线性代数十三讲

合集下载

拉氏变换和反变换

拉氏变换和反变换

第十三章拉普拉斯变换(Laplace Transformations)本章介绍拉普拉斯变换的定义、性质和反变换的应用;运算电路图的画法;用拉普拉斯变换分析电路。

§13-1 拉普拉斯变换定义教学目的:拉普拉斯变换的定义。

教学重点:拉普拉斯正变换,拉普拉斯变换存在的条件。

教学难点: 用拉普拉斯变换定义求几个常见函数的拉氏变换。

教学方法:课堂讲授。

教学内容:一、引言拉普拉斯拉斯变换可用于求解常系数线性微分方程,是研究线性系统的一种有效而重要的工具。

拉普拉斯拉斯变换是一种积分变换,它把时域中的常系数线性微分方程变换为复频域中的常系数线性代数方程。

因此,进行计算比较简单,这正是拉普拉斯拉斯变换(简称:拉氏变换)法的优点所在。

二、拉普拉斯拉斯变换的定义一个定义在区间的函数,其拉氏变换定义为:e-st dt式中:s=б+jω为复数,有时称变量S为复频率。

应用拉普拉斯拉斯变换进行电路分析有称为电路的复频域分析,有时称为运算法。

F(s)又称为f(t)的象函数,而f(t)称为F(s)的原函数。

通常用“L[ ]”表示对方括号内的函数作拉氏变换。

三、几个常见函数的拉氏变换1.2.§13-2 拉普拉斯变换的基本性质教学目的:本节将介绍拉氏变换的一些基本性质,利用这些基本性质,可以很容易的求得一些较复杂的原函数的象函数,同时,这些基本性质对于分析线性非时变网络也是非常必要的。

教学重点:拉普拉斯变换的性质。

教学难点: 用拉普拉斯变换的性质求得象函数。

教学方法:课堂讲授。

教学内容:一、唯一性定义在区间的时间函数与其拉氏变换存在一一对应关系。

根据可以唯一的确定其拉氏变换;反之,根据,可以唯一的确定时间函数。

唯一性是拉氏变换非常重要的性质,正是这个性质,才是我们有可能将时域中的问题变换为复频域中的问题进行求解,并使在复频域中求得的结果有可能再返回到时域中去。

唯一性的证明从略。

二、线性性质若和是两个任意的时间函数,其拉氏变换分别为和,和是两个任意常数,则有:[证]:根据拉氏变换的定义可得[例]:求的拉氏变换。

《线性代数讲义》课件

《线性代数讲义》课件

在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。

线性代数电子课件 第十三讲 矩阵的秩

线性代数电子课件 第十三讲  矩阵的秩

阶梯形矩阵为 1
6
1
0 4 1
0 0 4 0 0 0
R(B) 3,
故 B 中必有 3 阶非零子式. 且共有 4 个. 计算B的前三行构成的子式
3 2 5 32 5 2 0 52 0 5 3 2 6 6 0 11
25
2
16 0.
6 11
则这个子式便是A 的一个最高阶非零子式.
R( A) 2, R(B) 3.
三、再论矩阵的等价标准形
一个矩阵A总可经过一系列初等变换化为
其中数r就是矩阵A的秩。
等价标准形
Er O
O O mn
r由A唯一确定,它是一个关于初等变换的不变量。
定理2.6 两个同型矩阵等价的充分必要条件是它们的秩
相等。
推论 两个矩阵等价的充分必要条件是它们有相同 的等价标准形。
2 1 0 3 2
例2
求矩阵
B
0 0
3 0
1 0
2 4
5 3
的秩.
0 0 0 0 0
解 B是一个行阶梯形矩阵,其非零行有3行,
B 的所有 4 阶子式全为零.
2 1 3 而 0 3 2 0,
00 4
R(B) 3.
例3
已知
A
1 0
3 2
2 1
2 3
,求该矩阵的秩.
2 0 1 5
(1)Dr中不含第i行; (2)Dr中同时含第i行和第j行; (3)Dr中含第i行但不含第j行;
对 (1),(2) 两种情形,显然B 中与 Dr 对应的 子式 Dr Dr 0,故 R(B) r.
对情形 (3),
Dr ri krj ri k rj Dr kDˆ r ,
若Dˆ r 0, 因 Dˆ r 中不含第 i 行知 A 中有不含第i 行的 r 阶 非零子式, R(B) r.

