初中数学人教版八年级上册第十四章 小结与复习
人教(河北专版)八年级数学上册课件:第十四章小结与复习(共18张PPT)

• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
Байду номын сангаас
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/102021/9/102021/9/102021/9/109/10/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月10日星期五2021/9/102021/9/102021/9/10 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/102021/9/102021/9/109/10/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/102021/9/10September 10, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/102021/9/102021/9/102021/9/10
最新人教版初中八年级上册数学第十四章《整式的乘法与因式分解》精品教案(小结复习课)

4
3
3
3 a3b5 1 a2b4 8 a6b3
4
9
27
27 ab 8 a6b3 4 27
2a7b4.
本题源自《教材帮》
深化练习 1
整式的混合运算:
(1) 3 a3b5 (1 ab2 )2 ( 2 a2b)3;
4
3
3
(2) [(-2xy)3(2x2y)2-xy2(-4xy2)2]÷(-16x2y3) ;
本题源自《教材帮》
深化练习 1
整式的混合运算:
(1) 3 a3b5 (1 ab2 )2 ( 2 a2b)3;
4
3
3
(2) [(-2xy)3(2x2y)2-xy2(-4xy2)2]÷(-16x2y3) ;
(3) x(2x+1)-(x-3)(2x-1) .
解:(3) x(2x+1)-(x-3)(2x-1) = 2x2+x-(2x2-x-6x+3) = 2x2+x-(2x2-7x+3) = 2x2+x-2x2+7x-3 = 8x-3.
符号表示:aman=am+n (m,n都是正整数).
同底数幂的乘法的性质也适用于三个及三个以上的同底数幂相乘
amanap=am+n+p (m,n,p都为正整数).
知识梳理
幂的乘方的性质:幂的乘方,底数不变,指数相乘.
符号表示:(am)n=amn(m,n都是正整数).
同底数幂的乘法的性质也适用于三个及三个以上的同底数幂相乘
本题源自《教材帮》
1.老师引导学生归纳本课知识点。 2.师生共同反思学习心得。
教科书本课课后习题第一题。完成后同桌之 间相互订正
人教版八年级数学上册 第十四章 章末复习与小结

=(xm)3÷(xn )2
而xm=2,xn=3,故原式=
8 9
专题选讲—— 整式的化简与求值
类型一 幂的运算
练一练:已知ax=5,ay=-4,求: (1)ax-y的值; (2)a3y的值; (3)a2x+y的值.
解:(1)ax+y=ax÷ay=5÷(-4)=-1.25. (2)a3y=(ay)3=(-4)3=-64. (3)a2x+y=a2x·ay=(ax)2·ay=52×(-4)3=-100.
专题选讲—— 乘法公式的运用技巧
类型二 连续应用
例 计算: (a-b)(a+b)(a2+b2)(a4+b4)(a8+b8);
解:(a-b)(a+b)(a2+b2)(a4+b4)(a8+b8) =(a2-b2)(a2+b2)(a4+b4)(a8+b8) =(a4-b4)(a4+b4)(a8+b8) =(a8-b8)(a8+b8) =a16-b16.
专题选讲—— 乘法公式的运用技巧
类型一 整体应用
例 若a+b=3,a2+b2=7,则ab等于( B )
A.2 B.1 C.-2 D.-1
专题选讲—— 乘法公式的运用技巧
类型一 整体应用 练一练: (1)已知m+n=12,m-n=2,则m2-n2=___2_4___; (2)若(a+b+1)(a+b-1)=899,则a+b的值为_3_0_或__-3_0_.
=-m(m-5)+2(m-5) =(2-m)(m-5)
专题选讲—— 因式分解方法大全
类型二 运用公式法因式分解
人教版八年级上册数学教学课件 章末小结与复习 第十四章 章末复习与小结

专题选讲—— 整式的化简与求值
类型一 幂的运算
例2 (1)若a3m=3,b3n=2,求(a2m)3+(bn)3-a2m·bn·a4m·b2n的值
;
解:(a2m)3+(bn)3-a2m·bn·a4m·b2n
=a6m+b3n-a6m·b3n
而a3m=3,b3n=2,故原式=-7
(2解):若xx3mm=-22n,xn=3,求x3m-2n的值.
