第十章 状态方程
大学物理课件理想气体状态方程

n(z) n0emgz kT
n(r ) n0eU (r ) kT
它描述了热平衡态下分子数密度在任意势场 U(r) 1 m 2r2
U( r )中,按位置的分布规律。如高速离心机
2
30
如高速旋转的系统,每个分子要受到惯性离心力, 其势能为 U(r) 1 m 2r 2
2
分子数密度和压强在该势场中沿径向r的分布为:
§3 理想气体状态方程
•一个热力学系统的平衡态可由四种状态参量确定
第0定律表明,平衡态下的热力学系统存在一个状 态函数温度。温度与四种状态参量必然存在一定 的关系。所谓状态方程就是温度与状态参量之间 的函数关系式,此定义适合于任何热力学系统.
状态方程在热力学中是通过大量实践总结来的。 然而应用统计物理学, 原则上可根据物质的微 观结构推导出来。
而且与热力学温度成正比,
是温度的单值函数
此结论在与室温相差不大的 温度范围内与实验近似相符。9
推广到三维的情况
dN ( x, y, z) f ( x, y, z)dxdydz N
或 f ( x, y, z) dN
N dxdydz
分布函数
物理意义:分子在x、y、z附近,单位区间
的分子数占总分子数的比率,即概率密度。
n e ( K p ) kT
上式给出,在温度为T的热平衡态中,任何系统的 微观粒子数密度按状态的分布规律。
它指出在某一状态间隔的粒子数与粒子的总能量有关,
而且与 e kT 成正比。这个结论称为玻尔兹曼能量 分布律,称 e kT为玻尔兹曼因子。
* 粒子数密度是指单位相空间的粒子数
12
麦克斯韦速度分布函数:
21
# 大量小球整体按狭槽的分布遵从一定的统计规律。
大学物理-气体动理论必考知识点

第十章 气体动理论主要内容
一.理想气体状态方程: m PV RT M
'=; P nkT = 8.31J R k mol =;231.3810J k k -=⨯;2316.02210A N mol -=⨯;A R N k =
二. 理想气体压强公式
23kt p n ε= ε=213=22kt mv kT 分子平均平动动能
三. 理想气体温度公式
21322kt mv kT ε==
四.能均分原理
1. 自由度:确定一个物体在空间位置所需要的独立坐标数目。
2. 气体分子的自由度
单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i =
3. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为1
2
kT
五. 理想气体的内能(所有分子热运动动能之和)
1.1mol 理想气体=⋅=22A i i E N kT RT 3. 一定量理想气体()2i m E RT M
νν'==
六.麦克斯韦速率发布函数(可能会命题计算题,各种表达式的物理含义要牢记) 1()N
f v N v =d d , 速率在v 附近,单位速率区间内分子数占总分子数的百分率。
归一化条件:0()1f v v ∞=⎰d ,
=
=≈
平均速率:v ==≈ 最概然速率
:p v =≈
七.碰撞频率:
2z d nv =
平均自由程:λ=。
状态方程和相变

状态方程和相变是物理学中非常重要的概念。
状态方程描述了物质在不同条件下的状态,包括温度、压力、体积等参数,而相变则描述了物质从一个状态转变为另一个状态时所发生的变化。
本文将详细介绍的相关知识,以及它们在生活中的应用。
一、状态方程的定义和意义状态方程是描述物质状态的基本方程。
它通常表示为P(压力)、V(体积)、T(温度)之间的关系式,即P=f(V,T)或V=f(P,T)或T=f(P,V)。
其中,P、V、T称为状态参量。
状态方程是物态方程的简称,常见的物态方程有理想气体状态方程、范德华状态方程等。
状态方程的意义在于,通过一些参数的变化,可以描述物质从一个状态到另一个状态的变化过程。
例如,随着温度升高、压力降低,水会从液态变为气态;反之,随着温度降低、压力升高,水会从气态变为液态。
这些变化过程都可以通过状态方程进行描述。
二、常见的状态方程理想气体状态方程是最基本的状态方程之一。
它可以用于描述处于高温、低密度条件下的气体状态,满足PV=nRT(其中,n为物质的摩尔数,R为气体常数)。
在标准状况下,理想气体状态方程可以进一步简化为PV=RT。
然而,当温度和压力较高时,理想气体状态方程就不再适用,因为气体分子之间会发生相互作用,产生一定的吸引力和排斥力。
在这种情况下,需采用更加复杂的状态方程,如范德华状态方程、毛维-安德鲁状态方程等。
三、相变的定义和分类相变是指物质从一个状态(相)转变为另一个状态的过程,常见的相有固态、液态和气态。
相变分为两种类型:一种是温度和压力的变化对相的稳定性产生影响,如水从冰态到液态的融化过程,或水从液态到气态的沸腾过程;另一种是质量的变化对相的稳定性产生影响,如水在加热时的汽化过程。
相变还可以分为一次相变和二次相变。
一次相变,在过程中物质的内能发生跃变,如水从冰态到液态的融化过程。
二次相变,在过程中物质的内能发生连续的变化,如铁的铁磁相变。
四、状态方程与相变的应用在生活中有很多应用,以下是几个例子。
《状态方程方程》课件