线性代数第13讲

线性代数第13讲

8
§3 相似矩阵
9
定义4.9 设A,B皆为n阶方阵, 若存在n阶可 定义 逆阵U, 使得 U1AU=B, 则称矩阵A与B相似 相似. 相似 对A进行运算U1AU, 称对A进行相似变 相似变 换. 由定义可知: 若矩阵A与B相似, 则A与B 等价.
10
相似矩阵有诸多性质: 若U1AU=B,则 (1) A与B有相同的行列式. (只要在等式两边取行列式, 便得证). (2) A与B有相同的可逆性, 当它们可逆时, 其逆阵也相似. (可逆时, 只要在等式两边取逆, 便得证) (3) A与B有相同的秩. (因A的两旁乘的是可逆阵, 可逆阵与矩阵 相乘时, 不改变那个矩阵的秩)
25
2 A(ξ1 , ξ 2 , ξ 3 ) = (ξ1 , ξ 2 , ξ 3 ) 2 4 由于ξ1,ξ2,ξ3线性无关, 故矩阵(ξ1,ξ2,ξ3)是 可逆矩阵, 则有 2 1 ( ξ1 , ξ 2 , ξ 3 ) A( ξ1 , ξ 2 , ξ 3 ) = 2 4
14
定义4.10 若能把方阵A相似变换到对角 阵D, 即存在可逆阵U, 使U1AU=D, 则称 A可以对角化 否则, 就称A不能对角化 可以对角化. 不能对角化. 可以对角化 不能对角化
15
设可逆矩阵 U=(α1,Λ ,αn), 即把 U 按列分块,
λ1 ,,则 D= O λn 1 U |A|<0, 证明: A必可 对角化. 证明 |A|=λ1λ2<0. 因为复根必成对共轭出现, 故λ1与λ2不可 能是复的, 故λ1与λ2为实根, 由λ1λ2<0, 知 λ1≠λ2. 于是由推论4.6知: 二阶矩阵有二个 单根, 则必可对角化.
31
例4.14 设A是n阶方阵. λ=2,4,Λ,2n是A的 n个特征值. 求|A3E|. 解 λEA=(λ3)E(A3E). 上式表明: λ是A的特征值λ3是A3E 的特征值. 因为A的特征值是2,4,Λ,2n, 故 A3E的特征值是1,1,3,Λ,(2n3). 所以 |A3E|=1γ1γ3Λ(2n3).

基础30讲线代和线代辅导讲义

基础30讲线代和线代辅导讲义

基础30讲线代和线代辅导讲义一、线性代数的基础概念1.1 矩阵和向量•矩阵的定义和基本运算•向量的定义和基本运算•线性组合和线性相关性1.2 线性方程组•齐次线性方程组和非齐次线性方程组•列向量和矩阵的关系•矩阵的秩和解空间的性质二、矩阵的特征值和特征向量2.1 特征值和特征向量的定义•特征值和特征向量的基本概念•特征方程和特征多项式2.2 对角化和相似矩阵•对角化矩阵的性质和条件•相似矩阵的定义和性质•可对角化的判定条件2.3 特征值的计算方法•特征值的代数重数和几何重数•特征值计算的方法:特征方程、特征多项式、行列式等三、线性变换和线性映射3.1 线性变换和线性映射的定义•线性变换和线性映射的概念•线性变换和线性映射的基本性质:保持向量相加和标量乘积不变3.2 标准矩阵和基变换•线性变换和线性映射的表示:标准矩阵•基变换和基变换矩阵的求解3.3 线性变换和线性映射的应用•线性变换和线性映射在几何中的应用•线性变换和线性映射在工程中的应用四、矩阵的奇异值分解4.1 奇异值分解的定义•奇异值和奇异向量的基本概念•奇异值分解的意义和应用4.2 奇异值的计算方法•奇异值计算的方法:特征值分解、SVD分解等•奇异值的几何和代数性质4.3 矩阵的逆和伪逆•逆矩阵和伪逆矩阵的定义和性质•奇异值分解和矩阵的逆关系以上是关于基础30讲线性代数和线性代数辅导讲义的详细内容介绍。

