谷氨酸棒状杆菌生产谷氨酸的调节控制

谷氨酸棒状杆菌生产谷氨酸的调节控制
谷氨酸棒状杆菌生产谷氨酸的调节控制

谷氨酸棒状杆菌生产谷氨酸的调节控制

1 菌种的选育

目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、黄色短杆菌、噬氨短杆菌等。我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。在谷氨酸发酵中,如果能够改变细胞膜的通透性,使谷氨酸不断地排到细胞外面,就会大量生成谷氨酸。研究表明,影响细胞膜通透性的主要因素是细胞膜中的磷脂含量。因此,对谷氨酸产生菌的选育,往往从控制磷脂的合成或使细胞膜受损伤入手,以提高细胞膜对谷氨酸的通透性,如生物素缺陷型菌种的选育。

发酵中原料要消耗在如下三个方面:第一、供菌体增殖,生成足够量的菌体,使其干重占到发酵液的1.0%1.5%,这是产酸前提与基础。第二、生成谷氨酸。第三、由于菌体代谢多支路及发酵条件控制不当而产生的一些其他副产物如乳酸、酮酸、其他氨基酸等等及一些原料被分解而随空气逸出。【1】

2 糖液质量是发酵的基础

糖液质量是发酵成功的基础" 这是氨基酸发酵业界同仁的共识。氨基酸发酵所需的糖液不同

于麦芽糖、结晶糖。有它自身特点,其糖液DX、DE、透光率高而且经糖谱分析,糖(及以上的)值要低,防止发生复合反应。为达到上述要求,作出符合发酵所需要的优质糖液,可按以下条件实施生产调控:

2.1一次喷射双酶法%

2.2选用高效优质酶和喷射器-水热器);

2.3 液化:调浆ph5.8~6.0 液化维持温度100~95%;液化维持时间100~120min 2.4糖化:ph4.1~4.3 糖化温度60% 糖化时间32~36h

2.5过滤:高液位压差法

3 接种量和种子培养扩大级数

为提高发酵罐中菌的增殖速度,菌体数尽快达到高峰,使产物的合成时间提前,力争采用较大种量。

大种量可使发酵时间缩短,但种量过大,也使菌体生长过快,料液粘度增加,导致DO不足,影响产物合成。同时要消耗过量的糖和营养,致使糖酸转化率下降。

一般常用接种量,谷氨酸发酵为5%~10%赖氨酸为10~15%更高者达20%

代谢产物的合成是靠菌来完成,菌体量越多自然产量越大,但菌体的活力必须保持在最佳状态。为提高单位容积内菌体数量可采用高细胞密度培养方式。但要防止种龄过长,菌体过早衰退。

为提高种量,缩短种龄,增强菌体活力,赖氨酸和谷氨酸发酵也可采取三级种子扩大培养方法。如谷氨酸发酵罐" 一级种瓶→二级4m3种罐→三级40m3种子罐→386m3发酵罐" 多一级种子扩大,应重视对染菌的控制。

4 溶氧水平和生物素用量

。理论上,对于生物索缺陷型菌株,增大用量可提高菌体浓度,在适当的发酵控制下,当菌体内生物素

被消耗至“贫乏”水平,菌体可大量合成谷氨酸,从而达到提高代谢产物浓度的目的。但是,谷氮酸产生菌的生长和代谢往往还受到其它因素影响,在目前的发酵条件下,发酵罐的溶氧条件就是制约因素之一

为提高生物素缺陷型菌株发酵生产谷氨酸的单罐产量,对发酵罐搅拌器和高生物素谷氨酸发酵工艺进行研究。试验结果表明:将 100 in 发酵罐原有 6弯叶圆盘涡轮搅拌器改造为 6半圆叶圆盘涡轮搅拌器,并对其尺寸进行优化。发酵罐的溶氧系数提高了147%;通过在最终改造的发酵罐中进行发酵试验,其适宜的初始生物素浓度和单罐谷氨酸产量均达到最高,分别为 12.2 L 和 l1.65 t,比搅拌器改造前分别提高了56%和25%。因此,提高发酵罐的溶氧系数,有利于提高生物素的适宜用量,最终促进了单罐谷氨酸产量的显著提高。

5

谷氨酸棒杆菌 Corynebacterium glutamicum 是40年来世界氨基酸生产的主要菌株。最近 Coryne2 bacterium glutamicum ATCC 13032 的基因组测序工作已经完成。该项工作的完成促进和方便了国内外研究人员采用分子生物学的方法对棒杆菌做更深入的研究。按照以往总结出的有关谷氨酸生产菌株的特点 ,乙醛酸循环为必需的代谢途径 ,这是因为以糖质原料发酵生产谷氨酸时 ,在谷氨酸发酵的菌体生长期 ,菌体需要它来提供部分能量和生物合成反应所需的中间产物 ,但同时指出 ,在菌体生长期后的谷氨酸合成期 ,为了大量生成和积累谷氨酸 ,最好封闭乙醛酸循环途径。这是因为如果三羧酸循环中的四碳二羧酸100 %地由 CO2 固定反应供给 ,则糖酸转化率为 87.1 %;如果四碳二羧酸100 %地由乙醛酸循 [2 - 3]环供给 ,则糖酸转化率只有 54.4 % 。所以我们可以乙醛酸循环途径缺失这方面来入手。

方法步骤有以下一些:

5.1乙醛酸循环途径缺失的谷氨酸棒杆菌突变株的构建

5.2细胞生长曲线的绘制

5.3摇瓶发酵及其葡萄糖和谷氨酸的测定

5.4粗酶液的制备

5.5细胞内异柠檬酸裂解酶( ICL) 活性的测定

5.6酶蛋白定量

上法能够得到乙醛酸循环途径缺失的谷氨酸棒杆菌突变株,然后我们将其和野生型菌株一桶进行培养,从图可知,当野生型菌株和乙醛酸循环途径缺失的谷氨

酸棒杆菌突变株在以葡萄糖为唯一碳源的基本培养基上生长时,它们的生长速度几乎相同,说明当以葡萄糖为碳源进行培养时谷氨酸棒杆菌Corynebacterium glutamicum 不需要乙醛酸循环为其提供生长所需的能量和代谢中间产物。当在以乙酸为唯一碳源的基本培养基上培养时, 菌株由于缺乏乙醛酸循环途径而不能生长;野生型菌株与以葡萄糖为碳源进行生长时比较,迟缓期延长约15h。

