基于汽轮机轴瓦温度过高故障检修处理分析贾志刚
300MW汽轮机轴瓦温度偏高的分析与处理

上下 / m m
水平 / m m
上下 / m m
\
修前 0 . 0 4 低压转子低 0 . 0 2 O . 0 1 下张 口0 . 2 8
轴 瓦进 行清洗 ,并用 刮刀 对下 瓦乌金 工作 面进行 挑花和 修整 ; ( 2 )对润 滑 油系 统进 行油 循 环 ,冲 出油 系统 管道 残 留煤 粉 ,对润滑 油进行 过 滤 ,确保 油质 合格 ; ( 3 ) 封 闭 汽机 房靠 近 煤场 侧 的全 部 窗户 ,密封主 油箱人 孔盖 ,并在人 孑 L 盖 上 加 装带有 防尘 功能 的空气 呼吸器 ,以 防止 空 气 中煤 粉 被 吸 入 主油 箱 进 入 润 滑 油 系
摘 要 :云 河 电厂 6号机 组 为 3 0 0 MW 循 环 流化床 机 组 。 针 对其 5 、6号轴 瓦温度偏 高且有 逐 步上升 趋 势这 一 问题 ,分析
发现 主要 由轴 瓦栽荷 分配 不均 和轴 瓦底 部积 有煤 粉 引起 。 并 通过 具体技 术措 施成 功 消除 5 、6 号 轴 瓦温度偏 高这 一重 大缺
扭矩系数的关键因素。
参考 文献
图1 — 3两 中材料 的拟 合 K 线 图
[ 1 】 贾贤安,李昊,袁皖安 . 高强度螺栓 扭 矩 系数 影响 因素 的 实验研 究 Ⅱ 】 . 技术 ,
2 00 3 .
大致重合 ,并无明显的差异 , 这一点也说 件相 同 的情 况 下 ,所 得 到拟 合 K线 图 是 [ 2 】 刘建文 . 螺检 预 紧 力一 扭 矩 图及 应 用 明 了 ,两 组 对 比实 验 中除 了支 承 面 不 同 致的。 技 术 ,2 0 0 1 . 外 ,在 误 差 允 许 的范 围 内 ,保 证 其 它 条 通过 以上 的实 验 和 理 论 分 析 可 以 得
汽轮机推力瓦温度高原因分析及处理

汽轮机推力瓦温度高原因分析及处理摘要:某电厂二期项目3号汽轮机为上海汽轮机厂生产的单轴、单缸、反动凝气式机组,额定功率:50MW;额定转速:5500r/min。
该机组自2021年投产以来,高负荷(44-45MW)情况下,一直存在推力轴承工作瓦块温度偏高的问题,导致机组无法长期满负荷运行,影响到电厂设备安全及经济效益。
经过认真分析,找到了推力轴承工作瓦块温度偏高的主要原因,采取措施进行处理后,机组带50MW负荷运行,工作瓦块温度由121℃降至83℃,效果明显,恢复了机组满负荷运行能力,解决了3号汽轮机推力轴承工作瓦块温度偏高的问题,保证了该电厂机组的安全稳定运行。
关键词:汽轮机;推力轴承;推力瓦温度1概述某电厂二期项目3号汽轮机为上海汽轮机厂生产的单轴、单缸、反动凝气式机组,型号:N50-6.1/475;额定功率:50MW;额定转速:5500r/min。
该机组前轴承为径向推力联合轴承,由轴承壳体、推力瓦块组件和径向轴承瓦块组成。
推力轴承瓦块组件分正负两组,分布在转子推力盘的两端,每组有11个瓦块,瓦块安装在持环上;推力瓦块背部有平衡块,通过平衡块的摆动,使轴向负荷平均分布于各推力轴承瓦块上,从而使推力瓦块表面的负荷中心都处于同一平面内,每一个推力轴承瓦块均承受着相同的负荷。
