钒钛铁精矿含碳球团直接还原试验
钒钛磁铁矿直接还原技术探讨

钒钛磁铁矿直接还原技术探讨王雪松攀枝花市科技局l 前言钒钛磁铁矿是一种含铁、钛、钒为主并伴生有少量铬、镍、钴、铂族、钪等多种可综合利用组分的矿物。
对钒钛磁铁矿进行开发利用研究的主要国家是南非、俄罗斯、新西兰和中国。
南非采用的是回转窑一电炉流程,主要回收铁和钒(震动罐提取钒渣),电炉钛渣含30%左右二氧化钛,作为铺路或其他原料。
新西兰采用的也是回转窑一电炉流程,含二氧化钛28%-32%的钛渣没有利用,只回收了铁和钒(铁水包提钒)。
俄罗斯、中国攀钢和承钢采用高炉一转炉流程,只回收铁与钒(转炉提钒),钛完全没有回收利用。
《攀枝花工业发展规划纲要(2004—2010年)》提出:2010年要达到年产1000万吨钢(其中攀钢本部年产钢60O万吨,地方企业年产钢400万吨)、20万吨钒渣和100万吨钛精矿的规模。
国家发改委明确要求限制发展容积小于1000立方米的高炉。
攀枝花地方企业受投资能力的限制,发展大容量高炉困难很大。
攀枝花“百年铁矿十年煤”资源不配套现状和炼焦煤的缺乏为攀钢进一步做大钢铁产业埋下隐患。
由于攀枝花特殊的陡峭山地条件,环境的承载能力较差,面对环境和资源的巨大压力,钒钛磁铁矿必须选择全面回收铁、钒、钛的综合利用道路。
近年来,以电炉炼钢短流程为标志的钢铁工业第三次技术革命使直接还原技术和生产有了突飞猛进的发展,沉寂了近l0年的攀西钒钛磁铁矿炼钢短流程开始复苏。
为此,本文分析总结了各种直接还原技术,对最具有产业化前景的环形转底炉工艺进行了探讨,提出攀枝花市发展直接还原技术的建议。
2 钒钛磁铁矿的特性及现有流程的弊端钒钛磁铁矿是多元素多种客晶矿物组成的以钛磁铁矿为核心的复合矿物。
在目前技术水平下选矿回收的主矿物钛磁铁矿是由磁铁矿(Fe3o4)、钛铁晶石(2FeTiO2)、钛铁矿(FeTi03)及镁铝尖晶石(MgAl204)等组成的类质象系列矿物,其中钛铁尖晶石及钛铁矿片晶石都具有强磁性,与磁铁矿致密共生,不能用机械方法分离,磁选出来的铁精矿Ti02含量高。
钒钛铁精矿转底炉直接还原-电炉熔分工艺与理论研究的开题报告

钒钛铁精矿转底炉直接还原-电炉熔分工艺与理论研究的开题报告一、选题背景及研究意义钒钛铁精矿是一种重要的非金属矿产资源,具有广泛的应用前景。
其中,钒元素是一种重要的金属元素,广泛应用于冶金、化工、航天等领域。
目前,大多数钒钛铁精矿采用的是传统的炉法冶炼技术,如炉渣碱性熔锌法、氯化法等,但存在着成本高、排放量大等问题。
因此,针对这些问题,本研究将提出一种新型的钒钛铁精矿转底炉直接还原-电炉熔分工艺。
该工艺采用了底吹氧气的还原技术,将钒钛铁精矿还原成金属钒和钛的矿物,然后进行电炉熔分,将钒和钛分离开来,达到提高产率、降低成本和污染排放的目的。
二、主要研究内容1. 钒钛铁精矿转底炉直接还原技术研究本研究将结合国内外的研究成果,综合分析各种底吹氧气还原技术的优缺点,选定最佳的工艺参数,确定适宜的还原温度、还原时间、氧气流量等条件。
2. 钒的电炉炼制技术研究通过对钒的物理化学性质和电炉炼制原理的分析,确定钒的熔点、氧化还原平衡控制点,探讨电炉炼制技术的工艺参数。
3. 钛的电炉炼制技术研究本研究将重点研究钛的电冶炼技术,探讨钛的熔点和熔白化还原的控制条件,确定电炉炼制工艺的最佳参数。
4. 工艺流程设计与优化通过对各个环节的研究,建立钒钛铁精矿转底炉直接还原-电炉熔分的工艺流程,并对每个环节的技术参数进行优化,减少废气、废水和固体废物排放,达到环保的目的。
三、研究思路和方法本研究将采用实验室对原材料和硫酸钛矿的化学组成和物理性质进行分析,确立钒和钛的还原控制点和熔点。