从表2 可知异柠檬酸裂解酶基因被敲除的突变株WTΔA 没有异柠檬酸裂解酶活性。而野生型出发菌株WT 生长在以葡萄糖为唯一碳源的基本培养基上时有微弱的异柠檬酸裂解酶活性。但是在以乙酸盐为唯一碳源的基本培养基上生长时由于受到乙酸盐的诱导作用而酶活大增。

虽然乙醛酸循环途径是谷氨酸棒杆菌谷氨酸合成的中心代谢途径之一,但是有关谷氨酸棒杆菌的乙醛酸循环途径的作用并不明确。

6 温度对发酵的影响与调控

发酵温度升高,酶反应速率增大,生长代谢加快,但菌体易衰老,影响最终产酸。不同氨基酸的发酵适宜温度也是不同的。例如谷氨酸发酵前期33%~34%;中期35%~36%;后期38%~39%.

发酵过程,由于菌体增殖和生物合成代谢产物而产生热量(发酵热)使发酵液温度升高,须及时冷却,以难持适宜的发酵温度。

不同氨基酸发酵热是不同的。谷氨酸发酵热约3.5×104 (KJ/m3·h)赖氨酸的发酵热约为5.0×104(KJ/m3·h)。而且发酵温度也比较低,所需要的冷却面积和冷却水水量都高于谷氨酸。

生产上根据温度变化!用冷却水进行调控,一般采用数显指示,手段调节。最好使用pt电阻温控气动阀自动调节.

谷氨酸生产工艺

生物工程专业综合实训 (2016 年 11 月

谷氨酸生产工艺 摘要: 谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。现代生产谷氨酸的工艺主要是利用微生物发酵提取而来。不同的发酵方法和不同的发酵条件会造成产量的很大不同。本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法。关键词:谷氨酸;发酵;工艺;等电点。

引言 谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,有增香作用。甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。

一、谷氨酸简介 谷氨酸一种酸性氨基酸。分子内含两个羧基,化学名称为α-氨基戊二酸。谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。 谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。L -谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在的。多种食品以及人体内都含有谷氨酸盐,它即是蛋白质或肽的结构氨基酸之一,又是游离氨基酸,L型氨基酸美味较浓。 L-谷氨酸又名“麸酸”或写作“夫酸”,发酵制造L-谷氨酸是以糖质为原料经微生物发酵,采用“等电点提取”加上“离子交换树脂”分离的方法而制得。 谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用, 但选择谷氨酸产量高的菌株作为供体效果最好。这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。有了合适的载体及其转化系统后,就可通过DNA体外重组技术进行谷氨酸产生菌的改造。这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。

(完整版)谷氨酸发酵

1)生物素营养缺陷型 ?作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与 了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏. ?控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵 初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换. 2)油酸营养缺陷型 ?作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少 到正常量的1/2左右. ?控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换. (3)添加表面活性剂 ?添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨 酸. ?机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细 胞膜. ?关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在 下进行分裂,形成产酸型细胞. (4)添加青霉素 ?机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作 用下受损,向外泄露谷氨酸. ?控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不 能合成完整的细胞壁,完成细胞功能的转换. 谷氨酸发酵强制控制工艺 ?为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取 “强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法. ?控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料 中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。谷氨酸发酵 ? 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h. 措施:接种量和发酵条件控制使适应期缩短. ? 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧 下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h. 措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃ ? 3.菌体生长停止期:谷氨酸合成. 措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃. ? 4.发酵后期:菌体衰老,糖耗慢,残糖低. 措施:营养物耗尽酸浓度不增加时,及时放罐. 发酵周期一般为30h. 二、谷氨酸发酵的生化过程

谷氨酸棒杆菌发酵工艺控制

种子培养基:每升含葡萄糖60g,KH2PO4 2.5g , MgSO4.7H2O 0.5g (NH4)2SO4 5g ,玉米浆30g ,pH 7.2 115℃ 20min 发酵培养基:每升含葡萄糖70g,KH2PO4 2.5g, K2HPO4 2.5g, MgSO4.7H2O 0.5g, (NH4)2SO4 25g ,玉米浆45g ,pH7.0 (四)罐上的工艺控制 1)预热:打开夹套蒸汽进汽阀,微开排污阀,将罐温加热至100℃2)灭菌:关闭夹套蒸汽进汽阀,开启蒸汽进罐阀,使罐温升至121℃;打开空气管路蒸汽阀门对空气过滤器进行灭菌;调整蒸汽进罐阀、排气阀的开度使罐压保持在0.12MPa左右(如此时温度与121℃相差较大,则可用121℃重新标定罐内温度);保持30min;关闭所有蒸汽阀门,让罐压下降至0.01MPa,打开空气进气阀,引无菌空气保压(0.03~0.05MPa),确保罐压小于过滤器空气压。 3)发酵准备阶段:开启冷却模式,开启进水阀,快速降温至28℃;退出冷却模式,开启发酵模式,保温运作;开启搅拌器(100rpm),如果排气阀没有过度的逃液,则可加大搅拌速率,或加大空气进气量。4)发酵:采用火焰法接种,调节排气阀、进气阀开度,还有搅拌器速率,在不过分逃液的前提下,保持较高的DO值;发酵过程中微开取样管路(蒸汽进罐阀紧闭)保持较小的蒸汽排出(时刻保持取样管路无菌)。 5)取样:关闭蒸汽排出阀,关闭蒸汽进汽阀,开启蒸汽排出阀,开启蒸汽进罐阀,并调节该两阀门的开度使发酵液以适宜的流量流出,用三角瓶接约20mL;关闭蒸汽进罐阀门,开启蒸汽进汽阀。

