微生物细胞破碎
实验室常用的细胞破碎方法

实验室常用的细胞破碎方法
实验室常用的细胞破碎方法有物理法和化学法。
1、物理法
(1)反复冻融:将细胞反复放置于-20℃冷冻以及25-30℃环境下,反复冷冻溶解10次-20次。
适用于例如血细胞等大部分哺乳动物细胞。
(2)煮沸法:与冻融法相反,将细胞放置于100℃沸水煮沸5-10分钟,适用于大部分微生物细胞。
(3)超声法:将细胞放置于超声破碎仪中,以一定频率的超声破碎细胞,适用于绝大部分微生物细胞。
(4)渗透压法:将血细胞等细胞膜较为薄弱的细胞放置于纯水等低渗溶液,细胞吸收大量水分破解。
(5)液氮法:植物细胞一般采用液氮捻磨的方法破解细胞。
2、化学法
(1)强酸、强碱溶液:一般应用0.5N NaOH溶液可以裂解绝大部分动物细胞和微生物细胞。
(2)生物酶:一般用溶菌酶、蛋白酶K等酶裂解微生物细胞。
微生物细胞的破碎

❖ KOLER gmbh
❖ 德国著名特制合金材料公司
ATS的技术合作伙伴-意大利FBF
ATS的合作伙伴FBF
❖ 成立于1987年,位于意 大利帕尔马
❖ 2002年来,每年生产近 300台高压均质机
❖ 设备销往全世界50多个 国家,有超过2000台设 备在各地运行。
ATS的合作伙伴FBF
可达较高破碎率,可大规模操作,对于少 量物料<100ml,难操作
超声破碎法
液体剪切作用
对酵母菌效果较差,破碎过程升温剧烈, 不适合大规模操作
X-press法
固体剪切作用
破碎率高,活性保留率高,对冷冻敏感目 的产物不适合
非 酶溶法
酶分解作用
具有高度专一性,条件温和,浆液易分离,
机
溶酶价格高,通用性差
械 化学渗透法 改变细胞膜的渗透性 具一定选择性,浆液易分离,但释放率较
一、细胞壁的组成和结构
为了研究细胞的破碎,提高其破碎率,有必要了解 各种微生物细胞壁的组成和结构(表1):
微生物 壁厚/nm 层次
主要组 成
革兰氏阳性 革兰氏阴性 酵母菌
20-80
10-13
100-300
单层
多层
多层
肽聚糖
肽聚糖
葡聚糖
(40-90%) (5-10%) (30-40%)
多糖
脂蛋白
❖ 2002年开发了新的 TITAN系列大型高压均 质机,成为欧洲发展最 迅速的高压均质机制造 商。
高压细胞破碎机工作原理
❖ 电机驱动 ❖ 柱塞泵加压 ❖ 均质点破碎
❖ 空穴效应 ❖ 剪切效应 ❖ 撞击效应
破碎发生点
高压破碎的要点
生化工艺——第二章细胞破碎

²
第二节
细胞壁的破碎
一、珠磨破碎 破碎原理:利用在高速搅拌作用下, 破碎原理:利用在高速搅拌作用下,细胞和微球相 被破碎。 互磨擦碰撞而受剪切力被破碎。 破碎作用遵循一级动力学定律: 破碎作用遵循一级动力学定律:
1 ln = kt 1− x
特点:适用范围较广;但有效能量利用率很低, 特点:适用范围较广;但有效能量利用率很低,设 计操作时应充分考虑冷却系统的热交换能力; 计操作时应充分考虑冷却系统的热交换能力;影响破碎 率的操作参数较多,过程优化设计较复杂。 率的操作参数较多,过程优化设计较复杂。
1 − x = exp( − kt )
影响因素:细胞种类、浓度和超声波的能量等。 影响因素:细胞种类、浓度和超声波的能量等。 特点:是很强烈的破碎方法;适用范围广; 特点:是很强烈的破碎方法;适用范围广;但有效 能量利用率极低,对冷却要求相当苛刻,不易放大, 能量利用率极低,对冷却要求相当苛刻,不易放大,多 在实验室使用。 在实验室使用。
细胞壁的破碎方法总结
方法 机 械 法 技术 原理 效果 成本 举例 动物组织及 动物细胞 匀浆法(片型) 匀浆法(片型) 细胞被搅拌器 劈碎 研磨法 超声波法 细胞被研磨物 磨碎 用超声波的空 穴作用使细胞 破碎 适中 适中 适中 便宜 适中 昂贵 细胞悬浮液 小规模处理 细胞悬浮液 大规模处理
匀浆法(孔型) 匀浆法(孔型) 须使细胞通过 的小孔, 的小孔,使细 胞受到剪切力 而破碎 珠磨破碎法 细胞被玻璃珠 或铁珠捣碎
总结 A、在大规模cell破碎中,高压匀浆机和珠 磨机用得最多; B、高压匀浆机最适合于酵母和细菌; C、珠磨机适用范围较广,可用于酵母和细 菌,但对真菌菌丝和藻类更合适.