通过学习这些内容,你将对线性代数的基础概念、矩阵的特征值和特征向量、线性变换和线性映射以及矩阵的奇异值分解有更深入的理解和应用能力。

无论是在理论研究中还是在实际问题中,线性代数都起着非常重要的作用。

希望这些讲义能够帮助你更好地掌握线性代数的知识,提高数学建模和问题求解的能力。

线性代数完整版ppt课件

线性代数完整版ppt课件
a11x1 a12x2 b1 a21x1 a22x2 b2
求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
a12b2 a12a 21 b1a 21 a12a 21
请观察,此公式有何特点? Ø分母相同,由方程组的四个系数确定. Ø分子、分母都是四个数分成两对相乘再
主对角线 a 1 1 a 1 2 a 1 3
a 2 1 a 2 2 a 2 3
a11a22a33a12a23a31a13a21a32
副对角线 a 3 1 a 3 2 a 3 3
a13a22a31a12a21a33a11a23a32
称为三阶行列式.
二阶行列式的对角线法则
并不适用!
.
12
三阶行列式的计算 ——对角线法则
( a a a a ) x a b b a 12 12 12 21 2 12 11 21
当 a 1a 1 2 2a 1a 时2 2,1 该0 方程组有唯一解
x b1a22a12b2
1 a a a a
11 22
12 21
x2
a11b2 b1a21 a11a22a12a21
.
6
二元线性方程组
为列标,表明元素位于第j
列. 8
二阶行列式的计算 ——对角线法则
主对角线 a 1 1 副对角线 a 2 1
a 12 a 22
a11a22a12a21
即:主对角线上两元素之积-副对角线上两元素之积
.
9
二元线性方程组
a11x1 a12x2 a21x1 a22x2
b1 b2
若令
D a11 a12 a21 a22
显然 P n n ( n 1 ) ( n 2 )3 2 1 n !

线性代数讲义正式版


3:行列式——由 n2 个数组成的下列记号
a11 a12 ... a1n
D

a21
a22
...
a2 n
,称为 n 阶行列式,规定
an1 an2 ... an2
D 1 a a a j1 j2 jn
( j1 j2 jn )
1 j1 2 j2
njn
4:余子式与代数余子式——把行列式
1
郑老师线代核心讲义 第五节:线性方程组的性质........................................................................................................ 29 第六节:典型例题:.................................................................................................................... 31 第五章 特征值与特征向量................................................................................................................ 39 第一节:基本概念........................................................................................................................ 39 第二节:特征值与特征向量的性质............................................................................................... 40 第三节:矩阵相似........................................................................................................................ 43 第四节:相似及对角化性质........................................................................................................ 43 第五节:非实对称阵对角化步骤................................................................................................ 43 第六节:求特征值的方法............................................................................................................ 44 第七节:典型例题........................................................................................................................ 46 第六章 二次型.................................................................................................................................... 56 第一节 二次型及其标准型.......................................................................................................... 56 第二节:如何化二次型为标准二次型........................................................................................ 58 第三节 矩阵之间的三大关系.................................................................................................... 59 第四节 正定矩阵与正定二次型.................................................................................................. 63

线性代数知识点

考研数学知识点-线性代数第一讲 基本知识二.矩阵和向量 ① A ② ( A③c( + + A 1.线性运算与转置B B + =) B 反对称矩阵B +A +C = A + ( B + C ) 初等变换分 ) =cA + cB ( c + d ) A = cA +dAA T= 三.矩阵的初等变换,阶梯形矩阵 ⎧ ⎨−A 。

初等行变换初等列变换⎩ 三类初等行变换 ④c ( dA ) = ( cd )A ①交换两行的上下位置⑤ cA = 0 ⇔ c = 0 或 A = 0 。

A → B向量组的线性组合 ②用非零常数 c 乘某一行。

③把一行的倍数加到另一行上(倍加变换)α ,α , Λ ,α ,1 2 s 阶梯形矩阵⎛4 1 0 2 0 ⎞c α + c α + Λ + c α 。

1 12 2 s s ⎜ ⎟ 1 0⎜ 0 − 1 2 5 1 ⎟转置2 1⎜ ⎟0 0 0 2 3 ⎜ ⎟ 4 3 ⎜ ⎟ A 的转置 A T (或 A ′ )0 0 0 0 0 ⎝ ⎠T ①如果有零行,则都在下面。

T ( A ) = A ②各非零行的第一个非 0 元素的列号自上而下严格 单调上升。

TT T ( A ± B ) = A ± B或各行左边连续出现的 0 的个数自上而下严格单调 T T 上升,直到全为 0 。

( c A ) = c ( A ) 。

台角:各非零行第一个非 0 元素所在位置。

简单阶梯形矩阵:3. n 阶矩阵3.台角位置的元素都为 1n 行、 n 列的矩阵。

4.台角正上方的元素都为 0。

对角线,其上元素的行标、列标相等 a , a ,Λ 11 22 每个矩阵都可用初等行变换化为阶梯形矩阵和简单 ⎛ * 0 0 ⎞ ⎜ ⎟ 阶梯形矩阵。

对角矩阵 ⎜ 0 * 0 ⎟ 如果 A 是一个 n 阶矩阵⎜ ⎟ 0 0 * ⎝ ⎠ A 是阶梯形矩阵 ⇒ A 是上三角矩阵,反之不一定,如⎛ 3 0 0 ⎞ ⎜ ⎟ 数量矩阵 0 3 0 = 3E ⎛ 0 0 1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 0 1 0 是上三角,但非阶梯形 0 0 3 ⎜ ⎟ ⎝ ⎠ ⎜ ⎟ 0 0 1 ⎝ ⎠⎛ 1 0 0 ⎞ ⎜ ⎟ 单位矩阵 ⎜ 0 1 0 ⎟ E 或I 四.线性方程组的矩阵消元法 ⎜ ⎟ 0 0 1 ⎝ ⎠ 用同解变换化简方程再求解三种同解变换:⎛ * * * ⎞⎜ ⎟ ①交换两个方程的上下位置。