专题选讲—— 幂的运算与应用
类型二 逆用幂的运算法则
例 已知ax=-2,ay=3.求: (1)ax+y的值; (2)a3x的值; (3)a3x+2y的值. 解:(1)ax+y=ax·ay=-2×3=-6. (2)a3x=(ax)3=(-2)3=-8. (3)a3x+2y=a3x·a2y=(ax)3(ay)2=(-2)3×32=-72.
专题选讲—— 整式的化简与求值
类型一 幂的运算
例1 计算:
(1)(-2x2y)3+8(x2)2·(-x)2·(-y)3; 解:(-2x2y)3+8(x2)2·(-x)2·(-y)3 =-8x6y3-8x6y3 =-16x6y3.
(2)(x4)2÷(x2)2÷x2-x2. 解:(x4)2÷(x2)2÷x2-x2 =x2-x2 =0
方法归纳
1.a2+b2的变形: (1)a2+b2=(a+b)2-2ab; (2)a2+b2=(a-b)2+2ab; (3)a2+b2= 1 [(a+b)2+(a-b)2].
2
2.ab的变形: (1)ab= 1[(a+b)2-(a2+b2)];
2
人教版八年级数学上册第十四章小结与复习

第十四章 整式的乘法与因式分解 (时间:60分钟 满分:100分)一、选择题(本大题共有10小题,每小题3分,共30分) 1.下列各式运算正确的是( )A.532a a a =+B.532a a a =⋅C.632)(ab ab =D.5210a a a =÷ 2. 计算232(3)x x ⋅-的结果是( )A. 56xB. 62xC.62x -D. 56x - 3.计算32)21(b a -的结果正确的是( )A. 2441b a B.3681b a C. 3681b a - D.5318a b - 4. 44221625)(______)45(b a b a -=+-括号内应填( )A 、2245b a +B 、2245b a +C 、2245b a +-D 、2245b a -- 5.如图,阴影部分的面积是( )A .xy 27B .xy 29C .xy 4D .xy 2 6.()()22x a x ax a -++的计算结果是( ) A. 3232x ax a +- B. 33x a -C.3232x a x a +-D.222322x ax a a ++- 7.下面是某同学在一次测验中的计算摘录①325a b ab +=; ②33345m n mn m n -=-;③5236)2(3x x x -=-⋅; ④324(2)2a b a b a ÷-=-; ⑤()235a a =;⑥()()32a a a -÷-=-.其中正确的个数有( )A.1个B.2个C.3个D. 4个 8.下列分解因式正确的是( )A.32(1)x x x x -=-.B.2(3)(3)9a a a +-=-C. 29(3)(3)a a a -=+-.D.22()()x y x y x y +=+-.9. 如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ).A .0B .3C .-3D .110. 若3x =15, 3y =5,则3x y -= ( ).A .5B .3C .15D .10二、填空题(本大题共有7小题,每空2分,共16分) 11.计算(-3x 2y )·(213xy )=__________. 12.计算22()()33m n m n -+--=__________. 13.201()3π+=________14.当x __________时,(x -3)0=1. 15. 若22210a b b -+-+=,则a = ,b =校名 班级 姓名 学号密 封 线装 订 线 内 不 要 答 题16.已知4x 2+mx +9是完全平方式,则m =_________. 17. 已知5=+b a ,3ab =则22a b +=__________. 18. 定义2a b a b *=-,则(12)3**= . 三、解答题(本大题共有7小题,共54分) 19.(9分)计算:(1)34223()()a b ab ÷ (2)))(()(2y x y x y x -+-+.(3)xy xy y x y x 2)232(2223÷+--20.(12分)分解因式:(1) 12abc -2bc 2; (2) 2a 3-12a 2+18a ;(3) 9a(x -y)+3b(x -y); (4) (x +y )2+2(x +y )+1.21.