机组正常运行时,工作瓦块受力,所以工作瓦块温度高于非工作瓦块温度。
该机组自2021年投产以来,高负荷(44-45MW)情况下,推力轴承工作瓦块温度一直偏高(数据详见表1),最高时达到121℃(汽轮机厂家设计值:115℃报警;130℃跳机)。
为了控制工作瓦温度不超标,该机组经常保持负荷在40MW左右运行。
表1:3号汽轮机推力轴承瓦块温度数据2推力轴承工作瓦温度高原因分析2.1推力盘与推力轴承工作瓦端面位置不平行2022年4月份,该电厂3号汽轮机临停检修,现场拆检推力轴承组件,发现工作瓦右侧半边瓦块(见图2-1:#3、#4、#5、#6、#7、#8)均有磨损,其中有3块瓦块磨损比较严重(见图2-1:#4、#5、#6),左侧半边瓦块没有出现明显的磨损(见图2-1:#1、#2、#9、#10、#11),机组运行中瓦块温度比较高的是#4瓦块(见图2-2:对应#2测点位置)。
汽轮机组轴瓦温度高的分析及处理

汽轮机组轴瓦温度高的分析及处理X谭立锋(内蒙古元宝山热电厂,内蒙古赤峰 024000) 摘 要:分析某汽轮机300MW 机组普遍存在的2号轴瓦温度高原因,阐述了影响可倾瓦温度的关键因素,并通过合理选择轴承的油隙、调整轴瓦的负荷分配、修刮可倾瓦的进出油楔、扩大进油节流孔等手段,使改型机组2号轴瓦温度明显降低。
关键词:汽轮机组;分析;处理 中图分类号:T K 268 文献标识码:A 文章编号:1006—7981(2012)04—0074—02 某汽轮机300MW 直接空冷机组,首次启动后#2瓦温度偏高,尤其是#2B 侧温度最高达105℃,且还有增大趋势。
经调整润滑油温在42℃左右时,瓦温略有下降,但始终高于102℃。
停机翻瓦检查,瓦块有明显划痕,最终通过调整轴承的油隙、调配轴瓦的负荷分配、修刮可倾瓦的进出油楔、扩大进油节流孔等手段,使机组2号轴瓦温度明显降低。
这对保障机组安全、稳定运行具有重要的意义,同时对解决同类型机组存在的同样问题具有重要的参考价值。
图1 东汽300MW(合缸)汽轮发电机组轴系示意图2.5 漏风漏风是指炉膛漏风、制粉系统漏风及烟道漏风,是排烟温度升高的主要原因之一。
炉膛漏风主要指炉顶密胶、看火孔、入孔门及炉底密封水槽处漏风。
制粉系统漏风指备用磨煤机风门、挡板处漏风。
烟道漏风指氧量计前尾部烟道漏风。
对于负压下工作的锅炉,外界冷空气通过锅炉的不严密处漏入炉膛以及其后的烟道中,致使烟气中过量空气增加。
漏风使排烟损失增大,不仅是使它增大了排烟容积,而且也使排烟温度升高,因为漏入烟道的冷空气使漏风点处的烟气温度降低,从而使漏风点以后所有受热面的传热量都减少,故使排烟温度升高。
此外,冷风漏入制粉系统的结果必然会减少流经空气预热器的空气量,导致排烟温度升高,同时还会增加系统的通风电耗,对制粉过程带来不良影响。
2.6 受热面积灰、积焦受热面积灰、结焦将使传热系数下降,烟气换热下降,致使排烟温度上升。
汽轮机主推轴承温度高的原因分析及处理措施

汽轮机主推轴承温度高的原因分析及处理措施摘要:汽轮机是工厂的主要装置,直接关系到生产设备的安全、平稳运转。
轴振动异常是汽轮机发生重大机械故障时一种比较直观的表现,因此,机组正常运转的安全性、稳定性在很大程度上是由汽轮机主推轴承温度高的实际情况确定的。
