程设计要达到以下目的: ?了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; ?初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; ?提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风。 这次课程设计我们主要是应用以前学习的数据结构与面向对象程序设计知识,结合起来才完成了这个程序。 因为图是一种较线形表和树更为复杂的数据结构。在线形表中,数据元素之间仅有线性关系,每个元素只有一个直接前驱和一个直接后继,并且在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。因此,本程序是采用邻接矩阵、邻接表、十字链表等多种结构存储来实现对图的存储。采用邻接矩阵即为数组表示法,邻接表和十字链表都是图的一种链式存储结构。对图的遍历分别采用了广度优先遍历和深度优先遍历。 关键词:计算机;图;算法。

连通图深度优先遍历

#include #include #define MAXLEN 20 typedef struct node3 { int adjvex; struct node3 *next; }ARCNODE; typedef struct { char data; ARCNODE *firstarc; int id; } VEXNODE; typedef struct { VEXNODE vertices[MAXLEN]; int vexnum, arcnum; int kind; }ALGRAPH; int visited[MAXLEN]; ALGRAPH creat_graph() { ARCNODE *p; int i, s, d; ALGRAPH g; printf("\n\n输入顶点数和边数(用逗号隔开) : "); scanf("%d,%d", &s, &d);fflush(stdin); g.vexnum = s; /*存放顶点数在g.vexnum 中 */ g.arcnum = d; /*存放边点数在g.arcnum 中*/ printf("\n\n"); for(i = 0; i < g.vexnum; i++) /*输入顶点的值*/ {printf("输入顶点 %d 的值 : ", i + 1); scanf("%c", &g.vertices[i].data); fflush(stdin); g.vertices[i].firstarc = NULL;} printf("\n"); for(i = 0; i < g.arcnum; i++) {printf("输入第 %d 条边的起始顶点和终止顶点下标(用逗号隔开): ", i+1);

深度优先遍历(邻接矩阵)

上机实验报告 学院:计算机与信息技术学院 专业:计算机科学与技术(师范)课程名称:数据结构 实验题目:深度优先遍历(邻接矩阵)班级序号:师范1班 学号:201421012731 学生姓名:邓雪 指导教师:杨红颖 完成时间:2015年12月25号

一、实验目的: 1﹒掌握图的基本概念和邻接矩阵存储结构。 2﹒掌握图的邻接矩阵存储结构的算法实现。 3﹒掌握图在邻接矩阵存储结构上遍历算法的实现。 二、实验环境: Windows 8.1 Microsoft Visual c++ 6.0 二、实验内容及要求: 编写图的深度优先遍历邻接矩阵算法。建立图的存储结构,能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。 四、概要设计: 深度优先搜索遍历类似于树的先根遍历,是树的先根遍历的推广。假设初始状态是图中所有的顶点未曾被访问,则深度优先遍历可从图的某个顶点V出发,访问此顶点,然后依次从V的未被访问的邻接点出发深度优先遍历图,直至图中所有和V有路径相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中的一个未被访问的顶点,重复上述过程,直至图中所有顶点都被访问到为止。 以图中无向图G4为例,深度优先遍历图的过程如图所示。假设从顶点V1出发进行搜索,在访问了顶点V1后,选择邻接点V2。因为V2未曾访问,则从V2出发进行搜索。依次类推,接着从V4,V8,V5出发进行搜索。在访问了V5之后,由于V5的邻接点已都被访问,则搜索回到V8。由于同样的理由,搜索继续回到V4,V2直至V1,此时由于V1的另一个邻接点为被访问,则搜索又从V1到V3,再继续进行下去。由此得到顶点的访问序列为: V1 V2 V4 V8 V5 V3 V6 V7 五、代码 #include #include #define n 8 #define e 9 typedef char vextype; typedef float adjtype; int visited[n]; //定义结构体