(5分)先化简,再求值:()()()22x y x y x y x ⎡⎤-++-÷⎣⎦,其中x=3,y=122. (5分) 请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.2224()19a x y b +, , ,23.(8分)解下列方程与不等式(1) 3(7)18(315)x x x x-=--;(2)(3)(7)8(5)(1)x x x x+-+>+-.24. (7分)数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300-4)2=3002-2×300×(-4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.25.(8分) 下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4 (第一步)= y2+8y+16 (第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式 B.平方差公式C.两数和的完全平方公式 D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.参考答案1. B;2.D;3. C;4 .D;5.A6.B;7.B;8.C.9.C10.B11.-x3y3;12.2249m n-;13.10914. ≠315.2, 116.12±;17. 1918.-219.(1)32a b;(2)222y xy+(3)2312x y xy--+20.(1)2bc(6a-c);(2)2a(a-3)2;(3) 3(x-y)(3a+b);(4) (x+y+1)2.21.x-y 222.解:答案不惟一,如291(31)(31)b b b -=+-23.(1) 3x = (2) 1x <- 24.错在“-2×300×(-4)”,应为“-2×300×4”,公式用错. ∴2962=(300-4)2=3002-2×300×4 +42=90000-2400+16 =87616.25.(1)C ;(2)分解不彻底;4(2)x -(3)4(1)x -。
人教八年级数学上册《第十四章 小结与复习》课件

拓广探究
练习2 某种产品的原料提价,因而厂家决定对产 品进行提价,现有三种方案: 方案1:第一次提价p%,第二次提价q%;
方案2:第一次提价q%;第二次提价p%;
方案3:第一、二次提价均为 p
+ 2
Байду номын сангаас
q
%.
其中,p、q 是不相等的正数.三种方案哪种提价
最多?
课堂小结
(1)本节课复习了哪些主要内容? (2)你有哪些收获?你觉得还有什么需要注意的地
• 学习重点: 复习整式乘法法则和因式分解,建立本章知识结构.
知识梳理
问题1 计算下列各题并思考:下列各题中都运用
到我们学过的哪些运算法则?它们之间有怎样的关系?
(1)(-2x2y3) ( 2 xy) 3;
(2)( 2a+3b) ( 2a-b) ; (3) 5x ( 2x+1 ) ( x-1 ) ;
体系建构
本章知识结构图:
整式乘法 整式除法
乘法公式 因式分解
典型例题
例1 计算:
(1)( - 5 m + 3 m ) ( - 5 m - 3 m ) ;
(2)( a - 2 ) ( 2a + 2 ) ( 2a 2 + 4 ) 2 ;
(3)( 3a+2b) 2-( 3a-3b) 2;
7
7
(4)( 2 x- 3y+ 1 ) ( - 2 x+ 3y+ 1 ) .
八年级 上册
第十四章 小结与复习
课件说明
• 本章小结构建本章的知识结构,形成知识体系;围 绕本节课的重点,通过典型例题,促使学生在理解 乘法公式结构的基础上灵活运用乘法公式进行计算、 因式分解和解决实际问题.
最新人教版初中八年级数学上册第十四章《整式的乘法与因式分解》精品教案(小结复习课)

解:(1) (x-y)2-8(x2-y2)+16(x+y)2 = (x-y)2-8(x-y)(x+y)+[4(x+y)]2 = (x-y)2-2(x-y)∙4(x+y)+[4(x+y)]2 = [(x-y)-4(x+y)]2 = (-3x-5y)2 = (3x+5y)2 ;
解:(2) (x+2)(x-8)+25 =x2-8x+2x-16+25 =x2-6x+9 =x2-2∙x∙3+32 =(x-3)2 .