线性代数考研讲义完整版

考研数学线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三 两个线性方程组的解集的关系 附录四 06,07年考题第一讲 基本概念1.线性方程组的基本概念 线性方程组的一般形式为: a 11x 1+a 12x 2+…+a 1n x n =b 1, a 21x 1+a 22x 2+…+a 2n x n =b 2, … … … … a m1x 1+a m2x 2+…+a mn x n =b m ,其中未知数的个数n 和方程式的个数m 不必相等.线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足:当每个方程中的未知数x i 都用k i 替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组.n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量 (1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由mn个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个mn型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个45矩阵.对于上面的线性方程组,称矩阵a11 a12… a1na11a12… a1nb1A= a21 a22… a2n 和(A|)= a21 a22… a2n b2…………………a m1 am2… amnam1am2… amnbm为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2, ,an的向量可表示成a1(a1,a2, ,an)或 a2,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1n 矩阵,右边是n1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个mn 的矩阵的每一行是一个n 维向量,称为它的行向量; 每一列是一个m 维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为1,2, ,n 时(它们都是表示为列的形式!)可记A =(1,2, ,n ).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个mn 的矩阵A 和B 可以相加(减),得到的和(差)仍是mn 矩阵,记作A +B (A -B ),法则为对应元素相加(减).数乘: 一个mn 的矩阵A 与一个数c 可以相乘,乘积仍为mn 的矩阵,记作c A ,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律: ① 加法交换律: A +B =B +A .② 加法结合律: (A +B )+C =A +(B +C ).③ 加乘分配律: c(A +B )=c A +c B .(c+d)A =c A +d A . ④ 数乘结合律: c(d)A =(cd)A . ⑤ c A =0 c=0 或A =0.转置:把一个mn的矩阵A行和列互换,得到的nm的矩阵称为A的转置,记作A T(或A).有以下规律:① (A T)T=A.② (A+B)T=A T+B T.③ (c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时, T表示行向量,当是行向量时, T表示列向量.向量组的线性组合:设1,2,…,s是一组n维向量, c1,c2,…,cs是一组数,则称c 11+c22+…+css为1,2,…,s的(以c1,c2,…,cs为系数的)线性组合. n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|).(2)用(B|)判别解的情况:如果最下面的非零行为(0,0, ,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|)的零行,得到一个n×(n+1)矩阵(B0|0),并用初等行变换把它化为简单阶梯形矩阵(E|),则就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵A是阶梯形矩阵.(B) A是上三角矩阵A是阶梯形矩阵.(C) A是上三角矩阵A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲 行列式一.概念复习 1. 形式和意义形式:用n 2个数排列成的一个n 行n 列的表格,两边界以竖线,就成为一个n 阶行列式:a 11 a 12 … a 1na 21 a 22 … a 2n … … … . a n1 a n2 … a nn如果行列式的列向量组为1,2, … ,n ,则此行列式可表示为|1,2, … ,n |. 意义:是一个算式,把这n 2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 2阶和3阶行列式的计算公式: a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 . a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33. a 31 a 32 a 33一般地,一个n 阶行列式 a 11 a 12 … a 1na 21 a 22 … a 2n … … … a n1 a n2 … a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n的逆序数(意义见下面),则项nnj j j a a a 2121所乘的是.)1()(21nj j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********,(436512)=3+2+3+2+0+0=10. 至此我们可以写出n 阶行列式的值: a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n nnj j j j j j j j j a a a τ-∑… … … a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | . ② 某一行(列)的公因子可提出. 于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如|,1+2|=|,1|+|,2|.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0. ⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0. ⑦ 如果A 与B 都是方阵(不必同阶),则 A * = A O =|A ||B |.O B * B范德蒙行列式:形如1 1 1 … 1 a 1 a2 a3 … a na 12 a 22 a 32 … a n 2… … … …a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于因此范德蒙行列式不等于0 a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等. 4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A |)作初等行变换,使得A 变为单位矩阵:(A |)(E |), 就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是|A |0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1 a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 41 1 1例3 1+x11 1 .1 1+x21 1 1+x131 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x4和x3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A=(, 1, 2 ,3),B=(, 1, 2 ,3),|A| =2, |B|=3 ,求|A+B| .