复杂系统中的状态方程
复杂系统中的状态方程概述
复杂系统通常由大量相互作用的元素组成,其行为难以通过单个元素的行为来预测。复杂系统中的状态方程是描述系 统整体行为的重要工具。
复杂系统中的状态方程的数学形式
复杂系统中的状态方程通常由一组相互耦合的非线性微分方程或差分方程表示,描述了系统中各个元素的状态变化以 及它们之间的相互作用。
先确定有限元的划分,然后构 造每个有限元的近似函数,通 过变分原理得到有限元方程。
适用于具有复杂边界条件的偏 微分方程。
03
状态方程的实际应用
在流体力学中的应用
01
流体力学中的状态方程主要用 来描述流体的状态性质,如压 力、温度、密度等之间的关系 。
02
在流体力学中,状态方程是建 立流体动力学模型的基础,对 于流体流动的模拟、分析和优 化具有重要意义。
复杂系统中的状态方程的求解方法
求解复杂系统中的状态方程的方法有多种,如数值模拟、近似解析法、自适应算法等,具体方法的选择 取决于系统的具体形式和求解要求。
05
习题与思考题
基础习题
总结词
巩固知识点
详细描述
基础习题主要针对状态方程的基本概念、公式和计算方法进行练习,旨在帮助学生巩固所学知识点,提高解题能 力和计算准确性。
详细描述
将原方程中的偏微分项用离 散的差分近似,从而将偏微 分方程转化为离散的差分方 程进行求解。
步骤
先确定离散点,然后将原方 程中的偏微分项用离散的差 分近似,得到离散的差分方 程。
应用范围
适用于具有规则网格的偏微 分方程。
有限元法
总结词
详细描述
步骤
应用范围
一种基于变分原理的数值求解 方法
《大学物理》第十章气体动理论习题参考答案

第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。
3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。
7、1:1;2:1;10:3。
8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。
已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。
质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。
状态方程

例6 输出: uc , iC , uR
电路理论基础
解 若已知状态量 uC在
t=0
R
ic
uc(t1)=3V和us=10V,也 uR us uc 可以确定t>t1电路的响应 uc , iC , uR。 uc 3e 500 ( t t1 ) 10(1 e 500 ( t t1 ) ) 500 ( t t1 ) ic 3.5e mA uR 7e 500( t t1 ) V 可推广到一阶、二阶和高阶动态电路中,当t =t1 时uC , iL 和t t1 后的输入 uS(t)为已知,就可以确 定t1及t1以后任何时刻系统的响应。问题是确定状 态变量及初始值。
上例中也可选uC和duC /dt为状态变量
duC uC d(C ) dt R u u (t ) L C S dt d 2 uC L duC LC uC uS ( t ) 2 R dt dt
iL L + uL + + uC uS(t)
电路理论基础
iL iC
C R 2 + uR
状态方程为
x (t ) A x (t ) Bv(t )
式中,A、B为系数阵,由电路结构和参数确定。 状态方程特点: (1)联立的一阶微分方程组 (2)左端为一个状态变量的一阶导数 (3)右端为状态变量和输入量的线性表示 (4)方程数等于状态变量数,等于独立储能元件数
电路理论基础
整理为矩阵形式
duC 1 dt RC di 1 L dt L
状态变量
1 0 u C C i 1 uS ( t ) 0 L L
输入量
《状态方程方程》课件

吉布斯函数是描述物质稳定状态的热力学函数,与熵和绝对温度相关。
2 绝对零度
绝对零度是热力学第三定律的概念,表示温度的最低可能值。
应用案例
热力学循环过程 中的状态方程
状态方程在热力学循环过 程中起到了关键的作用, 如卡诺循环、斯特林循环 等。
热容计算中的状 态方程
状态方程可以用于计算物 质的热容,帮助了解物质 在不同条件下的热力学性 质。
热容表述的基本方程
热容表述的基本方程揭示了 物质在温度变化下的热力学 性质。
凝聚体的基本方程
凝聚体的基本方程描述了物 质在固态和液态之间的转变。
理气体状态方程
1
定义
理气体状态方程是描述理想气体性质的数学关系。
2
推导
通过对理想气体的性质进行假设和推演得到。
3
特点
理气体状态方程是理想气体定律的数学表达式,可以描述理想气体在各种条件下 的行为。
反应热计算中的 状态方程
通过状态方程,可以计算 化学反应的热效应,揭示 反应热力学的本质。
总结
状态方程的意义
状态方程揭示了物质宏观性质的数学关系,为研究和应用热力学提供了基础。
状态方程的基本形式
基本状态方程包括了热力学基本方程、热容表述的基本方程和凝聚体的基本方程。
状态方程的应用场景
状态方程在热力学循环过程、热容计算和反应热计算等方面有广泛的应用。
实际气体状态方程
范德瓦尔斯状态方程
范德瓦尔斯状态方程修正了理气体状态方程 的局限性,考虑了实际气体分子间的相互作 用。
其他实际气体状态方程
除了范德瓦尔斯状态方程外,还有其他一些 考虑了实际气体性质的状态方程,如贝克状 状态方程和赫尔默斯方程。
状态方程及其在物理化学中的应用