本题源自《教材帮》深化Fra bibliotek习 3计算:整数x,y满足方程 2xy+x+y=83,则 x+y 的值为多少? 解析:利用因式分解将等式变形为左边是两个整式的乘积,右边是一个整 数的形式,再求出x,y的值,进而求出x+y的值.
本题的难点是如何将2xy+x+y=83进行变形并因式分解.
本题源自《教材帮》
深化练习 3
本题源自《教材帮》
深化练习 1
若:4x2+mxy+9y2是完全平方式,则m的值为多少?
解:完全平方公式是形如 a2+2ab+b2,a2-2ab+b2 的式子, 将条件中的式子进行变形. ∵4x2+mxy+9y2=(2x)2+mxy+(3y)2,且原式是完全平方式, ∴±mxy=2∙2x∙3y. ∴m=±12.
因式分解: (1) a4-16a2 ;
解:(1) a4-16a2 = a2(a2-16) = a2(a+4)(a-4) ;
(2) -2a2b2+a3b+ab3 ;
人教版八年级数学上册第十四章整式的乘法与因式分解小结与复习教学课件

考点二 整式的运算
例3 计算:[x(x2y2-xy)-y(x2-x3y)] ÷3x2y,其中x=1,y=3.
解析:在计算整式的加、减、乘、除、乘方的运算中,一要注意运算顺序;二要熟练
正确地运用运算法则.
解:原式=(x3y2-x2y-x2y+x3y2) ÷3x2y
=(2x3y2-2x2y) ÷3x2y
例6 把多项式2x2-8分解因式,结果正确的是( C )
A.2(x2-8)
B.2(x-2)2
C.2(x+2)(x-2) D.2x(x- )
4 x
归纳总结
因式分解是把一个多项式化成几个整式的积的形式,它与整式乘法互为逆 运算,因式分解时,一般要先提公因式,再用公式法分解,因式分解要求 分解到每一个因式都不能再分解为止.
3.(1)已知3m=6,9n=2,求3m+2n,32m-4n的值. (2)比较大小:420与1510. 解:(1)∵3m=6,9n=2, ∴3m+2n=3m·32n=3m·(32)n=3m·9n=6×2=12. 32m-4n=32m÷34n=(3m)2÷(32n)2=(3m)2÷(9n)2=62÷22=9. (2) ∵420=(42)10=1610, ∵1610>1510,
=a2-(b-3)2=a2-b2+6b-9. (3)原式=[(3x-2y)(3x+2y)]2
=(9x2-4y2)2=81x4-72x2y2+16y4
11.用简便方法计算
(1)2002-400×199+1992; (2)999×1 001. 解:(1)原式=(200-199)2=1;
(2) 原式=(1000-1)(1000+1) =10002-1 =999999.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.计算: (1)(x+2y)(x2-4y2)(x-2y); (2)(a+b-3)(a-b+3);
(3)(3x-2y)2(3x+2y)2.
解:(1) 原式=(x+2y)(x-2y)(x2-4y2) =(x2-4y2)2=x4-8x2y2+16y4;
(2)原式=[a+(b-3)][(a-(b-3)] =a2-(b-3)2=a2-b2+6b-9.
②完全平方公式:__a_2_±__2__a_b_+__b_2_=_(_a_±___b_)_2_
考点讲练
考点一 幂的运算
例1 下列计算正确的是( D )
A.(a2)3=a5
B.2a-a=2
C.(2a)2=4a
D.a·a3=a4
例2 计算:(2a)3(b3)2÷4a3b4.
解析:幂的混合运算中,先算乘方,再算乘除.
四、乘法公式 1.平方差公式 两数_和_____与这两数__差____的积,等于这两数的 平__方__和__.
(a+b)(a-b) =__a_2-_b_2____
2.完全平方公式
两个数的和(或差)的平方,等于它们的_平__方__和__, 加上(或减去)它们的__积____的2倍.