同时,采用热重分析、物理力学测试等实验手段,研究钒和钛的熔白化还原过程和机理。
在试验基础上,开展工艺流程设计和参数优化等理论研究。
四、预期成果1. 建立钒钛铁精矿转底炉直接还原-电炉熔分的工艺流程,并研究优化各个环节的技术参数,提高资源利用率。
2. 阐明钒和钛的熔白化还原过程和机理,为钒、钛的电炉炼制提供技术支撑。
3. 减少废气、废水和固体废物排放,达到环保的目的。
四川红格矿区钒钛磁铁矿铁精矿造球—回转窑预还原—电炉炼铁试验报告

四川红格矿区钒钛磁铁矿高效环保冶炼方法探索实验报告四川红格矿区钒钛磁铁矿铁精矿造球—回转窑预还原—电炉炼铁试验报告一、实验目的本实验旨在研究四川红格矿区钒钛磁铁矿铁精矿的冶炼工艺,通过造球、回转窑预还原及电炉熔炼等环节,探索出一种高效、环保的钒钛磁铁矿铁精矿冶炼方法。
二、实验原理1.造球:通过适当的粘结剂将铁精矿粉与辅料混合制成一定粒度的球团,以供回转窑预还原及电炉熔炼使用。
2.回转窑预还原:利用回转窑内的高温还原气氛,将球团中的铁氧化物还原成铁。
3.电炉熔炼:将回转窑预还原后的球团加入电炉,在高温下将铁进一步熔炼成生铁。
三、实验步骤1.原料准备:收集四川红格矿区钒钛磁铁矿铁精矿及辅料。
2.配料与混料:按照一定比例将铁精矿粉与辅料混合,加入适量的粘结剂。
3.造球:将混合料通过造球机制成一定粒度的球团。
4.回转窑预还原:将球团放入回转窑进行预还原,控制还原气氛及温度。
5.电炉熔炼:将回转窑预还原后的球团加入电炉,控制熔炼温度及时间。
6.样品采集与分析:在实验过程中采集各个阶段的样品,分析其成分及物理性质。
7.数据整理与处理:整理实验数据,分析各工艺参数对最终产品的影响。
四、实验结果与数据分析实验数据表:工艺阶段温度(℃)时间(h)产品成分(%)造球———回转窑预还原12002Fe: 92; V: 3; Ti: 2;电炉熔炼16004Fe: 96; V: 2; Ti: 1;(请在此插入柱状图对比各阶段产品成分)(请在此插入折线图展示各工艺参数随时间的变化趋势)(请在此插入表格记录实验过程中各阶段的能耗、产率等数据)五、结论通过本实验,我们成功地探索出了四川红格矿区钒钛磁铁矿铁精矿的高效、环保冶炼方法。
在造球阶段,我们采用合适的粘结剂,成功制备出了符合要求的球团。
在回转窑预还原阶段,我们优化了工艺参数,得到了具有较高金属化率的预还原球团。
在电炉熔炼阶段,我们进一步提高了金属化率,得到了高品质的生铁。
实验结果表明,该工艺具有较高的可行性及经济效益,为四川红格矿区钒钛磁铁矿的开发利用提供了有力支持。
钒钛磁铁精矿氧化球团试验研究报告-37页精选文档

四川德胜钢铁集团公司钒钛磁铁精矿链篦机-回转窑氧化球团试验研究中南大学首钢国际工程技术××公司2019年1月项目负责人:范晓慧技术负责人:甘敏主要参加人员:范晓慧甘敏陈许玲袁礼顺姜涛李光辉白国华郭宇峰杨永斌李骞张元波黄柱成许斌朱忠平黄云松曾金林王海波尹亮李曦周阳报告编写:甘敏黄云松报告审核:范晓慧姜涛目录前言............................................................................................................................ I V 第1章试验研究方法.. 