本文根据空压机组汽轮机运行的情况,逐项分析主推力瓦块温度高的多种因素,最终找到主要原因。
通过技改推力轴承的结构提升了该推力轴承的承载能力,以此消除推力轴承瓦块温度过高的缺陷。
关键词:汽轮机;主推轴承;温度高引言汽轮机在经过一个大修周期后,在进行大修时均应进行轴系找中心的工作。
基本的思路是通过各个联轴器的解体数据进行大量计算以确定调整方案,然后通过调整各个轴承的底部垫铁,使各轴承的移动量趋近于计算量并进行不断的验证,其中底部垫铁与轴承座的洼窝的接触需要进行研磨。
因此,此过程需要花费大量的时间和人力,甚至影响大修进度。
如果能够计算出综合情况下各个轴承的调整及研磨的工作量最小的方案,就能够节省大量的人力和时间,提高检修质量,缩短检修工期。
1低压缸轴承结构低压缸轴承为自位式圆筒形轴承,轴承内径为482.6mm,轴承座与外缸制成一体,轴承座与周边座架一起支承于基础台板上。
轴承下部由3块球面垫铁支撑于轴承座内,左右两块垫铁中心线均与水平中分面的夹角为45°,在下半部分轴承体略低于水平中分面处装有1个防转销,以防止轴承转动。
润滑油通过轴承座与左侧垫块的通孔进入轴承,沿通道进入上半部分轴承体的进油槽。
顶轴油由轴承体底部进入轴承。
在轴承体下半右侧球面垫铁与轴承体接合面处,装有前后布置的热电偶,以测量轴承合金温度。
轴承体垫铁外表面,以及与其接触的轴承座洼窝均为球面,当转子轴颈倾斜时,轴承可随之转动,自动调位,从而使轴颈与轴承间的间隙在整个轴承长度范围内保持不变。
2汽轮机主推轴承温度高的原因分析在该汽轮机运行期间,公司检维修车间通过检修、查找和分析,总结可能导致主推力轴承温度高的因素,并进行逐项排查。
汽轮机轴承温度高的分析和处理

汽轮机轴承温度高的分析和处理汽轮机轴承温度高的分析和处理汽轮机是现代工厂、电站等大型机械设备中的重要组成部分,它的正常运转对于生产和能源保障具有重要作用。
然而,在汽轮机实际运行过程中,经常会出现轴承温度过高的情况,严重影响了设备的安全和运行效率。
针对此问题,本文将从分析原因、评估影响和采取措施三个方面展开探讨。
一、分析原因1.润滑不良润滑不良是汽轮机轴承温度升高的主要因素之一。
由于缺乏或不合格的润滑油,轴承运行表面的摩擦、磨损和接触都会增加,导致发热和过热现象;而如过量润滑油,则可能使轴承表面积聚过多油膜,反而导致润滑不良。
因此,要保证汽轮机润滑系统运行良好,润滑油主要成分、粘度、油池深度等参数需要严格执行设计要求,保证润滑系统正常运行。
2.受力过大汽轮机在运行过程中,轴承承受机械力和热力作用,尤其是当受力过大时,会导致轴承内部产生过度的摩擦现象,增加轴承磨损和热度,导致温度升高。
如果出现此类问题,可以通过检查机械系统传动或负荷的情况,找到问题所在并进行调整或修理。
3.材料质量和选型不足选择的轴承材料质量不过关或选型不当也容易导致轴承温度高的问题。
此外,轴承材料的热导率也会影响其散热效果,过低的热导率会造成轴承板壳表面传热不良,从而造成轴承过热。
因此,在轴承的材料制作及选型过程中,应考虑到行业标准和实际使用要求,以保证轴承的耐用性和散热性能。
二、评估影响汽轮机轴承过热会对设备的安全和正常运行造成诸多影响。