图的深度优先遍历实验报告

一.实验目的 熟悉图的存储结构,掌握用单链表存储数据元素信息和数据元素之间的关系的信息的方法,并能运用图的深度优先搜索遍历一个图,对其输出。 二.实验原理 深度优先搜索遍历是树的先根遍历的推广。假设初始状态时图中所有顶点未曾访问,则深度优先搜索可从图中某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接点出发深度优先遍历图,直至图中所有与v有路径相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中一个未曾访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 图的邻接表的存储表示: #define MAX_VERTEX_NUM 20 #define MAXNAME 10 typedef char VertexType[MAXNAME]; typedef struct ArcNode{ int adjvex; struct ArcNode *nextarc; }ArcNode; typedef struct VNode{ VertexType data; ArcNode *firstarc;

}VNode,AdjList[MAX_VERTEX_NUM]; typedef struct{ AdjList vertices; int vexnum,arcnum; int kind; }ALGraph; 三.实验内容 编写LocateVex函数,Create函数,print函数,main函数,输入要构造的图的相关信息,得到其邻接表并输出显示。 四。实验步骤 1)结构体定义,预定义,全局变量定义。 #include"stdio.h" #include"stdlib.h" #include"string.h" #define FALSE 0 #define TRUE 1 #define MAX 20 typedef int Boolean; #define MAX_VERTEX_NUM 20

人工智能深度优先算法课程设计报告

人工智能课程报告 题目: 深 度 优 先 算 法 班级:XXXXXXXXXXX 学号:XXXXXXXXXXX 姓名:XXXXXXXXXXX

【摘要】结合生活中解决搜索问题所常用的思考方法与解题方法,从深度优先探讨了提高程序效率的适用技巧。 【关键词】1搜索顺序;2搜索对象;3搜索优化; 一、深度优先搜索的优化技巧 我们在做事情的时候,经常遇到这类问题——给出约束条件,求一种满足约束条件的方案,这类问题我们叫它“约束满足”问题。对于约束满足问题,我们通常可以从搜索的顺序和搜索的对象入手,进而提高程序的效率。 二、搜索的顺序及对象: 在解决约束满足问题的时候,问题给出的约束条件越强,对于搜索就越有利。之所以深度优先搜索的效率在很大程度上优于穷举,就是因为它在搜索过程中很好的利用了题目中的约束条件进行优化,达到提高程序效率的目的。 显然,在同样的一棵搜索树中,越在接近根接点的位置利用约束条件优化效果就越好。如何在搜索中最大化的利用题目的约束条件为我们提供剪枝的依据,是提高深度优先搜索效率的一个很重要的地方。而不同的搜索顺序和搜索对象就直接影响到我们对于题目约束条件的运用。 三、搜索特点 1.由于深度搜索过程中有保留已扩展节点,则不致于重复构造不必要的子树系统。 2.深度优先搜索并不是以最快的方式搜索到解,因为若目标节点在第i层的某处,必须等到该节点左边所有子树系统搜索完毕之后,才会访问到该节点,因此,搜索效率还取决于目标节点在解答树中的位置。

3.由于要存储所有已被扩展节点,所以需要的内存空间往往比较大。 4.深度优先搜索所求得的是仅仅是目前第一条从起点至目标节点的树枝路径,而不是所有通向目标节点的树枝节点的路径中最短的路径。 5.适用范围:适用于求解一条从初始节点至目标节点的可能路径的试题。若要存储所有解答路径,可以再建立其它空间,用来存储每个已求得的解。若要求得最优解,必须记下达到目前目标的路径和相应的路程值,并与前面已记录的值进行比较,保留其中最优解,等全部搜索完成后,把保留的最优解输出。 四、算法数据结构描述 深度优先搜索时,最关键的是结点扩展(OPEN)表的生成,它是一个栈,用于存放目前搜索到待扩展的结点,当结点到达深度界限或结点不能再扩展时,栈顶结点出栈,放入CLOSE表(存放已扩展节点),继续生成新的结点入栈OPEN 表,直到搜索到目标结点或OPEN栈空为止。 具体算法如下: ①把起始结点S放到非扩展结点OPEN表中(后进先出的堆栈),如果此结点为一目标结点,则得到一个解。 ②如果OPEN为一空表,则搜索失败退出。 ③取OPEN表最前面(栈顶)的结点,并把它放入CLOSED的扩展结点表中,并冠以顺序编号n。 ④如果结点n的深度等于最大深度,则转向2。 ⑤否则,扩展结点n,产生其全部子结点,把它们放入OPEN表的前头(入栈),并配上指向n的返回指针;如果没有后裔,则转向2。 ⑥如果后继结点中有任一个为目标结点,则求得一个解,成功退出;否则,转向2。