6)放罐:关闭空气进气管路,开启夹套加热管路,关闭冷凝水管路,关闭蒸汽排出阀,引蒸汽进罐,待罐温升至100℃后,计时3min;关闭蒸汽进罐阀,关闭蒸汽进汽阀;开启空气进气管路,开启蒸汽进罐阀,利用压强将液体放出;放完后,关闭空气进气管路;通自来水按以上步骤洗罐3次;通入自来水,待下次发酵开始。

谷氨酸生产工艺计算

工艺计算 第一节:物料平衡计算 凡引入某一系统或设备的物料重量Gm ,必需等于用于转化形成产物所消耗的物量Gp 和物料损失之和Gt Gm=Gp+Gt 一、物料衡算目的: (1)确定生产设备的容量、个数和主要设备尺寸; (2)工艺流程草图设计 (3)水、蒸汽、热量、冷量衡算; (4)控制生产水平。 二、方法 1.给出物料衡算流程示意图 2.选定计算基准 a.按每批投料量进行计算; b.按每吨产品消耗的原料量计算; c.按时间计算。 3.确定工艺指标及消耗定额以及相关的基础数据; 4.列出各工艺阶段的物料衡算表并绘出物料流程图。 三、实例(以年产商品味精10000t为实例) (一)、生产规模及产品规格 (1)99%规格的味精占80%,即8000t/a; (2)80%的味精占20%,即2000t/a; 折算为100%味精为: 8000×99%+2000×80%=9520(t/a) (二)、生产工作制度 全年生产日320天;2~3班作业,连续生产。 (三)、主要工艺技术参数 原料及动力单耗表

生产过程的总物料衡算 (一)生产能力 以年产商品MSG1000t 为实例。折算为100%MSG9520t/a。 日产商品MSG:1000/320=31.25(t/d)(其中99%的MSG25t,80%的MSG62.t) 日产100%MSG:9520/320=29.75(t/d) (二)总物料衡算(以淀粉质原料为例) (1)1000kg纯淀粉理论上产100%MSG量: 1000×1.11×81.7%×1.272=1153.5(kg) (2)1000kg纯淀粉实际产100%MSG: 1000×1.11×98%×50%×86%×92%×1.272=547.4(kg) (3)1000kg工业淀粉(含量86%的玉米淀粉)产100%MSG量: 547.4×86%=470.8(kg) (4)淀粉单耗 ①1t 100%MSG消耗纯淀粉量:1000/547.4=1.827(t) ②1t 100%MSG实际消耗工业淀粉量:1000/470.8=2.124(t) ③1t 100%MSG理论上消耗纯淀粉量:1000/1153.5=0.8669(t) ④1t 100%MSG理论上消耗工业淀粉量:0.8669/86%=1.008(t) (5)总收率:可以按以下两种方法计算。 ①实际产量(kg)/理论产量×100%=547.4/1153.5×100%=47.45% ②(98%×50%×86%×92%)/81.7%×100%=47.45% (6)淀粉利用率: 1.008/ 2.124×100%=47.45% (7)生产过程总损失:100%-47.45%=52.55% 物料在生产过程中损失的原因: ①糖转化率稍低。 ②发酵过程中部分糖消耗于长菌体以及呼吸代谢;残糖高;灭菌损失;产生其他产 物。 ③提取收率低,母液中Glu含量高。 ④精制加工过程损耗及产生焦谷氨酸纳等。 (8)原料以及中间品的计算 ①淀粉用量:29.75 ×2.124=63.19(t/d)

谷氨酸发酵

谷氨酸发酵 目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。 谷氨酸除用于制造味精外,还可以用来治疗神经衰弱以及配制营养注射液等。我国的谷氨酸发酵虽然在产量、质量等方面有了较大的提高,但与国外先进水平相比还存在一定差距。主要表现在:设备陈旧,规模小,自控水平、转化率和提取率低,易受噬菌体污染,废水污染问题尚未完全解决等。 一、菌种的选育 主要通过基因突变、基因工程、细胞工程得到优良的菌种。 可以从自然界中先分离出相应的菌种,再用物理或化学的方法使菌种产生突变,从突变个体中筛选出符合生产要求的优良菌种。 在谷氨酸发酵中,如果能够改变细胞膜的通透性,使谷氨酸不断地排到细胞外面,就会大量生成谷氨酸。研究表明,影响细胞膜通透性的主要因素是细胞膜中的磷脂含量。因此,对谷氨酸产生菌的选育,往往从控制磷脂的合成或使细胞膜受损伤入手,以提高细胞膜对谷氨酸的通透性,如生物素缺陷型菌种的选育。 1.谷氨酸生产菌的生化特征 1. α-酮戊二酸氧化能力微弱: α-酮戊二酸脱氢酶丧失或活性低. 2. 谷氨酸脱氢酶活性强. 3. 还原性辅酶Ⅱ(NADPH+H+)进入呼吸链能力缺陷或微弱. 4. 异柠檬酸裂解酶活力微弱. 5. 不利用谷氨酸. 6. 耐高糖耐高谷氨酸 . 7. CO2固定能力强. 8 .解除谷氨酸反馈抑制. 9. 具有向胞外分泌谷氨酸的能力. 2.谷氨酸产生菌 棒杆菌属:北京棒杆菌 钝齿棒杆菌 谷氨酸棒杆菌 短杆菌属:黄色短杆菌 产氨短杆菌 小杆菌属:嗜氨小杆菌 节杆菌属:球形节杆菌 3.共同点: 1. α-酮戊二酸氧化能力微弱: α-酮戊二酸脱氢酶丧失或活性低. 2. 谷氨酸脱氢酶活性强. 3. 还原性辅酶Ⅱ(NADPH+H+)进入呼吸链能力缺陷或微弱. 4. 异柠檬酸裂解酶活力微弱. 5. 不利用谷氨酸.