首先是设备损坏问题,当轴承的温度过高时,它的动摩擦就会增加,轴承将产生可燃性材料热分解物,磨损加速,硬度下降,导致轴承寿命缩短,最终导致焊接和锈蚀等问题,对设备造成重大的损坏;其次是能源损失问题,由于轴承过热会导致汽轮机效率急剧下降,进而使得汽轮机的发电能力减少,对于生产和能源利用都会造成损失。
三、采取措施1.加强润滑管理加强润滑管理是解决轴承过热的关键之一。
为了确保润滑系统正常工作,可以进行以下措施:选择合适的润滑油,遵循保养周期;对设备进行适当的加油量和加油周期管理;对润滑系统进行巡检,排查不合格油质和孔隙,极大优化润滑质量和稳定性。
汽轮机组轴瓦温度高的原因分析及处理

汽轮机组轴瓦温度高的原因分析及处理摘要:本文分析了某600MW汽轮机组普遍存在的6瓦温度高的原因,阐述了影响6瓦温度的关键因素,并通过调整轴承的接触、负荷分配、轴瓦与轴承盖间隙、转子扬度、轴瓦扬度、轴瓦油隙、修补轴瓦和轴颈等手段,从而解决了6瓦温度高的问题。
关键词:6瓦温度高;自位能力;轴瓦、轴颈损伤;检修工艺0引言某电厂汽轮机组是上海汽轮机厂引进美国西屋公司技术制造的亚临界、一次中间再热、四缸四排汽、单轴、凝汽式汽轮机。
汽轮机的型号是N600-16.7/537/537,该型号汽轮机组共有11个轴承,1~4、11瓦为四瓦块可倾瓦,5、9、10瓦下瓦为两瓦块可倾瓦、上瓦为圆筒瓦,6~8瓦为圆筒瓦。
自机组投产以来,6号轴承曾经多次出现轴颈损伤、瓦温高等问题,严重影响机组安全稳定运行。
1轴承座和轴承结构特点该型号低压转子轴承座与低压外缸焊接为一体结构,由于低压外缸本身刚度较差,决定了低压轴承座内的轴承标高,将随着真空变化引起的低压缸变形而有所变化。
1号低压缸前轴承为可倾瓦(5瓦),1号低压缸后轴承(6瓦)和2号低压缸前(7瓦)、后轴承(8瓦)均为圆筒瓦。
6号轴承体水平分成两半,装配时用两只销钉来确保两半轴承体准确定位,下半轴承由三块垫铁支撑于轴承座内,左右两块垫铁与中心线呈45度角,在垫块与轴承体间装有调整垫片,可以移动轴承位置,使转子与汽缸同心。
同时下半轴承体略低于水平中分面处,装有一止动销,它延伸到轴承座的一条槽内,以防止轴承转动。
润滑油通过轴承座与垫铁之间通孔进入轴承,沿通道进入上半轴承体的进油槽,可靠地供油润滑。
进油槽并不延伸到轴承两端,部分润滑油经过轴承两端周向油槽的下部回油孔泄到轴承座内,顶轴油在轴承体底部进入轴承。
当转子中心变化引起轴颈倾斜时,轴瓦随之转动自动调位,从而使轴颈与轴承间的间隙在整个轴承长度范围内保持不变,这就要求轴瓦球面垫铁和球面座之间的球形配合面接触非常好。
由于圆柱形轴承是单油楔轴承,因此油膜稳定性较差,并且由于轴瓦结构原因,一但有异物进入轴瓦楔形间隙将会卡在轴颈与轴瓦之间,造成轴颈的损伤。
浅析汽轮机轴承温度高原因分析及采取针对措施

浅析汽轮机轴承温度高原因分析及采取针对措施摘要:汽轮机的经济稳定安全运行,轴承温度控制是关键。
汽轮机轴承温度太高,会引起金属的热应力增大,温度超过设计要求值,影响轴承使用寿命,不利于安全经济运行,严重的会引起轴承钨金熔化,导致转子中心不一致,引起汽轮机严重振动,汽轮机动、静部分产生严重碰磨,从而引起汽轮机严重质量事故。
本文以某发电厂CJK330-16.7/0.4/538/538亚临界中间再热空冷抽汽凝汽式汽轮机低压缸#3轴承作为案列阐述轴承温度升高原因及处理措施。