状态方程及其在物理化学中的应用在物理化学中,状态方程是一组数学公式,它们描述物质在不同温度、压力和体积下的状态。
这些方程可以用来预测物质的行为,特别是当它们受到不同的条件限制时的行为。
在这篇文章中,我们将讨论状态方程及其在物理化学中的应用。
一、状态方程的定义在物理化学中,状态方程是描述物质状态的数学公式。
它们通常是基于一些参数的函数,这些参数包括温度、压力和体积。
通过改变一个或多个参数,可以改变物质的状态,例如从液体到气体或固体到液体。
不同的状态方程适用于不同的物质和条件。
二、各种状态方程1. 理想气体状态方程理想气体状态方程是由克拉普龙和梅耶在中提出的,描述了理想气体的状态。
理想气体是一种理论上存在的气体,它符合以下条件:a) 分子之间没有相互作用力;b) 分子占据的体积可以忽略不计;c) 分子是一个点质点。
因此,理想气体的状态方程可以表示为:PV=nRT其中P表示气体的压力,V表示气体的体积,n表示气体的摩尔数,R表示气体常数,T表示气体的绝对温度。
2. 范德瓦尔斯状态方程范德瓦尔斯状态方程是由荷兰物理学家范德瓦尔斯提出的,它可以描述非理想气体的状态。
范德瓦尔斯方程修正了理想气体的状态方程,使得它适用于具有分子相互作用力的气体,包括液态和固态。
范德瓦尔斯方程可以表示为:(P+a/V^2)(V-b)=nRT其中a和b是范德瓦尔斯参数,它们描述了气体分子之间的相互作用力和气体分子占据的体积。
当气体分子之间的相互作用力很弱时,a和b都趋近于零,范德瓦尔斯方程就退化成理想气体状态方程。
3. 等温吉布斯能变法等温吉布斯能变法是用于气体和液体的状态方程,它基于吉布斯能的概念,使用温度和压力作为参数来描述物质状态。
与理想气体状态方程和范德瓦尔斯方程不同,等温吉布斯能变法不要求分子占据的体积可以忽略不计。
等温吉布斯能变法可以表示为:G=H-TS=-RTln(P)其中G是吉布斯能,H是焓,S是熵,R是气体常数,T是温度,P是压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将状态方程整理成标准矩阵形式。
三. 拓扑法
借助网络图论法列写状态方程
将电路图变为拓扑图; 选择一棵常态树,它的树支包含了电路中所有电压 源支路和电容支路,以及一些必要的电阻支路,不 包含任何电流源支路和电感支路;
对单电容树枝割集列写KCL方程,对单电感连枝回
路列写KVL方程,消去非状态变量;
将状态方程整理成标准矩阵形式。
10.1 状态变量和状态方程 10.2 状态方程的列写方法
用途:在时域内分析动态电路
线性动态电路的时域分析法:根据换路后的电路,在 时域中建立含待求量的一个一元n阶微分方程并求解此
方程。
状态变量法:根据换路后的电路,在时域中建立含状态 变量的n元一阶微分方程组(也称状态方程),并解此方
程组,再根据用状态变量和激励表示的输出方程来求电路
三. 输出方程
用来从已知的激励和状态变量求响应相量的代数方程,称 为输出方程。它描述了输出与状态变量和激励之间的关系。
R2
iS
R1
C
iL
L
一. 观察法
选所有独立的电容电压和电感电流作为状态变量; 对接有独立电容的节点列写KCL方程,对含有独
立电感的回路列写KVL方程;
若第2)步所列的KCL和KVL方程中含有非状态变
响应的方法。
一. 状态变量
在任意瞬时都能与输入激励量。对于一个电路, 状态变量的选取不是唯一的,但在电路分析中,常取电容电 压和电感电流作为状态变量。
二. 状态方程
称为状态方程,它描述了状态变量的一阶导数与状态变量和
激励之间的关系。
用来从已知的激励和初始状态求状态变量的一阶微分方程,
量,则利用适当的KCL和KVL方程,将非状态变量 消去; 将状态方程整理成标准矩阵形式。
二. 叠加法:替代定理+线性叠加定理
用电压为 u C的电压源替代电路中的电容、用电流
为i L 的电流源替代电路中的电感; 求每个独立源单独作用时在电容中产生的电流和 电感中的电压; 应用线性叠加定理将各分量叠加即得到状态方程;