三、超声波破碎 破碎原理:超声波作用下液体发生空化作用, 破碎原理:超声波作用下液体发生空化作用,产生 使细胞破碎。 极大的冲击波和剪切力,使细胞破碎。 ²
微生物细胞的破碎及破碎率测定1

(1) 研磨法
研磨:将细胞悬液与玻璃珠、石英砂或氧化铝一起快速 搅拌或研磨,使细胞破碎。
实验室设备:Mickle高速组织捣碎机和Braun匀浆器, 利用玻璃小珠撞击微生物细胞而破碎。
主要缺点:温度迅速升高,需冷却。 另外,较大量的细胞可用胶质磨来处理。
4. 超声波在液体中起空穴作用,使液体温度会快速 升高,可采用短时间的多次破碎,同时可补加冰 浴冷却。
思考题
1. 细胞破碎的方法有哪些? 2. 超声波破碎细胞时应注意的问题是什么? 3. 计算本次实验细胞破碎的破碎率。
实验步骤
1、研磨法
• 细胞培养和收集:将活化菌种接入肉汤液体培养基中, 37℃振荡培养。当到达对数少长期后(约18h),用离心 机收集细胞,3500rpm离心20min。
• 菌体悬液的制备;取湿细胞5-10g悬浮于30ml细胞破碎 缓冲液中。
• 研磨:在研钵中加入适量石英砂,与菌悬液混合,研 磨10min。
• 超声波破碎: 800W,工作6s,间歇6s,破碎75次。 • 破碎率的测定:革兰氏染色法(初染1’、媒染1’、
脱色20-30’’、复染4’)、镜检计数。
3、酶解法
• 细胞培养和收集:将活化的巨大芽孢杆菌种接入肉汤 液体培养基中,37℃振荡培养。当到达对数少长期后 (约18h),用离心机收集细胞,3500rpm离心20min。
例如,破碎的革兰氏阳性菌常可染色成阴性菌的颜 色,利用革兰氏染色法未受损害的酵母细胞呈现紫色, 而受损害的酵母细胞呈现亮红色。
(2)测定释放的蛋白质量或酶的活力
测定悬浮液中细胞内含物的增量来估算破碎率。 通常将破碎后的细胞悬浮液离心,测定上清液中 蛋白质的含量或酶的活力,并与100%破碎所获得的 标准数值比较。
第三章 细胞破碎解读

有机溶剂
能分解细胞壁中的类脂,使胞壁膜溶胀,细胞破裂, 胞内物质被释放出来。 甲苯、苯、氯仿、二甲苯及高级醇等。
变性剂
盐酸胍(Guanidine hydrochloride)和脲素(Urea) 是常用的变性剂。 变性剂与水中氢键作用,削弱溶质分子间的疏水作用,从而 使疏水性化合物溶于水溶液。
化学渗透法优点:
(5)化学渗透法 某些化学试剂,如有机溶剂、变性剂、表面活 性剂、抗生素、金属螯合剂等,可以改变细胞壁或 膜的通透性(渗透性),从而使胞内物质有选择地 渗透出来。 该法取决于化学试剂的类型以及细胞壁膜的结 构与组成。
表面活性剂
可促使细胞某些组分溶解,其增溶作用有助于细胞的破碎。 如Triton X-100是一种非离子型清洁剂,对疏水性物质 具有很强的亲和力,能结合并溶解磷脂,破坏内膜的磷脂双 分子层,使某些胞内物质释放出来。 其他的表面活性剂,如牛黄胆酸钠、十二烷基磺酸钠等也可 使细胞破碎。
压和高速冲击撞击环造成细胞破裂。
原理:细胞悬浮液在高压作用下从阀座与阀之间的环隙高速喷出后撞击到碰撞 环上,细胞在受到高速撞击作用后,急剧释放到低压环境,从而在撞击 力和剪切力作用下破碎。
压力:50~70MPa 速度:450m/s
高压匀浆器针型阀结构简图
高压匀浆器各种阀型设计