关键词:汽轮机;轴承;温度;分析一、概述:某电厂CJK330机组#3可倾轴承在冲转过程中,温升明显高于其它轴承,汽轮机转速达到2006n/min时#3轴承金属温度左侧89℃右侧84℃,当转速3000n/min时#3轴承金属左侧97℃右侧94℃。
轴承巴氏合金整定报警值为107℃,#3轴承金属温度接近报警值。
其它轴承金属温度均在69℃--78℃之间,都在正常范围值之内。
二、#3轴承结构及工作原理:#3轴承由4四块自位式可倾瓦块组成。
上、下半轴承各两块可倾瓦块,瓦块在支点上可以自由倾斜。
瓦块在工作时,可以自由摆动,在轴径四周形成多油楔。
轴承用油从润滑油系统通过轴承座下半的通道供给轴承。
然后通过位于水平和垂直中心线处的 4 个开孔进入轴承瓦块。
油沿着各瓦块间的轴颈表面分布并从两端排出。
油封环和油封体防止从轴承两端大量泄油。
油封体做成两半并固定在轴承体上。
油通过钻在油封环上的一些油孔和油封体上的通道返回轴承座。
三、汽轮机轴承温度高的原因有以下几个方面:⑴润滑油品质不良、油质恶化。
汽轮机轴承润滑油主要作用给轴承提供润滑和冷却降温。
润滑油品质下降,直接影响轴承正常运行,严重时轴承钨金划伤或者磨损。
⑵ 联轴器对中不良或者中心发生变化,引起某个轴承过载,产生振动破坏油膜。
汽轮机轴系,联轴器中心对中不良或者运行中中心发生变化,不仅会引起轴承振动,还会发生油膜紊乱,润滑不良,严重时轴瓦乌金出现碎裂,紧固螺钉松脱、断裂。
汽轮机轴瓦温度高的原因分析及处理措施

汽轮机轴瓦回油温度高的原因分析及对策×××〔××××××发电有限责任公司×××× 044602〕摘要:本文着重分析了汽轮机组在运行中轴瓦温度升高的原因,轴瓦温度升高严重时会引起机组的振动,轴瓦的烧毁,威胁着机组的平安运行。
针对造成轴瓦温度升高的原因提出了防范措施,供运行和检修部门参考。
关键词:汽轮机轴瓦温度0前言:汽轮机润滑油系统的作用是润滑轴承和减少轴承的摩擦损失,并且带走因摩擦产生的热量和由转子传过来的热量,并向调节系统和保护装置供油,保证其正常工作,以及向发电机密封瓦提供密封油等,润滑油系统的工作好坏对汽轮机的正常运行有非常重要的意义。
汽轮机转子与发电机转子在运行中,轴颈和轴瓦之间有一层润滑油膜。
假设油膜不稳定或油膜破坏,转子轴颈就可能和轴瓦发生干摩擦或半干摩擦,使轴瓦烧坏,使机组强烈振动。
引起油膜不稳和破坏的因素很多,如润滑油的黏度,轴瓦间隙,轴瓦面积上受的压力等等。
在运行中,如果油温发生变化,油的黏度也会跟着变化。
当油温偏低时,油的黏度增大,轴承油膜增厚,汽轮机转子容易进入不稳定状态,使汽轮机的油膜破坏,产生油膜震荡,使机组发生振动。
现把引起轴瓦温度升高的因素归纳如下:1.轴瓦进油分配不均,个别轴瓦进油不畅所致。
此种情况下,首先检查轴瓦进油管道入口滤网,是否堵塞。
观察回油量是否正常。
必要时轴瓦解体全面检查。
尤其是刚大修完的机组,根据以往发生的事件来看,多数情况下是由于检修人员的工作疏忽,不认真,在轴瓦回装时,没有仔细检查,清理轴承箱,拆机时油口的封堵忘记拿掉造成开机时轴承温度升高,甚至烧瓦事故。
本人见过的这种事故就有三起。
所有这种事故经验教训要引起我们的足够重视。