谷氨酸棒状杆菌生产谷氨酸的调节控制

谷氨酸棒状杆菌生产谷氨酸的调节控制 1 菌种的选育 目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、黄色短杆菌、噬氨短杆菌等。我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。在谷氨酸发酵中,如果能够改变细胞膜的通透性,使谷氨酸不断地排到细胞外面,就会大量生成谷氨酸。研究表明,影响细胞膜通透性的主要因素是细胞膜中的磷脂含量。因此,对谷氨酸产生菌的选育,往往从控制磷脂的合成或使细胞膜受损伤入手,以提高细胞膜对谷氨酸的通透性,如生物素缺陷型菌种的选育。 发酵中原料要消耗在如下三个方面:第一、供菌体增殖,生成足够量的菌体,使其干重占到发酵液的1.0%1.5%,这是产酸前提与基础。第二、生成谷氨酸。第三、由于菌体代谢多支路及发酵条件控制不当而产生的一些其他副产物如乳酸、酮酸、其他氨基酸等等及一些原料被分解而随空气逸出。【1】 2 糖液质量是发酵的基础 糖液质量是发酵成功的基础" 这是氨基酸发酵业界同仁的共识。氨基酸发酵所需的糖液不同 于麦芽糖、结晶糖。有它自身特点,其糖液DX、DE、透光率高而且经糖谱分析,糖(及以上的)值要低,防止发生复合反应。为达到上述要求,作出符合发酵所需要的优质糖液,可按以下条件实施生产调控: 2.1一次喷射双酶法% 2.2选用高效优质酶和喷射器-水热器); 2.3 液化:调浆ph5.8~6.0 液化维持温度100~95%;液化维持时间100~120min 2.4糖化:ph4.1~4.3 糖化温度60% 糖化时间32~36h 2.5过滤:高液位压差法 3 接种量和种子培养扩大级数 为提高发酵罐中菌的增殖速度,菌体数尽快达到高峰,使产物的合成时间提前,力争采用较大种量。

甘油法制作谷氨酸棒杆菌感受态

1,培养基 LBG培养基(g/l):酵母膏5,蛋白胨10,氯化钠10,ph7.0,用于培养谷氨酸棒状 杆菌制备感受态的种子液。 EPO培养基(g/l):酵母膏5,蛋白胨10,氯化钠10,甘氨酸30,Tween80 1。用 于谷氨酸棒状杆菌感受态的制备。 LBHIS培养基(g/l):酵母膏2.5,蛋白胨5,氯化钠5,脑心浸液18.5,山梨醇91,用于谷氨酸棒状杆菌转化子的培养。 谷氨酸棒杆菌的培养条件:30℃,200rpm,需要卡那霉素时,加入的终浓度为 30ug/ml,相应的固体培养基中加入2%的琼脂粉。 2 ,谷氨酸棒状杆菌感受态的制备: (1)将一环谷氨酸棒状杆菌的种子接种于种子培养基中,200rpm,30℃过夜培养。 (2)以10%的比例转接于100ml培养基中,使初始细胞OD达到0.3,200rpm 30℃培养3-5h至OD达到0.6-0.9。 (3)将所有菌液放入50ml离心管中冰浴15min,4000rpm,4℃离心10min。(4)取预冷的10%甘油约30ml,充分悬浮菌体,4000rpm,4℃离心10min。(5)再次取预冷的10%甘油重复洗涤两次。 (6)用400ul预冷的10%甘油重悬细胞,1.5ml离心管分装,每管80ul,-70℃保存或者点击转化。 3 谷氨酸棒状杆菌的电转化法: (1)将新鲜制备(或者冰箱取出)感受态细胞和连接产物置于冰上,轻弹管壁使其混匀。 (2)吸取5ul冰上预冷的质粒加入感受态细胞中,轻弹管壁使其混匀,然后冰浴5-10min。 (3)加入预冷的0.1cm电击杯中,1.8kv,5ms电击。加入恢复用培养基LBHISml,混匀46℃水浴6min。 (4)30℃,100rpm培养1h。 (5)涂布含有抗生素的平板,30℃过夜培养观察。

谷氨酸棒杆菌的乙醛酸循环与谷氨酸合成

21卷2期2005年3月 生 物 工 程 学 报 Chinese Journal o f Biotechnology V ol.21 N o.2 March 2005   Received :August 11,2004;Accepted :October 27,2004. 3C orresponding author.T el :86251025874341;E 2mail :jianzhuge @https://www.360docs.net/doc/622311718.html, 谷氨酸棒杆菌的乙醛酸循环与谷氨酸合成 G lyoxylate Cycle is R equired for the Overproduction of G lutamate but is not Essential for Corynebacterium glutamicum G row th on G lucose 余秉琦,沈 微,王正祥,诸葛健 3 Y U Bing 2Qi ,SHE N Wei ,W ANG Zheng 2X iang and ZH UGE Jian 3 江南大学工业生物技术教育部重点实验室,无锡 214036 K ey Laboratory o f Industrial Biotechnology o f Ministry o f Education ,Southern Yangtze Univer sity ,Wuxi 214036,China 摘 要 为阐明谷氨酸棒杆菌的乙醛酸循环与菌体的生长以及谷氨酸合成之间的关系,以谷氨酸棒杆菌基因组测序用典型菌株Corynebacterium glutamicum AT CC 13032为出发菌株,构建了乙醛酸循环途径缺失的谷氨酸棒杆菌突变株Corynebacterium glutamicum WT ΔA 。该菌株没有异柠檬酸裂解酶活性,不能在以乙酸盐为唯一碳源的基本培养基上生长。与出发菌株AT CC 13032相比,WT ΔA 在以葡萄糖为唯一碳源的培养基上生长时不受影响,说明谷氨酸棒杆菌并不需要乙醛酸循环途径提供菌体生长所需的能量和生物合成反应所需的中间产物。但是,与出发菌株AT CC 13032相比,WT ΔA 的谷氨酸合成能力大幅下降。关键词 谷氨酸棒杆菌,乙醛酸循环,异柠檬酸裂解酶,谷氨酸 中图分类号 Q591 文献标识码 A 文章编号100023061(2005)022******* Abstract The gly oxylate cycle was hypothesed to be indispensable for glutamate overproduction in coryneform bacteria ,for it was thought to fulfill anaplerotic functions and to supply energy during the growth phase.During glutamate overproduction phase ,however ,it has been noted that the high level of the cycle is detrimental to the glutamate production.In order to clarify the rela 2tionship between the glutamate production and the gly oxylate cycle ,a chrom osomal aceA 2disrupted mutant of wild 2type C .glu 2 tamicum ATCC 13032was constructed.The isocitrate lyase (IC L )activity of the parental strain was 01011u Πmg of protein and reached 11980u Πmg of protein after acetate induction ;the mutant strain WT ΔA ,however ,had no detectable IC L activity and was no longer able to grow on m inimal medium with acetate as the sole carbon source.C om pared with the wild 2type C .glutamicum WT ,the mutant strain WT ΔA ,exhibited the same growth rate with glucose as the sole carbon source ,indicating gly oxylate cycle is not required for its growth on glucose.On the contrary ,the glutamate production in WT ΔA was severely im paired and m ore re 2 sidual glucose was found in the fermentation broth at the end of fermentation with the mutant strain than with the wild 2type strain.Further investigations into the relationship between the glutamate production and the gly oxylate cycle are under the way ,which may help to elucidate the mechanism of glutamate overproduction. K ey w ords Corynebacterium glutamicum ,gly oxylate cycle ,isocitrate lyase ,glutamate 谷氨酸棒杆菌Corynebacterium glutamicum 是40多年来世界氨基酸生产的主要菌株。最近Coryne 2 bacterium glutamicum ATCC 13032的基因组测序工作 已经完成 [1] 。该项工作的完成促进和方便了国内外