邻接矩阵的深度优先遍历

#include #include using namespace std; #define INFINITY 32767 #define MAX_VEX 50 #define OK 1 #define FALSE 0 #define TRUE 1 #define ERROR -1 bool *visited; //图的邻接矩阵存储结构 typedef struct { char *vexs; //动态分配空间存储顶点向量 int arcs[MAX_VEX][MAX_VEX]; //邻接矩阵 int vexnum, arcnum; //图的当前定点数和弧数 }Graph; //图G中查找顶点c的位置 int LocateVex(Graph G, char c) { for(int i = 0; i < G.vexnum; ++i) { if(G.vexs[i] == c) return i; } return ERROR; } //创建无向网 void CreateUDN(Graph &G){ //采用数组(邻接矩阵)表示法,构造无向图G cout << "请输入定点数和弧数:"; cin >> G.vexnum >> G.arcnum; cout << "请输入" << G.vexnum << "个顶点" << endl; G.vexs = (char *) malloc((G.vexnum+1) * sizeof(char)); //需要开辟多一个空间存储'\0' //构造顶点向量 for(int i = 0; i < G.vexnum; i++) { cout << "请输入第" << i+1 << "个顶点:"; cin >> G.vexs[i]; } G.vexs[G.vexnum] = '\0';

数据结构课程设计之图的遍历和生成树求解

##大学 数据结构课程设计报告题目:图的遍历和生成树求解 院(系):计算机工程学院 学生: 班级:学号: 起迄日期: 2011.6.20 指导教师:

2010—2011年度第 2 学期 一、需求分析 1.问题描述: 图的遍历和生成树求解实现 图是一种较线性表和树更为复杂的数据结构。在线性表中,数据元素之间仅有线性关系,每个数据元素只有一个直接前驱和一个直接后继;在树形结构中,数据元素之间有着明显的层次关系,并且每一层上的数据元素可能和下一层中多个元素(及其孩子结点)相关但只能和上一层中一个元素(即双亲结点)相关;而在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。 生成树求解主要利用普利姆和克雷斯特算法求解最小生成树,只有强连通图才有生成树。 2.基本功能 1) 先任意创建一个图; 2) 图的DFS,BFS的递归和非递归算法的实现 3) 最小生成树(两个算法)的实现,求连通分量的实现 4) 要求用邻接矩阵、邻接表等多种结构存储实现 3.输入输出

输入数据类型为整型和字符型,输出为整型和字符 二、概要设计 1.设计思路: a.图的邻接矩阵存储:根据所建无向图的结点数n,建立n*n的矩阵,其中元素全是无穷大(int_max),再将边的信息存到数组中。其中无权图的边用1表示,无边用0表示;有全图的边为权值表示,无边用∞表示。 b.图的邻接表存储:将信息通过邻接矩阵转换到邻接表中,即将邻接矩阵的每一行都转成链表的形式将有边的结点进行存储。 c.图的广度优先遍历:假设从图中的某个顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后再访问此邻接点的未被访问的邻接点,并使“先被访问的顶点的邻接点”先于“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。若此时图中还有未被访问的,则另选未被访问的重复以上步骤,是一个非递归过程。 d.图的深度优先遍历:假设从图中某顶点v出发,依依次访问v的邻接顶点,然后再继续访问这个邻接点的系一个邻接点,如此重复,直至所有的点都被访问,这是个递归的过程。 e.图的连通分量:这是对一个非强连通图的遍历,从多个结点出发进行搜索,而每一次从一个新的起始点出发进行搜索过程中得到的顶点访问序列恰为其连通分量的顶点集。本程序利用的图的深度优先遍历算法。 2.数据结构设计: ADT Queue{ 数据对象:D={a i | a i ∈ElemSet,i=1,2,3……,n,n≥0} 数据关系:R1={| a i-1 ,a i ∈D,i=1,2,3,……,n} 基本操作: InitQueue(&Q) 操作结果:构造一个空队列Q。 QueueEmpty(Q) 初始条件:Q为非空队列。 操作结果:若Q为空队列,则返回真,否则为假。 EnQueue(&Q,e) 初始条件:Q为非空队列。 操作结果:插入元素e为Q的新的队尾元素。 DeQueue(&Q,e) 初始条件:Q为非空队列。 操作结果:删除Q的队头元素,并用e返回其值。}ADT Queue