在工业规模的细胞破碎中,对于酵母等难 破碎的及高浓度的细胞悬液,常采用多次循环 的操作方法。其破碎属于一级反应速度过程, 被破碎的细胞分率符合下式,破碎的动力学方 程可表示为:
EDTA螯合剂
处理G-细菌,对细胞外层膜有破坏作用。G-细菌的外层膜结
构通常靠二价阳离子Ca2+或Mg2+结合脂多糖和蛋白质来维
持,一旦EDTA将Ca2+或Mg2+螯合,大量的脂多糖分子将 脱落,使细胞壁外层膜出现洞穴。这些区域由内层膜的磷脂 来填补,从而导致内层膜通透性的增强。
细胞破碎实验报告结论

一、实验目的总结本次实验的主要目的是研究不同细胞破碎方法对微生物细胞破碎效果的影响,探讨不同破碎方法在微生物细胞提取中的应用前景。
通过对实验结果的观察和分析,旨在为微生物细胞破碎实验提供科学依据,为后续研究提供参考。
二、实验结果分析1. 实验材料及方法实验选用了一种常见的微生物细胞,采用化学破碎、机械破碎、超声波破碎和酶解破碎四种方法进行细胞破碎。
在实验过程中,分别记录了不同破碎方法对细胞破碎效果的影响,并对破碎后的细胞进行了显微镜观察和蛋白质含量测定。
2. 实验结果(1)显微镜观察在显微镜下观察发现,化学破碎、机械破碎和超声波破碎方法均能有效地破坏微生物细胞,使细胞内容物释放出来。
酶解破碎方法在低浓度酶解剂下,细胞破碎效果较差,但随着酶解剂浓度的增加,细胞破碎效果逐渐提高。
(2)蛋白质含量测定通过测定破碎后的细胞蛋白质含量,结果显示,化学破碎、机械破碎和超声波破碎方法对蛋白质含量的影响较小,而酶解破碎方法随着酶解剂浓度的增加,蛋白质含量逐渐降低。
3. 结果讨论(1)不同破碎方法对细胞破碎效果的影响化学破碎方法具有操作简便、成本低等优点,但可能对细胞内容物造成一定程度的污染。
机械破碎方法在破碎过程中,容易导致细胞内容物的机械损伤,影响后续实验结果。
超声波破碎方法具有破碎速度快、破碎效果好等优点,但设备成本较高。
酶解破碎方法具有特异性强、破碎效果好等优点,但酶解剂的选择和浓度对破碎效果有较大影响。
(2)细胞破碎效果与蛋白质含量的关系实验结果表明,不同破碎方法对蛋白质含量的影响较小。
这可能是由于细胞破碎过程中,细胞膜和细胞壁的破坏使得蛋白质释放出来,从而降低了蛋白质含量。
此外,酶解破碎方法随着酶解剂浓度的增加,蛋白质含量逐渐降低,这可能是因为高浓度的酶解剂导致蛋白质发生降解。
三、实验结论1. 化学破碎、机械破碎、超声波破碎和酶解破碎方法均能有效破坏微生物细胞,释放细胞内容物。
2. 酶解破碎方法在低浓度酶解剂下,细胞破碎效果较差,但随着酶解剂浓度的增加,细胞破碎效果逐渐提高。
生物分离工程 第4章-细胞的破碎-

细胞壁的组成与结构
微生物 壁厚/nm 层次 主要组成 革兰氏阳性 细菌 20~80 单层 肽聚糖(40 %~90%)、 多糖、胞壁 酸、蛋白质、 脂多糖(1 %~4%) 革兰氏阴性 细菌 10~13 多层 酵母菌 100~300 多层 霉菌 100~250 多层
肽聚糖(5 葡聚糖(30 多聚糖(80 %~10%) %~40%) %~90%) 脂类、蛋白质 脂蛋白、脂 甘露聚糖 多糖(11 (30%)、 %~22%) 蛋白质(6 磷脂、蛋白 %~8%)、 质 脂类(8.5 %~13.5)
n
为了研究细胞的破碎,提高其破碎率,有必要了解各种微 生物细胞壁的组成和结构。
8
第一节 细胞壁的组成与结构