谷氨酸发酵生产工艺

目录1.谷氨酸发酵生产工艺简介 1.1工艺流程 1.2工艺参数 1.3工艺要求 2串级控制系统特点与分析 2.1串级系统特点 2.2串级控制结构框图及分析 3控制方案 3.1总体方案 3.2系统放图 3.3待检测点的控制系统流程图 4仪表的选型 4.1热交换器 4.2仪表清单 5控制算法选择 5.1控制规律 5.2调节器正反作用的选择 6总结 7参考文献 附图

串级控制系统-----两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。 例:加热炉出口温度与炉膛温度串级控制系统 1. 基本概念即组成结构

串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。 前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。 整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。 在该反应中,主要控制的指标是釜温。但由于测量元件的测量滞后,以及由于测量套管插入其内,在套管的外表面有反应发生,很容易造成釜温的假象。因此在升温-恒温控制的过程中需要热水和冷水的交换切换,以便使谷氨酸发酵充分反应,提高产品质量。 主、副变量,主、副控制器(调节器),主、副对象,主、副检测变送器,主、副回路。 作用在主、副对象上的干扰分别为一、二次干扰 系统特点及分析 * 改善了过程的动态特性,提高了系统控制质量。 * 能迅速克服进入副回路的二次扰动。 * 提高了系统的工作频率。 * 对负荷变化的适应性较强 串级控制系统的特点:

谷氨酸生产

有关味精的探讨 姓名:陈荣珍学号:20090305110 班级:生物化工工艺091班 摘要:味精作为我们日常生活的食品添加剂,常用于增加食品的鲜味,也可用于汤和调味汁。味精的主要成分是谷氨酸钠,是通过微生物发酵生产谷氨酸制得。味精是由一日本化学教授发明并传入中国,在中国得到广泛的应用,使得味精业在中国有很好的前景。味精虽是一种安全的食品添加剂,但过量的食用是否会对人们的身体带来一定的危害呢?联合国粮农及食品添加剂法规委员会表示:正确的使用味精对人体有益,所以不用担心味精会对人体产生危害。 关键词:味精、起源、安全性、生理作用、发展趋势。 1.味精的起源 1908年的一天中午,日本帝国大学的化学教授池田菊苗坐到餐桌前。味精由于在上午完成了一个难度较高的实验,此刻他的心情特别舒展,因此当妻子端上来一盘海带黄瓜片汤时,池田一反往常的快节奏饮食习惯,竟有滋有味地慢慢品尝起来了。池田这一品,竟品出点味道来了。他发现今天的汤味道恃别的鲜美,一开始他还以为是今天心情特别好的缘故,再喝上几口觉得确实是鲜。“这海带和黄瓜都是极普通的食物,怎么会产生这样的鲜味呢?”池田自言自语起来,“嗯,也许海带里有奥妙。”职业敏感使教授一离开饭桌,就又钻进了实验室里。他取来一些海带,细细研究起来。这一研究,就是半年。半年后,池田菊苗教授发表了他的研究成果,在海带中可提取出一和叫做谷氨酸钠的化学物质,如把极少量的谷氨酸钠加到汤里去,就能使味道鲜美至极。池田在发表了上述研究成果后,他便转向了其他的工作。当时一位名叫铃木三朗助的日本商人,正和他人共同研究从海带中提取碘的生产方法。当他一看到池田教授的研究成果后,灵机一动立刻改变了主意,“好哇,咱们不搞提取碘的事了,还是用海带来提取谷氨酸钠吧!”铃木按响了池田家的门铃,一位学者和一位商人就此携起手来,池田告诉铃木,从海带中提取谷氨酸钠作为商品出售不够现实,因为每10公斤的海带中只能提出0.2克的这种物质。可是,在大豆和小麦的蛋白质里也含有这种物质,利用这些廉价的原料也许可以大量生产谷氨酸钠。池田和铃木的合作很快就结出了硕果。不久后,一种叫“味之素”的商品出现在东京浅草的一家店铺里,广告做得大大的——“家有味之素,白水变鸡汁”。一时间,购买“味之素”的人差一点挤破了店铺的大门。日本人的“味之素”很快就传进了中国。这种奇妙的白色粉末打动了一位名叫吴蕴初的化学工程师的味精心。他买了一瓶回去研究,看看这种被日本人严格保密的白粉究竟是什么东西。一化验,原来就是谷氨酸钠。又经过一年多的时间,他独立发明出一种生产谷氨酸钠的方法来:在小麦麸皮(面筋)中,谷氨酸的含量可达40%,他先用34%的盐酸加压水解面筋,得到一种黑色的水解物,经过活性炭脱色,真空浓缩,就得到白色结晶的