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A11=-9,A12=3,A13=-1,A14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a n b 1 c 2 0 … 0 0 证明 0 b 2 c 3 0 0 =11111(1)ni i i i n i b b a c c --+=-∑.… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出). 例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111nni i i i i n i i a c c c a b c c -+==-∑∏.… … … … b n … 0 c n提示: 只用对第1行展开(M 1i 都可直接求出). 另一个常见的n 阶行列式: 例13 证明a+b b 0 … 0 0 a a+b b … 0 0… … … … = 11n n nn i ii a b a b a b ++-=-=-∑(当ab 时).0 0 0 … a+b b 0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题 例14 设有方程组x 1+x 2+x 3=a+b+c, ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等. (2)在此情况求解. 参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10). 例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3. 例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c). 例5 1-a+a 2-a 3+a 4-a 5. 例6 9,-6 例7 1,-10. 例8 40.例9 x=0,y=3,z=-1. 例10 -28.例14 x 1=a,x 2=b,x 3=c..第三讲 矩阵一.概念复习1. 矩阵乘法的定义和性质定义当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB.AB 的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设 a11 a12… a1nb11b12… b1sc11c12… c1sA= a21 a22... a2n B= b21 b22... b2s C=AB=c21 c22 (2)………………………am1 am2… amn, bn1bn2… bns, cm1cm2… cms,则c ij =ai1b1j+ai2b2j+…+ainbnj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A0推不出B=C.(无左消去律)由BA=CA和A0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律 A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质 (c A)B=c(AB).③ 结合律 (AB )C = A (BC ). ④ (AB )T=B TA T.2. n 阶矩阵的方幂和多项式任何两个n 阶矩阵A 和B 都可以相乘,乘积AB 仍是n 阶矩阵.并且有行列式性质:|AB |=|A ||B |.如果AB =BA ,则说A 和B 可交换.方幂 设k 是正整数, n 阶矩阵A 的k 次方幂A k 即k 个A 的连乘积.规定A=E .显然A 的任何两个方幂都是可交换的,并且方幂运算符合指数法则: ① A k A h = A k+h . ② (A k )h = A kh .但是一般地(AB )k 和A k B k 不一定相等! n 阶矩阵的多项式设f(x)=a m x m +a m-1x m-1+…+a 1x+a 0,对n 阶矩阵A 规定 f(A )=a m A m +a m-1A m-1+…+ a 1A +a 0E .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有: (AB )2=A 22AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22 A 21 A 22 B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22要求A ij 的列数B jk 和的行数相等. 准对角矩阵的乘法: 形如A 1 0 ... 0 A = 0 A 2 0… … … 0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A= 0 A2 ... 0 , B= 0 B2 0………………0 0 …A k 0 0 …B k如果类型相同,即A i和B i阶数相等,则A1B1 0 0AB = 0 A2B2 … 0 .………00 …A k B k(2)乘积矩阵的列向量组和行向量组设A是mn矩阵B是ns矩阵.A的列向量组为1,2,…,n,B的列向量组为1,2,…,s, AB的列向量组为1,2,…,s,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):①AB的每个列向量为:i=A i,i=1,2,…,s.即A(1,2,…,s)=(A1,A2,…,A s).② =(b1,b2,…,bn)T,则A= b11+b22+…+b nn.应用这两个性质可以得到:如果i =(b1i,b2i,…,bni)T,则i=A I=b1i1+b2i2+…+b nin.即:乘积矩阵AB的第i个列向量i是A的列向量组1,2,…,n的线性组合,组合系数就是B的第i个列向量i的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(,,), C=(+2-,3-+,+2),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(ij):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设 B=(1,2,…,s),则 X也应该有s列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E,BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0B=0;AB=ACB=C.(左消去律);BA=0B=0;BA=CAB=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=CB=A-1C. BA=CB=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆|A|0.证明“”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|0. (并且|A-1|=|A|-1.) “”因为|A|0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=EBA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21… An1A*= A12 A22… A n2 =(A ij)T.