01.1工艺流程 01.2化学成分分析 01.3铁矿物理性能检测 01.3.1粒度组成和比表面积 01.3.2成球性能 (1)1.3.3真密度,堆密度 (3)1.4 膨润土性能检测 (4)1.5 高压辊磨预处理 (7)1.6 造球试验 (7)1.7 管炉焙烧试验 (8)1.8 链篦机—回转窑扩大试验 (8)1.9产品性能检测 (10)1.9.1 球团矿矿相鉴定 (10)1.9.2球团矿冶金性能测定 (10)第2章原料的物化性能 (13)2.1钒钛磁铁精矿的物化性能 (13)2.1.1 钒钛磁铁精矿的化学成分 (13)2.1.2钒钛磁铁精矿的粒度组成和比表面积 (13)2.1.3钒钛磁铁精矿的成球性能和其他物理性能 (13)2.2膨润土的物化性能 (14)2.2.1膨润土的化学成分 (14)2.2.2膨润土的粒度组成 (14)2.2.3膨润土的其他物理性能 (15)2.3小结 (15)第3章造球试验 (16)3.1膨润土种类和用量试验 (16)3.2造球工艺参数试验 (16)3.3高压辊磨预处理对造球的影响 (18)3.3.1对铁精矿粒度的影响 (18)3.3.2对生球质量的影响 (18)3.3.3对膨润土适宜用量的影响 (19)3.3.4对造球工艺参数的影响 (19)3.4小结 (20)第4章管炉试验 (20)4.1预热、焙烧参数试验 (20)4.2膨润土用量对预热焙烧的影响 (22)4.3高压辊磨预处理对预热焙烧的影响 (23)4.4小结 (24)第5章扩大试验 (25)5.1干燥工艺参数试验 (25)5.1.1鼓风温度、风速和时间试验 (25)5.1.2抽风温度、风速和时间试验 (26)5.2预热和焙烧工艺参数试验 (26)5.2.1预热条件对预热球质量的影响 (26)5.2.2预热、焙烧条件对焙烧球质量的影响 (27)5.3膨润土种类对预热球和焙烧球指标的影响 (28)5.4高压辊磨预处理对预热球和焙烧球指标的影响 (28)5.5小结 (29)第6章球团矿矿相鉴定和冶金性能检测 (30)6.1球团矿的化学成分 (30)6.2球团矿的矿相鉴定 (30)6.3球团矿的冶金性能 (31)第7章结论 (31)前言为四川德胜钢铁集团公司链篦机-回转窑氧化球团厂的设计提供基本依据,首钢国际工程技术××公司委托中南大学针对四川德胜钢铁公司提供的钒钛磁铁精矿开展氧化球团试验研究,以获取钒钛磁铁精矿的造球、焙烧的适宜的工艺参数及相应的产量、质量指标。
钒钛磁铁矿直接还原试验研究

钒钛磁铁矿直接还原试验研究
钒钛磁铁矿是一种重要的矿产资源,其中含有丰富的钒、钛等元素,
具有广泛的应用前景。
然而,传统的冶炼方法存在能耗高、污染严重
等问题,因此,研究钒钛磁铁矿的直接还原技术具有重要的意义。
近年来,国内外学者对钒钛磁铁矿的直接还原技术进行了广泛的研究。
其中,以煤为还原剂的直接还原技术是目前应用最为广泛的一种方法。
该方法的原理是利用煤的还原性质,将钒钛磁铁矿中的氧化物还原成
金属或金属间化合物,从而实现钒、钛等元素的提取。
在实际应用中,钒钛磁铁矿的直接还原技术还存在一些问题。
例如,
煤的还原性能受到多种因素的影响,如煤的品种、粒度、含灰量等,
因此,需要对还原条件进行优化,以提高还原效率和产品质量。
此外,钒钛磁铁矿中还存在一些难还原的氧化物,如Fe2O3等,这些氧化物的还原需要更高的温度和更长的时间,因此,需要进一步研究还原机理,以优化还原工艺。
总的来说,钒钛磁铁矿的直接还原技术具有广阔的应用前景,但在实
际应用中还存在一些问题需要解决。
未来,我们需要进一步深入研究
钒钛磁铁矿的还原机理,优化还原工艺,提高还原效率和产品质量,
为钒钛磁铁矿的开发利用提供更好的技术支持。
钒钛铁矿的直接还原工艺t

钒钛铁矿的直接还原工艺我国富有钒钛磁铁矿,特别是四川攀西地区的储量达到100亿吨以上。
目前钒钛磁铁矿的利用途径主要是传统的“高炉—转炉”流程回收铁和钒,而钛则由于进入高炉渣,目前尚无合理手段回收利用,从而造成钛资源的浪费。
采用直接还原技术冶炼钒钛磁铁矿,是实现铁、钒、钛资源综合利用的一个重要研究方向。
近年来,攀钢集团公司对钒钛矿直接还原工艺开展了研究,取得了重要进展。