假设轴瓦经认真检查未发现问题,那么可以适当加大轴瓦进油口节流孔板的孔径,增加进油量。
2.轴瓦工作不正常。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于汽轮机轴瓦温度过高故障检修处理分析贾志刚发表时间:2016-04-28T09:06:11.090Z 来源:《电力设备》2015年第12期供稿作者:贾志刚李静平贾向阳张杰[导读] (内蒙古京能康巴什热电有限公司分析了某电厂350MW超临界机组运行中#2轴承金属温度高的原因,论述了影响可倾瓦温度的关键因素,通过采取调整轴瓦的载荷分配、合理选择轴承的油隙、修刮可倾瓦的进出油楔等措施,使该轴瓦温度明显降低,确保了机组的安全运行。
(内蒙古京能康巴什热电有限公司内蒙古,鄂尔多斯 017000)摘要:分析了某电厂350MW超临界机组运行中#2轴承金属温度高的原因,论述了影响可倾瓦温度的关键因素,通过采取调整轴瓦的载荷分配、合理选择轴承的油隙、修刮可倾瓦的进出油楔等措施,使该轴瓦温度明显降低,确保了机组的安全运行。
关键词:汽轮机;轴承;温度;载荷;垫铁0 引言某电厂引进型350MW机组为超临界一次中间再热、双缸双排汽、单轴抽汽凝汽式汽轮机,该机组共设有7个径向支持轴承推力轴承,其中:汽轮机4个,发电机3个;#1、#2、#3、#4、#7轴承为四瓦块可倾瓦轴承; #5、#6轴承为椭圆型轴承,另设有1个独立结构的推力轴承,推力轴承布置在#1轴承座内。
汽轮机运行过程中,#2径向支持轴承温度偏高,一般情况下为85℃左右,最高达到100℃,且还有增大趋势,设计95℃报警,107℃停机。
#2轴瓦温度高会降低轴承使用寿命甚至导致其损坏,严重影响了机组安全运行。
1 影响轴瓦温度的因素由于汽轮机轴承处在高转速、大载荷的工作条件下,所以要求轴承工作必须安全、可靠且摩擦力小。
为了满足这些要求,汽轮机轴承都采用以油膜润滑理论为基础的滑动轴承,由供油系统连续不断地向轴承内供给压力、温度符合要求的润滑油。
转子的轴颈支撑在浇有一层质地软、熔点低的巴氏合金的轴瓦上,并作高速旋转,使轴颈与轴瓦之间形成油膜,建立液体摩擦,从而减小摩擦阻力。
摩擦产生的热量被回油带走,使轴承温度始终保持在合理的范围内。
轴承的工作情况主要依据轴承温度、轴承回油温度、轴承振动、轴系的稳定性等来衡量。
影响轴瓦温度的因素有:轴瓦巴氏合金工作面有脱胎、损伤现象,或与轴颈接触不均匀。
若轴瓦有脱落、损伤,会破坏油膜的稳定性;接触不良会导致轴颈与轴瓦局部摩擦增大、轴瓦温度升高。
轴瓦载荷分配不均。
轴瓦载荷分配不均的原因是转子中心存在偏差、轴承座温度和扬度发生变化、转子受到向下的力过大、轴振动过大、转速超过允许值、轴封漏汽引起轴承座标高发生变化等。
对于动压式滑动轴承,如果轴承载荷过小,轴承油膜则会过厚,容易失稳而发生油膜振荡;如果轴承载荷过大,油膜容易破裂而使轴瓦和轴颈局部发生干摩擦而使轴瓦温度升高。
(3)轴承润滑油温度过高。
润滑油温度过高或过低,润滑油黏度不合格,油流量过大或过小,润滑油供油、回油不畅、油质不良或油质恶化,润滑油油压力过低或过高,油流中或轴承内存在气体或杂物,顶轴油管逆止阀不严导致油膜压力下降等都会造成轴承润滑油温度过高,润滑油失去润滑冷却效果,导致轴瓦温度升高。