………A1n A2n… Amn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A; n=2时,(A*)*=A.二典型例题1.计算题例1 =(1,-2,3) T,=(1,-1/2,1/3)T, A= T,求A6.讨论:(1)一般地,如果n阶矩阵A= T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T= -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,,0,a)T, a<0, A=E-T, A-1=E+a-1 T,求a. (03三,四)④ n维向量=(1/2,0,,0,1/2)T, A=E- T, B=E+2 T,求AB. (95四)⑤ A=E- T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.例4设A为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足A1=1+2+3, A2=22+3, A3=22+33.求作矩阵B,使得A(1,2,3)=(1,2,3)B. (2005年数学四)例5设3阶矩阵A=(1,2,3),|A|=1,B=(1+2+3,1+22+33,1+42+93),求|B|.(05)例6 3维向量1,2,3,1,2,3满足1+3+21-2=0,31-2+1-3=0,2+3-2+3=0,已知1,2,3|=a,求|1,2,3|.例7设A 是3阶矩阵, 是3维列向量,使得P =(,A ,A 2)可逆,并且A 3=3A -2A 2.又3阶矩阵B 满足A =PBP -1.(1)求B .(2)求|A +E |.(01一)2 1 0例8 3阶矩阵A ,B 满足ABA *=2BA *+E ,其中A = 1 2 0 ,求|B |.(04一) 0 0 1 例9 3 -5 1设3阶矩阵A = 1 -1 0 , A -1XA =XA +2A ,求X . -1 0 2 例10 1 1 -1设3阶矩阵A = -1 1 1 , A *X =A -1+2X ,求X . 1 -1 1例11 4阶矩阵A ,B 满足ABA -1=BA -1+3E ,已知 1 0 0 0A *= 0 1 0 0 ,求B . (00一) 1 0 1 0 0 -3 0 8例12 3 0 0 1 0 0已知A = 2 1 0 , B = 0 0 0 , XA +2B =AB +2X ,求X 11. 2 1 3 0 0 -1例13 设1=(5,1,-5)T ,2=(1,-3,2)T ,3=(1,-2,1)T ,矩阵A 满足 A 1=(4,3) T, A 2=(7,-8) T, A 3=(5,-5) T, 求A .2.概念和证明题例14 设A 是n 阶非零实矩阵,满足A *=A T .证明: (1)|A |>0.(2)如果n>2,则|A |=1.例15 设矩阵A =(a ij )33满足A *=A T ,a 11,a 12,a 13为3个相等的正数,则它们为 (A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三) 例16 设A 和B 都是n 阶矩阵,C = A 0 ,则C *=0 B(A) |A |A * 0 . (B) |B |B * 0 .0 |B |B * 0 |A |A *(C) |A |B * 0 . (D ) |B |A * 0 .0 |B |A * 0 |A |B *例17 设A 是3阶矩阵,交换A 的1,2列得B ,再把B 的第2 列加到第3 列上,得C .求Q ,使得C =AQ .例18 设A 是3阶可逆矩阵,交换A 的1,2行得B ,则 (A) 交换A *的1,2行得到B *. (B) 交换A *的1,2列得到B *. (C) 交换A *的1,2行得到-B *.(D) 交换A *的1,2列得到-B *.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆. 讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A2=A T =1.(2)T =1 A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆 E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E. (1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab0,证明(1) A-b E和B-a E都可逆.(2) A可逆 B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例1 35A=35 -2 1 –2/3 .3 -3/2 1① 3.② a2(a-2n). ③ -1. ④ E. ⑤ 4.例2 O.例3 (1)提示: A n=A n-2+A2-EA n-2(A2-E)=A2-E A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 . k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 . k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例 7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例 9 -6 10 4X= -2 4 2 .-4 10 0例 10 1 1 0(1/4) 0 1 1 .1 0 1例 11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例 12 1 0 02 0 0 .6 -1 -1例 13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例 17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19 E(i,j).例22 提示:用克莱姆法则.例如证明,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例 24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A -b E )(B -a E ).例28 (A).第四讲 向量组的线性关系与秩一.概念复习1. 线性表示关系设1,2,…,s 是一个n 维向量组.如果n 维向量等于1,2,…,s 的一个线性组合,就说可以用1,2,…,s 线性表示.如果n 维向量组1,2,…,t 中的每一个都可以可以用1,2,…,s 线性表示,就说向量1,2,…,t 可以用1,2,…,s 线性表示.判别“是否可以用1,2,…,s 线性表示 表示方式是否唯一”就是问:向量方程x 11+x 22+…+x ss =是否有解解是否唯一用分量写出这个向量方程,就是以1,2,…,s 为增广矩阵的线性方程组.反之,判别“以A 为增广矩阵的线性方程组是否有解解是否唯一”的问题又可转化为“是否可以用A 的列向量组线性表示 表示方式是否唯一”的问题. 向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB 的每个列向量都可以表示为A 的列向量组的线性组合,从而AB 的列向量组可以用A 的列向量组线性表示;反之,如果向量组1,2,…,t 可以用1,2,…,s 线性表示,则矩阵(1,2,…,t )等于矩阵(1,2,…,s )和一个st 矩阵C 的乘积. C 可以这样构造: 它的第i 个列向量就是i对1,2,…,s 的分解系数(C 不是唯一的).向量组的线性表示关系有传递性,即如果向量组1,2,…,t 可以用1,2,…,s 线性表示,而1,2,…,s 可以用1,2,…,r 线性表示,则1,2,…,t 可以用1,2,…,r 线性表示.当向量组1,2,…,s 和1,2,…,t 互相都可以表示时就说它们等价并记作1,2,…,s1,2,…,t .。