与普通矿不同,钒钛磁铁矿直接还原具有自己的特点,一是矿相结构复杂,含铁物相还原难度按Fe2O3、Fe2TiO5、Fe3O4、FeO、Fe2TiO4、FeTiO3、FeTi2O5顺序递增,且固溶MgO增加了还原的复杂程度和难度。
二是贮存于2FeO·TiO2、FeO·TiO2和FeO·2TiO2中的铁较难还原,约占全铁含量的1/3以上,因而钒钛磁铁矿直接还原需要更高的还原温度、更好的还原气质量和更长的还原时间。
三是还原过程中出现的膨胀和粉化现象比普通矿更严重。
攀钢的研究工作表明:采用回转窑、竖炉、流化床、焦炉式等设备进行直接还原钒钛磁铁矿,均存在着不同程度的工艺与设备难题,如回转窑结圈、竖炉结瘤等。
相比之下,转底炉的工艺特性和设备特点能够很好地满足钒钛矿直接还原的要求,是钒钛矿直接还原及资源综合利用的较好选择。
由于转底炉直接还原具有高温、快速的工艺特点和炉底与炉料相对静止不动的设备特点,能够缓解还原过程球团膨胀粉化的严重程度,降低球团强度的要求,从而获得更好的可操作性,使其能够满足钒钛磁铁矿直接还原要求,实现铁、钒、钛资源综合回收利用。
攀钢现已建设年处理钒钛矿10万吨的直接还原转底炉试验生产线,以加快钒钛矿直接还原及钒钛资源综合利用的产业化进程。
转底炉是直接还原的关键设备,同时需要解决燃烧供热、传热和还原的问题。
关键在高温还原二区,为了获得适宜的气氛组成、避免球团表面再氧化,二次空气的控制必须精确。
另外,布料装置的设计采用振动给料,通过数学模型控制,确保扇形料面均匀。
我国钒钛磁铁矿直接还原分析

我国钒钛磁铁矿直接还原分析摘要本文概括地介绍了我国钒钛磁铁矿资源分布情况。
钒钛磁铁矿是重要的资源,世界各国的研究及生产实践表明,使用高炉冶炼法钒钛磁铁矿是难以冶炼的铁矿石。
因此钒钛磁铁矿冶炼大量使用非高炉冶炼法,即采用直接还原法。
本文详细地阐述了直接还原法中隧道窑、回转窑、转底炉、竖炉这四种常见炉的结构、反应原理、国内工艺现状及反应特点,并指出了我国钒钛磁铁矿直接还原工艺的发展方向。
关键词钒钛磁铁矿直接还原隧道窑回转窑转底炉竖炉前言目前国外钒钛磁铁矿主要分布在南非、前苏联、新西兰、加拿大、印度等地。
我国钒钛磁铁矿矿床分布广泛,储量吩咐,储量和开采量居全国铁矿的第3位。
已探明储量98.3亿吨,远景储量达300亿吨以上,主要分布在四川攀枝花地区、河北承德地区、陕西洋县、甘肃什斯镇、广东兴宁几山西代县等地区。
钒钛磁铁矿冶炼的利用问题,远在上19世纪上半叶,瑞典、挪威、美国、英国都进行过试验,均未取得结果。
20世纪30年代开始日本、前苏联开始在不同容积的高炉上研究冶炼钒钛磁铁矿的工艺,结论是:炉渣中TiO2 限制在16%以下,实际生产中采用配10%—15%的普通矿冶炼含钒生铁,渣中TiO2为9%—10%,TiO2含量越高冶炼难度越大。
世界各国的研究及生产实践表明,钒钛磁铁矿是难以冶炼的铁矿石。
通过多年的努力,钒钛磁铁矿已解决高炉冶炼等多项技术难题,逐渐形成了以高炉-转炉流程为主的综合回收其中铁、钒和钛的技术路线,实现了铁、钒和钛元素的大规模化利用,形成了铁钒钛系列产品的大规模工业生产能力。
然而高炉-转炉流程最大的缺点是:为了利用钒钛磁铁矿中的铁和钒浪费了大量的高钛型炉渣,造成钛资源的严重浪费,又造成很大的污染,从而形成了巨大的环境压力,所以开发适宜钒钛磁铁矿综合回收利用的工艺流程势在必行。
本文对钒钛磁铁矿煤基直接还原工艺的炉体结构、原理、特点、现状、投资价格进行简单探讨,指出煤制气-竖炉直接还原工艺为还原钒钛磁铁矿的发展提供新的途径。
电炉冶炼钒钛直接还原铁提钒炼钢工艺试验

电炉冶炼钒钛直接还原铁提钒炼钢工艺试验在现代冶金工业中,通过电炉冶炼钒钛直接还原铁提钒炼钢工艺试验是一项备受关注的技术。