谷氨酸发酵知识完全总结

谷氨酸的性质及基本介绍 147.12926 1.538 主要用途简介: (一)食品工业:谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。 (二)日用化妆品:谷氨酸作为营养药物可用于皮肤和毛发。 N—酰基谷氨酸钠系列产品是由谷氨酸缩合而成的性能优良的阴离子表面活性剂,广泛用于化妆品、香皂、牙膏、香波、泡沫浴液、洗洁净等产品中。 焦谷氨酸钠(味精脱水生成的产物)具有极强的吸湿性,能保持皮肤湿润,防止干燥,并增强皮肤和毛发的柔软和弹力。日本己有以谷氨酸钠(或谷氨酸)为原料生产的高级人造革、化妆品和洗涤剂等产品。 (三)医药行业:谷氨酸作有较高的营养价值,医学上主要用于治疗肝性昏迷,还用于改善儿童智力发育。 (四)农业:谷氨酸与某些激素配合,可制成柑桔增甜剂;还可作为微肥的载体,在氮磷钾基本满足的条件下,作为叶面喷洒的微肥具有投入少、效益高等特点。 谷氨酸钠既是西红柿保护性杀菌剂,又是防治果树腐烂病的特效杀菌剂。 氨基酸铜是目前生产上良好的杀菌剂,有机铜比无机铜的应用效果好。 特殊说明: (一)谷氨酸晶体为白色结晶或结晶性粉末,味微酸。 (二)吸湿性温度50℃,其临界湿度在90%以上。

谷氨酸生产水平与市场分析 生产水平: 谷氨酸棒状杆菌-生物素敏感型高产菌株:采用生物素亚适量工艺,发酵32h,产酸达140g/L以上,糖酸转化率达62%以上,国内同类研究的领先水平。 谷氨酸棒状杆菌-谷氨酸温度敏感型突变株:在最佳发酵条件下,发酵24h,产酸达到160g/L,糖酸转化率达72%,国际同类研究的先进水平。 市场分析: 我国味精工业的产量稳居世界第一位,2007年全国味精产量达190万吨。味精工厂的味精平均销售价格为7,800元/吨,成本为7,000元/吨。按照上述产量计算,我国味精工业中纯味精的总产值约150亿元,加上相当于上述总值30%的副产品(主要是饲料蛋白、化肥、液态肥料)的产出,我国味精工业年生产总值约为200亿元人民币。 从市场需求来看,2007年国内谷氨酸年产量约190万吨,国内人均消费味精仅1kg,与日本、香港、台湾、东南亚等国家及地区的味精消费水平(1.5kg)相比,还是较低的。味精综合开发利用的效益显著,通过提高产酸率,吨味精成本可降低500元左右,其生产成本将低于日本的味精生产成本,具备了参与国际市场的竞争力,可以抓住机遇扩大味精出口量。同时在国内可降低味精销售价格,刺激国内市场消费。

50吨L-谷氨酸生产车间设计

目录 年产50吨L-谷氨酸的工艺设计 1文献评述 1.1产品概述 1.1.1名称 学名:L-谷氨酸-水化合物; 商品名:L-谷氨酸。因L-谷氨酸起源于小麦,故俗称麸酸。 英文名:Monosodium L-glutamate 其它名称:L-2-Aminoglutaric acid, H-Glu-OH, L-glutamic acid, L(+)-glutamic acid, H-L-Glu-OH, S-2-Aminopentanedioic acid 1.1.2 产品规格及标准 结构式: 分子式C 6H 14 N 4 O 2 .C 5 H 9 NO 4 分子量321.33 1.1.3理化性质 L-谷氨酸为白色鳞片状晶体。无臭,稍有特殊的滋味和酸味。呈微酸性。微溶于冷水,易溶于热水,几乎不溶于乙醚、丙酮和冷醋酸中,不溶于乙醇和甲醇。247-249℃分解,200℃升华,相对密度1.538(20/4℃),旋光度[α]+30-+33°。 1.1.4产品用途 (1)食品业 氨基酸作为人体生长的重要营养物质,不仅具有特殊的生理作用,而且在食品工业中具有独特的功能。 (2)日用化妆品等 谷氨酸为世界上氨基酸产量最大的品种,作为营养药物可用于皮肤和毛发。

聚谷氨酸是一种出色的环保塑料,可用于食品包装、一次性餐具及其它工业用途,可在自然界迅速降解,不污染环境。随着科学的进步,研究的深入,谷氨酸新的应用领域将越来越广。 (3)医药行业 谷氨酸还可用于医药,因为谷氨酸是构成蛋白质的氨基酸之一,虽然它不是人体必须的氨基酸,但它可作为碳氮营养与机体代谢,有较高的营养价值。 2、工业生产方法的选择和论证 2.1L-谷氨酸生产方法的选择与确定 2.1.1传统工艺中L-谷氨酸的生产方法有两种:合成法和发酵法。 (1)合成法 丙烯腈与氢和一氧化碳在高温,高压和催化剂的作用下得到β-氰基丙醛(OHCCH2CH2CN),后者与氰化钾和氯化铵进行斯脱拉克(Straker)反应生成氨基腈。将氨基腈用氢氧化钠水解,得谷氨酸二钠,然后用硫酸中和,生成D,L-谷氨酸析出,将D,L-谷氨酸进行光学分离,即可分成L-谷氨酸和D- 谷氨酸,后者经消旋化再返回到中和工序。此法日本曾用之生产L-谷氨酸10年之久,于1973年停用。 (2)发酵法 此法是L-谷氨酸工业生产的主要方法。薯类,玉米,木薯等的淀粉水解糖或糖蜜,借助于微生物类,以铵盐,尿素等提供氮源,于大型发酵罐中,在通气搅拌下进行发酵30-50个小时,保持30-40度。PH值为7-8,发酵完毕。 表1.两种方法的比较 缺点优点 合成法需要高压,有易燃,有毒物质,设 备投资大,年产量小于5000吨L- 谷氨酸时不经济,生产工艺复杂 不用粮食,采用石油废气 发酵法需设置菌种实验室,生产过程需要 严格消毒灭菌原料来源广,设备腐蚀性小,劳动强度小,可自动化,连