广度优先搜索和深度优先搜索

有两种常用的方法可用来搜索图:即深度优先搜索和广度优先搜索。它们最终都会到达所有 连通的顶点。深度优先搜索通过栈来实现,而广度优先搜索通过队列来实现。 深度优先搜索: 深度优先搜索就是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶子节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。这种方法的搜索树是从树根开始一枝一枝逐渐形成的。 下面图中的数字显示了深度优先搜索顶点被访问的顺序。 "* ■ J 严-* 4 t C '4 --------------------------------- --- _ 为了实现深度优先搜索,首先选择一个起始顶点并需要遵守三个规则: (1) 如果可能,访问一个邻接的未访问顶点,标记它,并把它放入栈中。 (2) 当不能执行规则1时,如果栈不空,就从栈中弹出一个顶点。 (3) 如果不能执行规则1和规则2,就完成了整个搜索过程。 广度优先搜索: 在深度优先搜索算法中,是深度越大的结点越先得到扩展。如果在搜索中把算法改为按结点的层次进行搜索,本层的结点没有搜索处理完时,不能对下层结点进行处理,即深度越小的结点越先得到扩展,也就是说先产生的结点先得以扩展处理,这种搜索算法称为广度优先搜索法。 在深度优先搜索中,算法表现得好像要尽快地远离起始点似的。相反,在广度优先搜索中, 算法好像要尽可能地靠近起始点。它首先访问起始顶点的所有邻接点,然后再访问较远的区 域。它是用队列来实现的。 下面图中的数字显示了广度优先搜索顶点被访问的顺序。 实现广度优先搜索,也要遵守三个规则: ⑴ 访问下一个未来访问的邻接点,这个顶点必须是当前顶点的邻接点,标记它,并把它插入到队列中。(2)如果因为已经没有未访问顶点而不能执行规则1

图的深度优先遍历和广度优先遍历

华北水利水电学院数据结构实验报告 20 10 ~20 11 学年第一学期2008级计算机专业 班级:107学号:200810702姓名:王文波 实验四图的应用 一、实验目的: 1.掌握图的存储结构及其构造方法 2.掌握图的两种遍历算法及其执行过程 二、实验内容: 以邻接矩阵或邻接表为存储结构,以用户指定的顶点为起始点,实现无向连通图的深度优先及广度优先搜索遍历,并输出遍历的结点序列。 提示:首先,根据用户输入的顶点总数和边数,构造无向图,然后以用户输入的顶点为起始点,进行深度优先和广度优先遍历,并输出遍历的结果。 三、实验要求: 1.各班学号为单号的同学采用邻接矩阵实现,学号为双号的同学采用邻接表实现。 2.C/ C++完成算法设计和程序设计并上机调试通过。 3.撰写实验报告,提供实验结果和数据。 4.写出算法设计小结和心得。 四、程序源代码: #include #define MaxVerNum 50 struct edgenode { int endver; int inform; edgenode* edgenext; }; struct vexnode { char vertex; edgenode* edgelink; }; struct Graph { vexnode adjlists[MaxVerNum]; int vexnum; int arcnum; }; //队列的定义及相关函数的实现 struct QueueNode

{ int nData; QueueNode* next; }; struct QueueList { QueueNode* front; QueueNode* rear; }; void EnQueue(QueueList* Q,int e) { QueueNode *q=new QueueNode; q->nData=e; q->next=NULL; if(Q==NULL) return; if(Q->rear==NULL) Q->front=Q->rear=q; else { Q->rear->next=q; Q->rear=Q->rear->next; } } void DeQueue(QueueList* Q,int* e) { if (Q==NULL) return; if (Q->front==Q->rear) { *e=Q->front->nData; Q->front=Q->rear=NULL; } else { *e=Q->front->nData; Q->front=Q->front->next; } } //创建图 void CreatAdjList(Graph* G) { int i,j,k; edgenode* p1; edgenode* p2;