线性代数知识点全面总结PPT课件


量 组 的
维 向 量 线性相关
判定 概念 判定
充要条件
线
概念
充分条件
性 相
线性无关
判定
充要条件 充分条件
关 性
概念

极大无关组 求法

概念

向量空间的基

线 Ax = b

有解判定R(A)≠R(B)无解 的
性 方 程 组
初行变换等阶梯形
R(A)=R(B)有解 结

R(A)=n仅有零解 基
Ax = 0
2、矩阵的乘法
(1)(AB)C = A ( BC ) ;
(2) A ( B + C ) =
(3) (kA)(lB) = (kl)AB;
(4) AO =OA = O.
3、矩阵的转置
(1)(AT)T = A; (3)(kA)T =kAT;
(2) (A+B)T = AT+BT; (4) (AB)T = BTAT.
A
A12
A22
An1
An2
A1n A2n
Ann
概 如果AB=BA=E,则A可逆, 念 B是A的逆矩阵.
用定义
逆 矩求
用伴随矩阵 A1 1 A
A


分块对 A
角矩阵
0
0 1 A1
B
0
0 0
B1
B
A1 0
0
A1
B1
0
|A| ≠ 0 , A
证 法
可|A逆| =.0 , A不可 逆AB .= E , A与B互逆.
总 有 解R(A)<n有非零解
A+B = ( aij + biAj与) B同型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1 2 . 2 1
三、正交矩阵与正交变换
1.定义4
若n阶A满 足: AT A E 即A1 AT 则 称A为 正 交 矩 阵 .
α 2 αn
T α1 α1 T α 2 α1 α Tα n 1 T T α1 α 2 α1 α n T T α 2 α 2 α 2 αn T T αn α 2 αn αn
例5
判别下列矩阵是否为正交阵.
1 9 8 2 9 4 9 8 9 1 9 4 9 4 9 4 . 9 7 9
1 2 1 3 1 1 1 2 1 1 2 , 13 1 2 1
1 例3 已知 a 1 1 , 求一组非零向量a 2 , a 3 , 使 a 1 , a 2 , 1 a 3 两两正交. , a 3 应满足方程aT x 0,即 1 解 a2 x1 x 2 x 3 0.
它的基础解系为 1 0 1 0 , 2 1 . 1 1
4.向量空间的正交基
若 1 , 2 , , r 是向量空间V的一个基, 且 1 , 2 , , r 是两两正交的非零向量 , 则称 1 , 2 , , r 是 组 向量空间V的正交基.
例1 已知3维向量空间R3中两个向量 a1(1 1 1)T a2(1 2 1)T 正交 试求一个非零向量a3使a1 a2 a3两两正交
把基础解系正交化,即为所求.亦即取
[ 1 , 2] 1. a2 1 , a 3 2 [ 1 , 1]
其中 : [ , ] 1, [ , ] 2, 于是得
1 2 1 1
1 0 1 1 a2 0 , a3 1 0 1 T α2 T A A α 1 αT n
1 0 E 0
0 1 0

0 0 1
(α i , α i ) 1,(α i , α j ) 0 (i j)
A为正交矩阵的充要条件是 A的列向量都 定理 是单位向量且两两正交.
说明 内积是两个向量之间的一种运算 其结果是一个实数 用 矩阵记号表示 当x与y都是列向量时 有 [x y]xTy
2.内积的运算性质
其中 x, y, z 为n维向量, 为实数 : (1) x , y y , x ;
( 2) ( 3)
x, y x, y; x y, z x, z y, z ;
[e i , e j ] 0, i j且i , j 1,2,3,4. 由于 [e i , e j ] 1, i j且i , j 1,2,3,4.
所以 e1 , e 2 , e 3 , e 4为R 4的一个规范正交基 .
同理可知
1 0 0 0 0 1 0 0 1 , 2 , 3 , 4 . 0 0 1 0 0 0 0 1
也为R4的一个规范正交基 .
施密特正交化方法
设a1 a2 ar是向量空间V中的一个基 取向量组
b1 a1
[b1, a2 ] b2 a2 b1 [b1, b1] [b1, ar ] [b2, ar ] [br 1, ar ] br ar b1 b2 br 1 [b1, b1] [b2, b2 ] [br 1, br 1] 容易验证b1 b2 br两两正交 且b1 b2 br与a1 a2 ar 等价
8 9 1 9 4 9
8 9 1 9 4 9
4 9 4 9 7 9
1 9 8 9 4 9
4 9 4 9 7 9
1 9 8 9 4 9
8 9 1 9 4 9
把b1 b2 br单位化 即得V的一个规范正交基
e1 1 b1 e2 1 b2 er 1 br || b1|| || b2 || || br ||
例2 设a1(1 2 1)T a2(1 3 1)T a3(4 1 0)T 试用施 密特正交化过程把这组向量规范正交化 解 令b1a1 1 4 1 5 1 1 4 1 5 1 [b1, a2] b1, a2] b2 a2 [ b1 3 2 1 b2 a2 [b , b ] b1 3 6 2 3 1 1 1 1 1 6 1 3 1 [b1, b1] 1 1 4 1 1 5 1 1 [b1, a3] [b2, a] 4 1 1 1 b3 a3 [b1, a3] b1 [b2, a] b2 1 1 2 5 1 2 0 b3 a3 [b1, b1] b1 [b2, b2] b2 1 3 2 3 1 2 0 0 1 1 1 [b1, b1] [b2, b2] 0 3 1 3 1 1 再令