(a+b)2 =__a_2+__2_a_b_+__b_2 ___
针对训练
12.分解因式:x2y2-2xy+1的结果是(_x_y_-__1_)2__. 13.已知x-2y=-5,xy=-2,则2x2y-4xy2= ___2_0____. 14.已知a-b=3,则a(a-2b)+b2的值为___9_____. 15.已知x2-2(m+3)x+9是一个完全平方式,则m= _-__6_或__0__.
=(2x3y2-2x2y) ÷3x2y
2 xy 2 . 33
当x=1,y=3时,
原式= 2 1 3 2 4 .
3
33
归纳总结
整式的乘除法主要包括单项式乘以单项式、单项式 乘以多项式、多项式乘以多项式以及单项式除以单 项式、多项式除以单项式,其中单项式乘以单项式 是整式乘除的基础,必须熟练掌握它们的运算法则. 整式的混合运算,要按照先算乘方,再算乘除,最 后算加减的顺序进行,有括号的要算括号里的.
解:原式=8a3b6 ÷4a3b4=2a3-3b6-4=2b2.
归纳总结
幂的运算性质包括同底数幂的乘法、幂的乘方、积 的乘方及同底数幂的除法.这四种运算性质是整式 乘除及因式分解的基础.其逆向运用可以使一些计 算简便,从而培养一定的计算技巧,达到学以致用 的目的.
针对训练
1.下列计算不正确的是( D )
a a = (
m )n
mn
____________
3.积的乘方:积的每一个因式分别_乘__方__,再把所
ab a b 得的幂_相__乘__. (
= n
)
nn ____________
二、整式的乘法 1.单项式乘单项式:
(1)将_单__项__式__的__系__数__相乘作为积的系数; (2)相同字母的因式,利用_同__底__数__幂__的乘法,
作为积的一个因式; (3)单独出现的字母,连同它的_指__数___,作为积
的一个因式;
注:单项式乘单项式,积为_单__项__式___.
2.单项式乘多项式: (1)单项式分别_乘__以___多项式的每一项;
实质是转
(2)将所得的积_相__加_____. 注:单项式乘多项式,积为多项式,项
化为单项 式乘单项
7.下列计算中,正确的是( C ) A.(a+b)2=a2-2ab+b2 B.(a-b)2=a2-b2 C.(a+b)(-a+b)=b2-a2 D.(a+b)(-a-b)=a2-b2 8.已知(x+m)2=x2+nx+36,则n的值为( B ) A.±6 B.±12 C.±18 D.±72 9.若a+b=5,ab=3,则2a2+2b2=__3_8_____.
(2) 原式=16(x+2)(x-2)
(3) 原式=-4(a-3)2
课堂小结
乘法公式 (平方差、完全平方公式)
相反变形
形特式殊幂Fra bibliotek的相反变形
因式分解
运
整式的乘法
算
(提公因式、公式法)
性
运互
质
算逆
整式的除法
课后作业
见章末练习
(3)原式=[(3x-2y)(3x+2y)]2 =(9x2-4y2)2=81x4-72x2y2+16y4
11.用简便方法计算
(1)2002-400×199+1992; (2)999×1 001. 解:(1)原式=(200-199)2=1;
(2) 原式=(1000-1)(1000+1) =10002-1 =999999.
精品课件
初中数学人教版八年级上册 实用资料
优翼 课件
八年级数学上(RJ) 教学课件
第十四章 整式的乘法与因式分解
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
要点梳理
一、幂的乘法运算
1.同底数幂的乘法:底数_不__变_____,指数_相___加__.
am ·an =_a__m_+_n__
2.幂的乘方:底数__不__变____,指数_相__乘___.
3.(1)已知3m=6,9n=2,求3m+2n,32m-4n的值. (2)比较大小:420与1510.
解:(1)∵3m=6,9n=2, ∴3m+2n=3m·32n=3m·(32)n=3m·9n=6×2=12. 32m4(n2=)3∵2m÷4203=4n(=(432m))21÷0=(13621n0),2=(3m)2÷(9n)2=62÷22=9.
∵1610>1510,
∴420>1510.