数据结构课程设计报告(图的遍历)

中南大学 课程设计报告 题目数据结构课程设计学生姓名 指导教师漆华妹 学院信息科学与工程学院专业班级 学号 完成时间 2011年07月

目录 第一章、需求分析 (2) 第二章、概要设计 (2) 2.1设定图的抽象数据类型 (2) 2.2设定队列的抽象数据类型 (3) 2.3本程序包含的功能模块 (3) 第三章、详细设计 (3) 3.1顶点、边和图的类型 (6) 3.2队列类型 (8) 3.3主程序和其他伪码算法 (9) 第四章、调试分析 (9) 第五章、用户手册 (9) 第六章、测试结果 (10) 第七章、心得体会 (10) 附:源程序代码 (11)

图遍历的演示 题目:试设计一个程序,演示在连通的无向图上访问全部结点的操作 第一章、需求分析 1、以邻接多重表为存储结构; 2、实现连通和非连通的无向图的深度优先和广度优先遍历; 3、要求利用栈实现无向图的深度优先遍历; 4、以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和生成树的边集; 5、用凹入表打印生成树; 6、求出从一个结点到另外一个结点,但不经过另外一个指定结点的所有简单路径;6、本程序用C语言编写,在C-Free3.5环境下通过。 第二章、概要设计 1、设定图的抽象数据类型: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为点集. 数据关系R: R={VR} VR={(v,w)|v,w属于V,(v,w)表示v和w之间存在的路径} 基本操作P: CreatGraph(&G,V,VR) 初始条件:V是图的顶点集,VR是图中弧的集合. 操作结果:按V和VR是定义构造图G. DestroyGraph(&G) 初始条件:图G存在 操作结果:销毁图G LocateVex(G,u) 初始条件: 图G存在,u和G中顶点有相同的特征 操作结果:若图G中存在顶点u,则返回该顶点在图中的位置;否则返回其他信息GetVex(G,v) 初始条件: 图G存在,v是G中顶点 操作结果:返回v的值 FirstAjvex(G,v) 初始条件: 图G存在,v是G中顶点 操作结果:返回v的第一个邻接顶点,若顶在图中没有邻接顶点,则返回为空 NextAjvex(G,v,w) 初始条件: 图G存在,v是G中顶点,w是v的邻接顶点 操作结果:返回v的下一个邻接顶点,若w是v的最后一个邻接顶点,则返回空DeleteVexx(&G,v) 初始条件: 图G存在,v是G中顶点 操作结果:删除顶点v已经其相关的弧 DFSTraverse(G,visit()) 初始条件: 图G存在,visit的顶点的应用函数

邻接矩阵表示图深度广度优先遍历

*问题描述: 建立图的存储结构(图的类型可以是有向图、无向图、有向网、无向网,学生可以任选两种类型),能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。 1、邻接矩阵表示法: 设G=(V,E)是一个图,其中V={V1,V2,V3…,Vn}。G的邻接矩阵是一个他有下述性质的n阶方阵: 1,若(Vi,Vj)∈E 或∈E; A[i,j]={ 0,反之 图5-2中有向图G1和无向图G2的邻接矩阵分别为M1和M2: M1=┌0 1 0 1 ┐ │ 1 0 1 0 │ │ 1 0 0 1 │ └0 0 0 0 ┘ M2=┌0 1 1 1 ┐ │ 1 0 1 0 │ │ 1 1 0 1 │ └ 1 0 1 0 ┘ 注意无向图的邻接是一个对称矩阵,例如M2。 用邻接矩阵表示法来表示一个具有n个顶点的图时,除了用邻接矩阵中的n*n个元素存储顶点间相邻关系外,往往还需要另设一个向量存储n个顶点的信息。因此其类型定义如下: VertexType vertex[MAX_VERTEX_NUM]; // 顶点向量 AdjMatrix arcs; // 邻接矩阵 int vexnum, arcnum; // 图的当前顶点数和弧(边)数 GraphKind kind; // 图的种类标志