这一工艺的迅猛发展得益于对金属矿石资源的深入开发和利用,同时也为提高工业生产效率和减少对传统资源的依赖提供了新的可能性。
本文将从不同角度对这一工艺进行全面评估,并探讨其深度和广度。
让我们来看一下电炉冶炼钒钛直接还原铁提钒炼钢工艺试验的基本原理。
在这一工艺中,通过高温电弧将含钒钛矿石进行还原熔炼,得到高纯度的铁和钒钛合金。
这一工艺的优势在于可以直接利用矿石资源,减少了传统冶炼工艺中的预处理环节,提高了冶炼效率和降低了成本。
通过合理控制还原条件和合金配比,可以得到满足不同工业需求的高品质合金产品。
在实际应用中,电炉冶炼钒钛直接还原铁提钒炼钢工艺试验也面临诸多挑战和问题。
首先是能源消耗和环境污染的问题。
高温电弧冶炼需要大量电能,而且在炼钢过程中会产生大量烟尘和废渣,对环境造成严重影响。
其次是技术参数的控制和优化问题。
电弧冶炼过程中需要严格控制温度、氧化还原条件和合金成分,以确保产品合金品质达标。
这些都需要在工艺试验中进行深入研究和实践,以不断优化和改进工艺的稳定性和可靠性。
电炉冶炼钒钛直接还原铁提钒炼钢工艺试验是一项技术前景广阔的冶金工艺。
通过对其深度和广度的评估,我们可以发现其在资源利用、生产效率和产品品质方面的巨大潜力。
然而,也需要重视其在能源消耗、环境污染和工艺优化方面所面临的问题和挑战。
只有通过不断的实验和改进,才能真正实现这一工艺的可持续发展和商业化应用。
个人观点上,我认为电炉冶炼钒钛直接还原铁提钒炼钢工艺试验是一项有着巨大应用前景和发展空间的技术。
通过不断的研究和实践,可以不仅提高钒钛资源的利用率,减少对传统铁矿石资源的依赖,同时也为提高钒钛合金产品品质和降低生产成本提供了可能。
然而,需要克服的技术和环境问题也不可忽视,需要工程技术人员和环保专家共同努力,以实现这一工艺的商业化应用和可持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钒 钛 铁 精 矿 含碳 球 团直 接 还 原 试 验
李俊 翰 , 邱 克 辉 , 杨 绍利
( 1 .成都 理 工 大学, 成都 6 1 0 0 5 9 ;
2 .攀枝 花 学 院 钒 钛 资源 综合 利用 四川 省 重点 实验 室 , 四川攀 枝花 6 1 7 0 0 0 )
摘要 : 采 用 正 交 试 验 和 单 因素 试 验 考 察 还 原 温 度 、 配碳 量 ( n c n o ) 、 还 原 时 间 对 某 钒 钛 磁 铁 矿 精 矿 直 接 还
0 . 4 ,t he me t a l l i z a t i o n r a t e o f r e d uc e d p e l l e t s c a n be i mpr o ve d t o 9 1 . 7 7 ,wi t h p ha s e c o mp os i t i o n of me — t a l l i c i r o n . Ke y wo r ds : v a na d i um a n d t i t a ni u m i r o n c on c e n t r a t e s;r e du c t i on;m e t a l l i z a t i o n r a t e;or t h og o na l e x pe r i me nt s
2 .S i c h u a n Pr ov i nc e Ke y La b o r a t o r y o f Co mp r e he n s i v e Ut i l i z a t i o n f o r Va na d i u m & Ti t a n i u m Re s ou r c e s.