谷氨酸发酵工艺流程

目录 一、谷氨酸简介 (2) 二、谷氨酸发酵的工艺流程 (2) 2.1谷氨酸生产菌种 (3) 2.2生产原料 (3) 2.3培养基制备 (3) 2.3.1碳源 (3) 2.3.2氮源 (3) 2.3.3生物素 (4) 2.4种子扩大培养 (4) 2.5谷氨酸发酵 (4) 三、谷氨酸发酵的工艺控制 (4) 3.1环境控制 (4) 3.1.1pH (4) 3.1.2温度 (4) 3.1.3通风量 (5) 3.1.4泡沫 (5) 3.1.5无菌 (5) 3.2.细胞膜渗透性控制 (5) 四、小结 (5) 五、参考文献 (6)

谷氨酸发酵工艺 山东农业大学生命科学学院08级生物工程2班邢若枫 摘要:众所周知,日常所用调味料味精就是L一谷氨酸单钠盐(monosodiuo gluamate,MsG)。自1909年日本发明并工业化生产味情以来,几经变迁,已发展成为以谷氨酸发酵为主体的世界性氨基酸发酵工业。1956年从日本开始,以后先后由面二筋豆粕和废糖蜜浓缩物水解的方向,转向以糖质为原料的细菌发酵法。生产味精谷氨酸之类氨基酸的发酵,区别于传统的酿酒和抗菌素发游,是一种改变微生物代谢的代谢控制发酵。本文则就谷氨酸发酵生产过程、谷氨酸发酵机制和研究动向等方面,说明谷氨酸发酵的发展。[1] 关键词:谷氨酸;发酵;工艺;研究;发展 一、谷氨酸简介 谷氨酸一种酸性氨基酸,分子内含两个羧基,化学名称为α-氨基戊二酸。为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。分子式C5H9NO4、分子量147.13076。 谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。谷氨酸可生产许多重要下游产品如L—谷氨酸钠、L—苏氨酸、聚谷氨酸等。氨基酸作为人体生长的重要营养物质,不仅具有特殊的生理作用,而且在食品工业中具有独特的功能。谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。谷氨酸为世界上氨基酸产量最大的品种,作为营养药物可用于皮肤和毛发。用于生发剂,能被头皮吸收,预防脱发并使头发新生,对毛乳头、毛母细胞有营养功能,并能扩张血管,增强血液循环,有生发防脱发功效。用于皮肤,对治疗皱纹有疗效。脑组织只能氧化谷氨酸,而不能氧化其它氨基酸,故谷酰胺可作为脑组织的能量物质,改进维持大脑机能。谷氨酸作为神经中枢及大脑皮质的补剂,对于治疗脑震荡或神经损伤、癫痫以及对弱智儿童均有一定疗效。在工业上,聚谷氨酸可降解塑料,是环境友好材料。[2] 谷氨酸发酵是典型的代谢控制发酵。谷氨酸的大量积累不是由于生物合成途径的特异,而是菌体代谢调节控制和细胞膜通透性的特异调节以及发酵条件的适合。 谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用,但选择谷氨酸产量高的菌株作为供体效果最好。这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。有了合适的载体及其转化系统后,就可通过DNA 体外重组技术进行谷氨酸产生菌的改造。这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。[3] 二、谷氨酸发酵的工艺流程 菌种的选育,培养基配制,斜面培养,一级种子培养,二级种子培养,发酵(发酵过程参数控制通风量、pH、温度、泡沫),发酵液。(流程见图表1)

谷氨酸产生菌有谷氨酸棒状杆菌

谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。 谷氨酸的生物合成途径大致是:葡萄糖经糖酵解(EMP途径)和己糖磷酸支路(HMP途径)生成丙酮酸,再氧化成乙酰辅酶A(乙酰COA),然后进入三羧酸循环,生成α 酮戊二酸。 α-酮戊二酸在谷氨酸脱氢酶的催化及有NH4+存在的条件下,生成谷氨酸。当生物素缺乏时,菌种生长十分缓慢;当生物素过量时,则转为乳酸发酵。因此,一般将生物素控制在亚适量条件下,才能得到高产量的谷氨酸。 在谷氨酸发酵中,如果能够改变细胞膜的通透性,使谷氨酸不断地排到细胞外面,就会大量生成谷氨酸。研究表明,影响细胞膜通透性的主要因素是细胞膜中的磷脂含量。因此,对谷氨酸产生菌的选育,往往从控制磷脂的合成或使细胞膜受损伤入手,如生物素缺陷型菌种的选育。生物素是不饱和脂肪酸合成过程中所需的乙酰CoA的辅酶。生物素缺陷型菌种因不能合成生物素,从而抑制了不饱和脂肪酸的合成。而不饱和脂肪酸是磷脂的组成成分之一。因此,磷脂的合成量也相应减少,这就会导致细胞膜结构不完整,提高细胞膜对谷氨酸的通透性。 在发酵过程中,氧、温度、pH和磷酸盐等的调节和控制如下:①氧。谷氨酸产生菌是好氧菌,通风和搅拌不仅会影响菌种对氮源和碳源的利用率,而且会影响发酵周期和谷氨酸的合成量。尤其是在发酵后期,加大通气量有利于谷氨酸的合成。②温度。菌种生长的最适温度为30~32 ℃。当菌体生长到稳定期,适当提高温度有利于产酸,因此,在发酵后期,可将温度提高到34~37 ℃。③pH。谷氨酸产生菌发酵的最适pH在7.0~8.0。但在发酵过程中,随着营养物质的利用,代谢产物的积累,培养液的pH会不断变化。如随着氮源的利用,放出氨,pH会上升;当糖被利用生成有机酸时,pH会下降。④磷酸盐。它是谷氨酸发酵过程中必需的,但浓度不能过高,否则会转向缬氨酸发酵。发酵结束后,常用离子交换树脂法等进行提取。