若图中每个顶点只含一个编号i(1≤i≤vnum),则只需一个二维数组表示图的邻接矩阵。此时存储结构可简单说明如下: type adjmatrix=array[1..vnum,1..vnum]of adj; 利用邻接矩阵很容易判定任意两个顶点之间是否有边(或弧)相联,并容易求得各个顶点的度。 对于无向图,顶点Vi的度是邻接矩阵中第i行元素之和,即 n n D(Vi)=∑A[i,j](或∑A[i,j]) j=1 i=1 对于有向图,顶点Vi的出度OD(Vi)为邻接矩阵第i行元素之和,顶点Vi 的入度ID(Vi)为第i列元素之和。即 n n OD(Vi)=∑A[i,j],OD(Vi)=∑A[j,i]) j=1j=1 用邻接矩阵也可以表示带权图,只要令 Wij, 若或(Vi,Vj) A[i,j]={ ∞, 否则。 其中Wij为或(Vi,Vj)上的权值。相应地,网的邻接矩阵表示的类型定义应作如下的修改:adj:weightype ; {weightype为权类型} 图5-6列出一个网和它的邻接矩阵。 ┌∞31∞∞┐ │∞∞51∞│ │∞∞∞∞∞│ │∞∞6∞∞│ └∞322∞┘ (a)网(b)邻接矩阵 图5-6 网及其邻接矩阵 对无向图或无向网络,由于其邻接矩阵是对称的,故可采用压缩存贮的方法,

深度优先算法与广度优先算法的比较

DFS与BFS的比较 姓名:班级:学号: 一、图的遍历 1.图的遍历的含义 图的遍历是指从图中某结点出发,按某既定方式访问图中各个可访问到的结点,使每个可访问到的结点恰被访问一次。 2.图的遍历方式:深度优先与广度优先 二、DFS与BFS的区别 1.概念 深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问止。 广度优先遍历可定义如下:假设从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使“先被访问的顶点的邻接点”先与“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。若此时图中尚有顶点未被访问,则另选图中一个曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 2. 路径 深度优先就是,从初始点出发,不断向前走,如果碰到死路了,就往回走一步,尝试另一条路,直到发现了目标位置。这种方法,即使成功也不一定找到一条好路,但是需要记住的位置比较少。 广度优先就是,从初始点出发,把所有可能的路径都走一遍,如果里面没有目标位置,则尝试把所有两步能够到的位置都走一遍,看有没有目标位置;如果还不行,则尝试所有三步可以到的位置。这种方法,一定可以找到一条最短路径,但需要记忆的内容实在很多,要量力而行。 3.算法实现 (1) 图的深度优先算法的一般性描述: long DFS(图s,结点v。) { // 从结点v。出发,深度优先遍历图s,返回访问到的结点总数 int nNodes; //寄存访问到的结点数目 访问v。;

采用非递归深度优先遍历算法

2007-05-27 晴 //采用非递归深度优先遍历算法,可以将回溯法表示为一个非递归过程 #include using namespace std; class Knap { friend int Knapsack(int p[],int w[],int c,int n ); //设置友元函数 public: void print() //定义类内函数打印结果 { for(int m=1;m<=n;m++) { cout<

}; private: int Bound(int i); void Backtrack(int i); int c; //背包容量 int n; //物品数 int *w; //物品重量数组int *p; //物品价值数组int cw; //当前重量 int cp; //当前价值 int bestp; //当前最优值int *bestx; //当前最优解int *x; //当前解 }; int Knap::Bound(int i) //装满背包

if(i<=n) b+=p/w*cleft; return b; } void Knap::Backtrack(int i) { if(i>n) { if(bestp

图的深度广度遍历(算法与数据结构课程设计)