微生物细胞和植物细胞外层均为细胞壁,细胞 壁里面是细胞膜,动物细胞没有细胞壁,仅有 细胞膜。 通常细胞壁较坚韧,细胞膜脆弱,易受渗透压 冲击而破碎,因此细胞破碎的阻力主要来自于 细胞壁。 不同细胞壁的结构和组成不完全相同,故细胞 壁的机械强度不同,细胞破碎的难易程度也就 不同。
在细胞内沉积。 脂类物质和一些抗生素包含在生物体中。
对于胞内产物需要收集菌体或细胞进行破碎。
5
细胞破碎的必要性
表1 胞内酶举例
酶 L-天冬酰氨酶 过氧化氢酶 胆固醇氧化酶 β-半乳糖苷酶 葡萄糖氧化酶 葡萄糖-6-磷酸脱氢酶 来源 Eruinia Caratovora Escherichia Coli Aspergillus niger Nocardia hodochrous Kluyveromyces fragilis Saccharomyces lactis Aspergillus niger Penicilluim notatum Yeast 应用范围 治疗急性淋巴癌 牛奶灭菌后H2O2的清除 胆固醇浆液分析 在牛奶/乳清中乳糖的水解 作用 葡萄糖浆液分析 食品中氧的清除 临床分析
利用离心使酵母菌破碎的方法

利用离心使酵母菌破碎的方法
离心是一种分离和富集生物样品的常用方法,而在微生物学中,离心也可以用来破碎酵母菌细胞。
下面是利用离心使酵母菌破碎的方法:
1.培养酵母菌,并收集到需要处理的细胞。
2.将酵母菌细胞悬浮液离心,一般建议采用低速离心,避免对细胞壁造成损伤。
离心速度一般为3000-5000rpm,离心时间视具体情况而定。
3.将离心后的上清液倒掉,保留下混浊的沉淀。
这个沉淀就是破碎后的酵母菌细胞。
4.将酵母细胞沉淀洗涤几次,可以用PBS缓冲液或其他无菌的盐水进行洗涤。
洗涤后将酵母细胞沉淀在离心管底部。
5.加入适量的破碎缓冲液,使用超声波或高压破碎器进行破碎。
破碎缓冲液的成分视研究目的而定,一般包括酶抑制剂、缓冲液和蛋白酶等。
6.破碎后的酵母细胞,可以用离心或过滤的方法除去残留的细胞壁和细胞碎片,得到纯的酵母菌细胞内部物质。
总之,利用离心使酵母菌破碎,是一种简单易行、高效快捷的方法,可以用于酵母菌内部物质的提取和纯化。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞破碎。
高压匀浆器的排出阀
影响匀浆破碎的主要因素: 压力、温度、通过匀浆器阀的次数
不宜采用高压匀浆法的细胞类型。 易造成堵塞的团状或丝状真菌 较小的革兰氏阳性菌 含有包含体的基因工程菌
大、中、小型高压匀浆器
3.超声破碎法(Ultrasonication)
利用发射15-25kHz的超声波探头处理细胞悬浮液。 一般认为超声波破碎的机理是:在超声波作用下液 体发生空化作用,空穴的形成、增大和闭合产生极 大的冲击波和剪切力,使细胞破碎。
➢ 影响超声波的细胞破碎效率因素:频率、液体温 度和粘度、处理时间等。
实验室规模的细胞破碎设备有Mickle高速组织捣碎机、 Braun匀浆器; 中试规模的细胞破碎可采用胶体磨处理; 在工业规模中,可采用高速珠磨机(瑞士WAB公司和德国 西门子机械公司制造)。
珠磨法的破碎率一般控制在80%以下。 珠磨法适用于细胞悬浮液和植物细胞的大规模处理。
胶体磨
德国进口珠磨机
第三节 细胞破碎
L/O/G/O
定义