1 2 1 3 1 1 1 2 1 1 2 13 1 2 1
考察矩阵的第一列和第二列,
由于
1 1 1 1 1 1 0, 3 2 2 2
所以它不是正交矩阵.
由于
1 9 2 8 9 4 9
所以P是正交矩阵.
正交矩阵的性质 (1)若A为正交阵 则A1AT也是正交阵 且|A|1 (2)若A和B都是正交阵 则AB也正交阵 正交变换 若P为正交矩阵 则线性变换yPx称为正交变换
5.规范正交基
定义3 设n维向量 e1 , e2 , , er 是向量空间 V (V R n )的一个基, 如果e1 , e2 , , er两两正交且都是单位 向量, 则称e1 , e2 , , er 是 V的一个规范正交基 .
例如
1 2 1 2 0 0 1 2 1 2 0 0 e1 , e 2 0 , e 3 1 2 , e4 1 2 . 0 1 2 1 2 0 0
(4)[ x, x] 0, 且当x 0时有[ x, x] 0.
3.向量的长度

2 2 2 || x || [ x, x] x1 x2 xn
||x||称为n维向量x的长度(或范数)
特别地,当 1时, 称 x 为 单位向量 x .
向量的长度的性质 设x y为n维向量 为实数 则 (1)非负性 当x0时 ||x||0 当x0时 ||x||0 (2)齐次性 ||x||||x|| (3)三角不等式 ||xy||||x||||y||
1 1 1 b1 1 2 e b2 1 1 e b3 1 0 e1 2 3 || b1 || || b2 || || b3 || 6 1 3 1 2 1 e1 e2 e3即为所求

设a3(x1 x2 x3)T 则a3应满足 a1Ta30 a2Ta30 即a3应满足齐次线性方程组
x1 1 1 1 x 0 1 2 1 2 0 x 3 r r 1 1 1 ~ 1 1 1 ~ 1 0 1 由 A 1 2 1 0 3 0 0 1 0 得基础解系(1 0 1)T 取a3(1 0 1)T即合所求
1 2 1 2 0 0 1 2 1 2 0 0 e1 , e 2 0 , e 3 1 2 , e4 1 2 . 0 1 2 1 2 0 0
二、正交向量组与正交基
1.正交的概念
当[ x , y] 0时, 称向量x与y 正交.
由定义知, 若 x 0, 则 x 与任何向量都正交 .
2.正交向量组的概念
e1 (1,0,,0), e2 (0,1,,0),, en (0,0,,1).
一组两两正交的非零向量构成的向量组称为正交向量组.
4 9 1 4 0 9 0 7 9
T
0 1 0
0 0 1
所以它是正交矩阵.
例6 验证矩阵
1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 是正交矩阵. P 2 1 1 0 0 2 2 1 1 0 0 2 2 解 P的每个列向量都是单位 向量, 且两两正交,
本章主要讨论方阵的特征值与特征向量、方阵 的相似对角化和二次型的化简问题 其中涉及向量 的内积、长度及正交等知识 本节先介绍这些知识
§1 向量的内积
一、向量的内积:
1.向量的内积定义 设有n 维向量
x1 y1 x2 y2 x , y , x y n n 令 x, y x1 y1 x2 y2 xn yn 称 x , y 为向量 x 与 y 的 内积 .
为正交向量组。 也称为单位正交组或标准正交组。
3.正交向量组的性质 定理: 设1 , 2 ,, m为 正 交 向 量 组 1 , 2 ,, m ,则
线 性 无 关 。 回忆:如何证明一组向量线性无关?
问题:线性无关的向量组是否为正交组?
不是 !
反例:1 (1,0,1), 2 (0,0,1)
相关文档
最新文档