考点二 整式的运算
例3 计算:[x(x2y2-xy)-y(x2-x3y)] ÷3x2y,其中x=1,y=3.
解析:在计算整式的加、减、乘、除、乘方的运算中,一要注
意运算顺序;二要熟练正确地运用运算法则.
解:原式=(x3y2-x2y-x2y+x3y2) ÷3x2y
解:原式=(x2-2xy+y2+x2-y2) ÷2x =(2x2-2xy) ÷2x =x-y.
当x=3,y=1.5时, 原式=3-1.5=1.5.
归纳总结
整式的乘法公式包括平方差公式和完全平方公式,在 计算多项式的乘法时,对于符合这三个公式结构特征 的式子,运用公式可减少运算量,提高解题速度.
针对训练
A.2a3 ÷a=2a2
B. (-a3)2=a6
C. a4 ·a3=a7
D. a2 ·a4=a8
2. 计算:0.252015 ×(-4)2015-8100 ×0.5301.
解:原式=[0.25 ×(-4)]2015-(23)100 ×0.5300 ×0.5
=-1-(2 ×0.5)300 ×0.5 =-1-0.5=-1.5;
16.如图所示,在边长为a的正方形中剪去边长为b的小 正方形,把剩下的部分拼成梯形,分别计算这两个图 形的阴影部分的面积,验证公式是 a2-b_2=__(a_+_b_)_(_a-b). .
b
b
b
b
a
bb a-b
a
a
a
17.把下列各式因式分解: (1)2m(a-b)-3n(b-a); (2)16x2-64; (3)-4a2+24a-36. 解:(1) 原式=(a-b)(2m+3n).
例6 把多项式2x2-8分解因式,结果正确的是( C )
A.2(x2-8) C.2(x+2)(x-2)
B.2(x-2)2 D.2x(x- 4 )
x
归纳总结
因式分解是把一个多项式化成几个整式的积的形式,它 与整式乘法互为逆运算,因式分解时,一般要先提公因 式,再用公式法分解,因式分解要求分解到每一个因式 都不能再分解为止.
针对训练
4.一个长方形的面积是a2-2ab+a,宽为a,则长方形的长
为 a-2b+1 ;
5.已知多项式2x3-4x2-1除以一个多项式A,得商为2x,余
式为x-1,则这个多项式是
x2 2x 1 2
.
6.计算: (1)(-2xy2)2·3x2y·(-x3y4). (2)x(x2+3)+x2(x-3)-3x(x2-x-1) (3)(-2a2)·(3ab2-5ab3)+8a3b2; (4)(2x+5y)(3x-2y)-2x(x-3y); (5)[x(x2y2-xy)-y(x2-x3y)]÷x2y;
考点四 因式分解及应用
例5 下列等式从左到右的变形,属于因式分解的是( B ) A.a(x-y)=ax-ay B.x2-1=(x+1)(x-1) C.(x+1)(x+3)=x2+4x+3 D.x2+2x+1=x(x+2)+1
点拨:(1)多项式的因式分解的定义包含两个方面的条件,第一, 等式的左边是一个多项式;其二,等式的右边要化成几个整式的 乘积的形式,这里指等式的整个右边化成积的形式;(2)判断过程 要从左到右保持恒等变形.
解:(1)原式=-12x7y9 (2)原式=-x3+6x (3)原式=2a3b2+10a3b3 (4)原式=4x2+17xy-10y2 (5)原式=2xy-2
考点三 乘法公式的运用
例4 先化简再求值:[(x-y)2+(x+y)(x-y)] ÷2x,其中 x=3,y=1.5.
解析:运用平方差公式和完全平方公式,先计算括号内的,再 计算整式的除法运算.
五、因式分解
1.因式分解的定定义 把一个多项式化为几个__整__式____的__乘__积____的形式,像
这样的式子变形叫做把这个多项式因式分解,也叫做
把这个多项式分解因式. 2.因式分解的方法
(1)提公因式法