Pa nz h i h ua Uni v e r s i t y,Pa nz h i h ua 6 1 7 0 0 0,Si c h u a n,Ch i n a )
Ab s t r a c t : Th e e f f e c t s o f r e d u c t i o n t e mp e r a t u r e ,mo l e r a t i o o f c a r b o n t o o x y g e n( n c / n o )a n d r e d u c t i o n t i me
LI J u n - h a n ,QI U Ke — h u i ,YANG S h a o — l i
( 1 .Che n g d u Un i v e r Байду номын сангаас i t y o f Te c h n o l o g y,Ch e n g d u 6 1 0 0 5 9,Ch i n a
Di r e c t Re d u c t i o n o f Ca r b o n — c o n t a i ni n g Pe l l e t s f r o m Va na di u m Ti t a n i u m I r o n Co nc e nt r a t e
o n me t a l l i z a t i o n r a t e of p e l l e t s we r e s t u di e d by o r t ho go na l e x pe r i me n t s a nd s i ng l e f a c t o r e xp e r i me n t s .Th e r e s u l t s s h ow t ha t t h e ma i n a f f e c t i n g f a c t o r s of me t a l l i z a t i o n r a t e i nc l u de r e du c t i on t e mpe r at u r e,f ol l o we d
0 . 4 , 此 工 艺 条 件 下 含碳 球 团 的 金 属 化 率 达 9 1 . 7 7 , 还原后 球团的主要物相组成为金属铁 。
关键词 : 钒 钛铁精矿 ; 还原 ; 金属化率 ; 正 交 试 验
中 图分 类 号 : T F 1 1 1 . 1 3 文献标志码 : A 文章编号 : 1 0 0 7 - 7 5 4 5 ( 2 O l 4 ) 0 3 - 0 0 0 5 — 0 4
b y n c / n o a n d r e d u c t i o n t i me .Un d e r t h e o p t i mu m p a r a me t e r s o f r e d u c t i o n t i me o f 3 0 mi n,t e mp e r a t u r e o f 1 3 5 0 ℃ ,n c / n o一 1 . 2 5 ,mo i s t u r e o f 9 ,mo u l d i n g p r e s s u r e o f 1 2 MPa a n d c o n t e n t o f b i n d i n g a g e n t o f
原 的 影 响 。结 果 表 明 , 影 响 含 碳 球 团金 属 化 率 的 主 次 因 素 依 次 为 还 原 温 度 、 配碳量 、 还 原 时 间 。优 化 工
艺参数为 : 还原时间 3 5 ai r n 、 还 原温度 1 3 5 0℃ 、 配碳量 1 . 2 5 、 水分 9 、 成型压力 1 2 MP a 、 黏 结 剂 加 入 量
2 0 1 4年 第 3 期
有色金属( 冶 炼部分) ( h t t p : / / y s y 1 . b g r i mr n . c n )
d o i :1 0 . 3 9 6 9  ̄. i s s n . 1 0 0 7 — 7 5 4 5 . 2 0 1 4 . 0 3 . 0 0 2