(4)润滑油油量不足。
轴承润滑油有润滑和冷却功能,如果轴瓦进油量不足或排油不畅,运行中产生的热量无法及时带走,就会导致轴瓦温度偏高。
(5)轴瓦油隙不合格也会造成轴瓦温度高。
轴瓦与轴顶部间隙过小,机组高速旋转过程中紧力大,油膜遭到破坏,导致轴颈与轴瓦乌金表面发生干摩擦,造成轴瓦温度升高。
(6)汽缸热辐射影响。
若轴瓦附近汽缸保温效果不好,会使汽缸热量直接辐射至轴瓦,导致温度升高。
(7)轴瓦安装质量问题。
安装工艺不好会使轴瓦球面自动调整能力变差或进油孔处垫铁接触不好。
轴承紧力过大、轴承底座垫片过多、可倾瓦垫块装反限制了活动范围、轴承安装偏斜、轴承与轴颈扬度不一致(不同轴)等,都可能使轴瓦自动调整能力变差,从而导致轴瓦温度升高。
(8)轴承温度测量系统异常。
例如温度测量元件损坏、温度测量后补偿方法或标准不对、安装不正确、温度补偿系统受外界干扰等,都会使测温产生误差。
2 轴瓦温度升高的现象及分析#2轴承为自位式支持轴承,由4块能在支点上自由倾斜的弧形瓦块组成,轴承上、下半各有2块可倾瓦,瓦块工作时随着转速、载荷及油温的不同而自由摆动,在轴颈四周形成多油楔。
若忽略瓦块的惯性、支点的摩擦阻力及油膜剪切摩擦阻力等的影响,则每个瓦块作用到轴颈上的油膜作用力均通过轴颈中心,故具有较高的稳定性。
但这种轴承结构在半圆内至少有2个活动瓦块,其结构相对较为复杂,给制造、安装和检修增加了一定的难度。
轴承的润滑油由轴承底部的一个通道进入,通过轴承键中心的一个孔口进入轴承外壳的下半部,沿轴流向轴承外壳环形空间两端。
油再从环形空间经6个孔口进入轴承瓦块,沿轴颈分布,并从轴颈两端排出,其中2个孔口位于轴承垂直中心线的顶部,2个孔口位于水平线上。
在轴承的两侧均装有油封环,以防止润滑油大量泄漏,同时为了保证油封环工作可靠,油封环上有1个油槽,并设有排油口,使被阻挡的油很快排出。
2.1 机组运行中#2轴瓦数据及分析机组正常运行过程中,#2轴瓦温度一般在85℃左右(正常值约为65℃),夏季满负荷时最高达到100℃,回油温度偏高,严重威胁了机组的安全运行。
#2轴瓦温度随机组负荷变化曲线如图1所示。
由图1可以看出,机组各个负荷段#2轴瓦温度都较高。
从整个机组运行参数来看,轴瓦进油温度和压力都正常,其他轴瓦温度都正常,只有#2轴瓦回油温度偏高,说明#2轴瓦自身存在缺陷,与机组润滑油系统和机组负荷没有关系。
因此,应从该瓦的载荷分配、节流孔板直径、轴承油间隙及轴承合金浇铸质量等方面查找原因,然后进行针对性的治理。
2.2 #2轴瓦解体检修中发现的问题及分析在机组B级检修中对#2轴瓦进行全面解体,发现#2轴承顶部间隙超标(设计值为0.61~0.71mm,实测值为0.78mm)。
对中低对轮中心进行了复查,中低对轮全缸中心:下张口0.185mm,右张口0.165mm,高压转子低0.020mm,偏左0.015mm;半缸中心:下张口0.165mm,右张口0.185mm,高压转子低0.050mm,偏左0.055mm。
设计值:高压转子低0.100mm,下张口0.185mm,其余外圆张口均≤0.020mm。
高压转子偏高,右张口超标较多。