图的操作 一、问题描述 图是一种较线性表和树更为复杂的数据结构。在图形结构中,节点间的关系可以是任意的,图中任意两个数据元素之间都可以相关。由此,图的应用极为广泛。现在邻接矩阵和邻接表的存储结构下,完成图的深度、广度遍历。 二、基本要求 1、选择合适的存储结构完成图的建立; 2、建立图的邻接矩阵,能按矩阵方式输出图,并在此基础上,完成图的深度和广度遍历,输出遍历序列; 3、建立图的邻接表,并在此基础上,完成图的深度和广度遍历,输出遍历序列; 三、测试数据 四、算法思想 1、邻接矩阵 顶点向量的存储。用两个数组分别存储数据(定点)的信息和数据元素之间的关系(边或弧)的信息。 2、邻接表 邻接表是图的一种链式存储结构。在邻接表中,对图中每个定点建立一个单链表,第i 个单链表中的节点表示依附于定点vi的边。每个节点由3个域组成,其中邻接点域(adjvex)指示与定点vi邻接的点在图中的位置,链域(nextarc)指示下一条边或弧的节点;数据域(info)存储和边或弧相关的信息,如权值等。每个链表上附设一个头节点。在表头节点中,

除了设有链域(firstarc)指向链表中第一个节点之外,还设有存储定点vi的名或其他有关信息的数据域(data)。 3、图的深度遍历 深度优先搜索遍历类似于树的先根遍历,是树的先跟遍历的推广。假设初始状态是图中所有顶点未曾被访问,则深度优先搜索可从图中某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接点出发深度优先遍历图,甚至图中所有和v相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 4、图的广度遍历 广度优先遍历类似于树的按层次遍历过程。假设从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使“先被访问的顶点的邻接点”先与“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。若此时图中尚有顶点未被访问,则另选图中一个 曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 五、模块划分 一、基于邻接矩阵的深广度遍历 1.Status InitQueue(LinkQueue *Q) 根据已知Q初始化队列 2.Status QueueEmpty (LinkQueue Q) 判断队列是否为空 3.Status EnQueue(LinkQueue *Q, QElemType e) 将e压入队尾 4.Status DeQueue(LinkQueue *Q, QElemType *e) 取队头元素e 5.int LocateVex(MGraph G,VertexType v) 定位定点v 6.void CreateGraph(MGraph *G) 建立无向图的邻接矩阵 7.void PrintGraph(MGraph G) 输出邻接矩阵的无向图 8.int FirstAdjVex(MGraph G,int v) 第一个邻接点的定位 9.int NextAdjVex(MGraph G,int v,int w) 查找下一个邻接点

数据结构课程设计题目及要求_49968

《数据结构》课程设计题目 课程设计题一:学生成绩管理系统 设计目的: 1 掌握线性链表的建立。 2 掌握线性链表的基本操作。 3 掌握查找的基本算法。 设计内容: 利用线性链表实现学生成绩管理系统,具体功能:输入、输出、插入、删除、查找、追加、读入、显示、保存、拷贝、排序、索引、分类合计、退出,并能在屏幕上输出操作前后的结果。 设计要求: 1 写出系统需求分析,并建模。 2 编程实现,界面友好。 3 输出操作前后的结果。 课程设计题二:停车场管理系统 设计目的: 1 掌握栈和队列的建立。 2 掌握栈和队列的基本操作。 3 深入了解栈和队列的特性,以便在解决实际问题中灵活运用它们。 4 加深对栈和队列的理解和认识。 设计内容: 设有一个可以停放n辆汽车的狭长停车场,它只有一个大门可以供车辆进出。车辆按到达停车场时间的早晚依次从停车场最里面向大门口处停放(最先到达的第一辆车放在停车场的最里面)。如果停车场已放满n辆车,则后来的车辆只能在停车场大门外的便道上等待,一旦停车场内有车开走,则排在便道上的第一辆车就进入停车场。停车场内如有某辆车要开走,在他之后进入停车场的车都必须先退出停车场为它让路,待其开出停车场后,这些车辆在依原来的次序进场。每辆车在离开停车场时,都应依据它在停车场内停留的时间长短交费。如果停留在便道上的车未进停车场就要离去,允许其离去,不收停车费,并且仍然保持在便道上等待的车辆的次序。编制一程序模拟该停车场的管理。 设计要求: 1 以栈模拟停车场,以队列模拟车场外的便道,按照从终端读入的输入数据序列进行模拟管理。 2 每一组输入数据包括三个数据项:汽车“到达”或“离去”信息、汽车牌照号码以及到达或离去的时刻。 3 对每一组输入数据进行操作后的输出信息为:若是车辆到达,则输出汽车在停车场或便道上的停车位置;若是车辆离去,则输出汽车在停车场内停留的时间和应交纳的费用(在便道上停留的时间不收费,功能可自己添加)。 课程设计题三:约瑟夫(Joseph)环 设计目的:

算法6.7-广度优先搜索遍历连通图

//算法6.7广度优先搜索遍历连通图 #include using namespace std; #define MVNum 100 //最大顶点数 #define MAXQSIZE 100//最大队列长度 typedef char VerTexType; //假设顶点的数据类型为字符型 typedef int ArcType; //假设边的权值类型为整型 bool visited[MVNum]; //访问标志数组,其初值为"false" //-----图的邻接矩阵存储表示----- typedef struct{ VerTexType vexs[MVNum]; //顶点表 ArcType arcs[MVNum][MVNum]; //邻接矩阵 int vexnum,arcnum; //图的当前点数和边数 }Graph; //----队列的定义及操作-------- typedef struct{ ArcType *base;//初始化的动态分配存储空间 int front;//头指针,若队列不空,指向队头元素 int rear;//尾指针,若队列不空,指向队尾元素的下一个位置}sqQueue; void InitQueue(sqQueue &Q){ //构造一个空队列Q Q.base = new ArcType[MAXQSIZE]; if(!Q.base) exit(1);//存储分配失败 Q.front = Q.rear = 0; }//InitQueue void EnQueue(sqQueue &Q, ArcType e){ //插入元素e为Q的新的队尾元素 if((Q.rear + 1) % MAXQSIZE == Q.front) return; Q.base[Q.rear] = e; Q.rear = (Q.rear + 1) % MAXQSIZE; }//EnQueue bool QueueEmpty(sqQueue Q){ //判断是否为空队 if(Q.rear == Q.front)

图的遍历的实现 课设报告

数据结构课程设计 设计说明书 图的遍历的实现 数学与计算机科学学院 2014年1 月 4日 学生姓名 周 朝 学 号 1118064029 班 级 网络1101班 成 绩 指导教师 申 静

课程设计任务书 2013—2014学年第一学期 课程设计名称:数据结构课程设计 课程设计题目:图的遍历实现 完成期限:自2013年12 月23日至2014年 1 月4 日共 2 周 设计内容: 1. 任务说明 (1) 采用邻接表存储结构创建一个图; (2) 编程实现图的深度优先搜索(或广度优先搜索)遍历算法; (3) 输出遍历结果; (4) 给定具体数据调试程序。 2. 要求 1)问题分析和任务定义:根据设计题目的要求,充分地分析和理解问题,明确问题要求做什么? 2)逻辑设计:写出抽象数据类型的定义,各个主要模块的算法,并画出模块之间的调用关系图; 3)详细设计:定义相应的存储结构并写出各函数的伪码算法。 4)程序编码:把详细设计的结果进一步求精为程序设计语言程序。 5)程序调试与测试:采用自底向上,分模块进行,即先调试低层函数。 6)结果分析:程序运行结果包括正确的输入及其输出结果和含有错误的输入及其输出结果。算法的时间、空间复杂性分析; 7)编写课程设计报告。 3. 参考资料 指导教师:申静教研室负责人:余冬梅 课程设计评阅

摘要 本课程设计主要目的在于更深一步的了解图的遍历的问题,以无向图为例分别实现了广度优先遍历和深度优先遍历,在课程设计中,程序设计设计语言采用Visual C,程序运行平台为Windows 98/2000/XP。在程序设计中我主要是解决的是给出一个图如何用多种方法完成图的遍历的问题。程序最终通过调试运行,实现了设计目标。 关键词:程序设计;数据结构;无向图

相关文档
最新文档