各种氨基酸的生产工艺

各种氨基酸的生产工艺 1、谷氨酸 (1)等电离交工艺方法一一从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0- 3.2),温度降到10 以下沉淀,离心分离谷氨酸,再将上清 液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗 脱下来的高流分再用硫酸调pH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。 该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。 ⑵连续等电工艺一一将谷氨酸发酵液适当浓缩后控制40 C左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40 C进行结晶。 该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。 (3) 发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行 超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20?3.25,然后进入常温的 等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整 pH值至4.5?7,蒸发、浓缩、再在第三调酸罐中调pH值至 3.20?3.25后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。 (4) 水解等电点法 发酵液-一浓缩(78.9kPa , 0.15MPa 蒸汽)----盐酸水解(130 C, 4h ) 一过滤-- ---滤液脱色-----浓缩-----中和,调pH至3.0-3.2 ( NaOH或发酵液) 一-低温放置, 析晶---- 谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑸低温等电点法 发酵液-----边冷却边加硫酸调节PH4.0-4.5----- 加晶种,育晶2h-----边冷却边加硫酸 调至pH3.0-3.2——冷却降温——搅拌16h——4 C 静置4h——离心分离—— --谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑹直接常温等电点法 发酵液-----加硫酸调节PH4.0-4.5----- 育晶2-4h----- 加硫酸调至pH3.5-3.8------ 育 晶2h------加硫酸调至pH3.0-3.2------ 育晶2h------冷却降温------搅拌16-20h------ 沉淀2-4h ------- 谷氨酸晶体 此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。 2、L-亮氨酸 (1) 浓缩段原料:蒸汽将一次母液通入浓缩罐内,通入蒸汽,温度120度,气压-0.09Mpa ,浓缩时间6h,结晶。 终点产物:结晶液(去一次中和段) (2 ) 一次中和段辅料:硫酸,纯水结晶液进入一次中和罐,通入硫酸,纯水,温度80,中和时间4h,过滤

谷氨酸生产现状

谷氨酸生产行业现状综合分析 来源:中国发酵工业网 2009-09-25 14:01:57 目前,我国的味精相关产品发展迅速,产量高居世界首位,年需求量为119万t。味精年人均占有量为769g,而台湾和港澳地区为2500g,两者相差甚远。农村味精市场发展较快,各类小食品、食品加工业冷藏盐渍食品和方便食品等不断增加,味精出口逐年扩大,销路日旺。据美国嘉吉公司的市场调查预测,未来 10年,中国味精相关产品产量将达到 160万t。味精市场空间较大,很有发展前景。 1味精厂家分布状况 笔者先后对山东的铃兰集团、上海新立公司、上海五旋公司、上海理工大学、武汉的味全公司、河南莲花集团、河北廊坊梅花集团、河北昌黎玉龙集团、内蒙古通辽梅花集团三公司、沈阳红梅公司和沈阳联信氨基酸技术中心进行了考察。我国的味精生产厂共有82家,其中规模较大和效益好的有:河北梅花(霸洲)、山东阜丰(莒南、宝鸡)、江苏菊花(张家港)、山东济宁菱花、山东齐鲁(荏平)山东雪花(兖州)、沈阳红梅、浙江蜜蜂(义乌)重庆飞亚(万州)、宁夏伊品(永宁)、广东星湖(肇庆)和温州快鹿等。然而,现有许多味精老厂家设备陈旧,管理落后,加之近年来我国浙苏闽粤等沿海地区由于原材料和煤、水、电的价格上调,运费增加,污水处理非常困难,使全国味精产量有很大的滑坡,有些企业转产或停产,有些企业将发酵部分转移至西北、东北和内蒙古等地,预计这种迁移尚需3年-4年时间。从一定意义上讲,现在是上谷氨酸项目的一个好时机。 2菌种工艺

从以上味精生产企业、行业专家和有相关专业刊物的报道看,我国现有生产谷氨酸的菌种有3种: 1)生物素亚适量型; 2)高生物素及表面活性剂型; 3)温度敏感型。 其中,高生物素及表面活性剂型菌种以糖蜜为原料,不具有广泛代表性,笔者主要对生物素亚适量型和温度敏感型菌种进行考察。 现在全国味精行业82家生产厂所用的生物素亚适量菌种为 S9114和FM415两种,基本上各50%。只有山东铃兰和河南周口两家在使用温度敏感型菌种,尚处生产试验阶段;安徽丰源原设计用温度敏感型菌种,设计能力年产6000t谷氨酸,据业内人士介绍,丰源厂已转产为赖氨酸。 生物素亚适量型菌种是谷氨酸发酵较为普遍使用的菌种,其特点是产酸稳定、提取收率高、发酵周期短、不易染菌、放罐体积小和经济效益好。生物素亚适量菌种发酵周期为30h,产酸率为10.5%,糖酸转化率60%以上,提取收率达96%。生物素亚适量菌种工艺路线是液化、糖化、发酵、提取和精制,为等电加离交的提取工艺。污水处理采用离交流出液等高浓度污水,提取菌体蛋白后做复合肥,其余污水做厌氧—好氧处理后,达到国家规定的标准排放。 温度敏感型菌种是现在一种新兴的菌种,此菌种的优点是发酵产酸率高和糖酸转化率高。温度敏感型菌种的产酸率在 14%-16%,糖酸转化率64%左右,提取收率达85%,发酵时间为36h。提取收率低和提取困难是困扰其优势成果转化的主要原因。生物素亚适量型菌种和温度敏感型菌种发酵工艺的比较见表1,温度敏感型菌株与生物素亚适量型菌株生产

相关文档
最新文档