轴承下部瓦块巴氏合金有轻微烧伤,无明显划痕,对轴瓦表面巴氏合金进行着色检查,没有发现脱胎和裂纹;对应转子轴颈表面也完好、无划痕,测量轴颈椭圆度、锥度都在标准范围内。
对轴承下部垫铁进行接触检查,发现带来油孔的垫铁与轴承座洼窝接触不好。
并对轴承节流孔板进行了检查,没有发现异物,孔径大小与设计值相符。
对#2轴瓦进行解体分析后可知,中低转子中心偏差较大,高中压转子偏高,造成#2轴瓦载荷大,是#2轴瓦温度高的主要原因。
3 处理措施综合以上分析,结合机组的实际情况,现对#2轴瓦采取以下处理措施:适当调整#2瓦标高,重新对轴瓦进行载荷分配。
轴瓦的载荷分配就是通常所说的转子找中,一般是在大修中将联轴器断开,调整联轴器端面和圆周偏差,对于半扰动性或固定式联轴器而言,这种找正结果与两个转子是否同心没有任何关系,而是在找轴瓦的载荷分配。
真正的转子找中心是在联轴器连接螺栓拧紧的情况下,检测轴颈的偏心值。
此次扩大型B级检修包含了高中压缸解体检修,为彻底解决#2轴瓦温度高的问题创造了条件。
此次检修调整了#2轴瓦垫铁(轴承标高下降0.15mm),减轻了该轴瓦的载荷,兼顾转子扬度的同时调整中低联轴器左右外圆及张口到标准范围内,中低对轮全缸中心:下张口0.1750mm,右张口0.0175mm,高压转子低0.1000mm,偏左0.0150mm。
(2)重新研瓦,使其垫铁接触符合轴瓦检修工艺要求,即垫铁与轴承座洼窝的接触面积占垫铁总面积的75%以上,且接触点应均匀分布,特别是对附带油孔的垫铁,油孔周围接触点一定要严密,以防润滑油外泄。
(3)检查瓦与轴颈的接触面、轴与轴瓦各部位的间隙和轴承紧力,要求符合相关规范。
(4)修刮可倾瓦块的进、出油斜边,减小流通阻力,将轴承进油节流孔直径由φ17.50mm扩大到φ19.50mm,从而增加了润滑油的流量。
(5)回装时通过内窥镜检查进油孔内是否有残留异物;落入下瓦时一定要放正,检查下半可倾瓦瓦块活动情况,确保活动自如,没有明显的阻力;落入转子后盘车几圈,检查轴瓦水平是否与轴承座水平一致。
采取以上措施后,机组成功启动,#2轴承电侧金属温度明显下降,其他运行参数都在标准范围内。
机组B修后,虽然#3轴瓦温度有所增加,但仍然在标准范围内,其他轴瓦各项参数均正常。
通过对比#2,#3轴瓦修前、修后的参数可知,调整轴瓦载荷是处理轴瓦温度的主要手段。
检修过程中轴系载荷分配一定要严格按照设计要求进行调整,同时还要注重检修工艺质量,减小测量误差,对于重要数据一定要严格按照质量验收程序进行验收,不给机组的安全运行留下任何隐患。
4 结束语轴承是汽轮机的重要组成部件,其温度过高不仅会损坏部件,甚至会导致机组停机,为电力生产带来了安全隐患。
本文通过正向推理诊断故障方法,对#2轴瓦温度高的案例进行了分析,然后与影响因素对比,找到了原因,通过重新调整轴系载荷分配,成功地处理了#2轴瓦温度高的缺陷。
参考文献:[1]郭建秋.大型火电机组检修应用技术丛书:汽轮机分册[M].北京:中国电力出版社,2004.[2]施维新.汽轮发电机组振动及事故[M].北京:中国电力出版社,2008.[3]张磊,柴彤.大型火电发电机组故障分析[M].北京:中国电力出版社,2007.作者简介贾志刚(1976.10),男,内蒙古鄂尔多斯人;单位:内蒙古京能康巴什热电有限公司;研究方向:发电厂汽轮机设备检修。