• 细胞破碎就是采用一定的方法,在一定程度上破
坏细胞壁和细胞膜,使细胞内容物包括目的产物
成分释放出来的技术,是分离纯化细胞内合成的 非分泌型生化物质(产品)的基础。
细胞壁的组成和结构
为了研究细胞的破碎,提高其破碎率,有必要了解各种生物 细胞壁的组成和结构。
生物类型 主要组成
2.高压匀浆法(High-pressure homogenization)
——大规模细胞破碎的常用方法,在微生物细胞和植物
细胞的大规模处理中常采用
原理:
利用高压使细胞悬浮液通过针形阀,由于突然减压和高速冲 击撞击环使细胞破碎,细胞悬浮液自高压室针形阀喷出时, 每秒速度高达几百米,高速喷出的浆液又射到静止的撞击环
植物细胞
初生壁 次生壁
细菌 破碎的主要阻力来自于肽聚糖的网状结构,网状结
构越致密,破碎的难度越大,革兰氏阴性细菌网状结构不 及革兰氏阳性细菌的坚固;
酵母 葡聚糖的细纤维构成了细胞壁的刚性骨架,甘露聚
糖形成网状结构,细胞壁破碎的阻力也主要决定于壁结构 交联的紧密程度和它的厚度;
霉菌 细胞壁中含有几丁质或纤维素的纤维状结构,其强
G+细菌
肽聚糖 (40-90%) 多糖 胞壁酸 蛋白质 脂多糖 (1-4%)
G-细菌
肽聚糖 (5-10%) 脂蛋白 脂多糖 (11-22%) 磷脂 蛋白质
酵母菌
葡聚糖 (30-40%) 甘露聚糖 (30%) 蛋白质 (6-8%) 脂类 (8.513.5%)
霉菌
多聚糖(几 丁质) (80-90%) 脂类 蛋白质
酶分解作用 改变细胞膜的渗透
性 渗透压剧烈改变 反复冻结-融化 改变细胞膜渗透性
适应性 可达较高破碎率,可较大规模操作, 大分子目的产物易失活,浆液分离困 难 可达较高破碎率,可大规模操作,不 适合丝状菌和革兰氏阳性菌 对酵母菌效果较差,破碎过程升温剧 烈,不适合大规模操作 破碎率高,活性保留率高,对冷冻敏 感目的产物不适合 具有高度专一性,条件温和,浆液易 分离,溶酶价格高,通用性差 具一定选择性,浆液易分离,但释放 率较低,通用性差 破碎率较低,常与其他方法结合使用 破碎率较低,不适合对冷冻敏感目的 产物 条件变化剧烈,易引起大分子物质失 活
度比细菌和酵母菌的细胞壁有所提高;
植物细胞 次生壁的形成提高了细胞壁的坚硬性,使植物
细胞具有很高的机械强度。
常用破碎方法
分
类
机 珠磨法 械 法
高压匀浆 法
超声破碎 法
X-press法
非 酶溶法
机
械 法
化学渗透 法
渗透压切作用
液体剪切作用 液体剪切作用 固体剪切作用
某些化学试剂,如有机溶剂、变性剂、表面活性 剂、抗生素、金属螯合剂等,可以改变细胞壁或 膜的通透性(渗透性),从而使胞内物质有选择 地渗透出来。
(1)表面活性剂
表面活性剂可促使细胞某些组分溶解,其增溶作 用有助于细胞的破碎。
➢Triton X-100 ➢牛黄胆酸钠 ➢十二烷基磺酸钠
(2)EDTA螯合剂
主要是处理G-细菌,对细胞外层膜有破坏作用。
EDTA将Ca2+或Mg2+螯合,大量的脂多糖分子将脱落,使细胞壁 外层膜出现洞穴。这些区域由内层膜的磷脂来填补,从而导 致内层膜通透性的增强。
(3)有机溶剂
能分解细胞壁中的类脂,使胞壁膜溶胀,细胞破裂, 胞内物质被释放出来。
乙醇、异丙醇、甲苯、苯、氯仿、二甲苯及高级醇等。
➢ 超声波破碎法是很强烈的破碎方法,适用于多数 微生物的破碎。一般杆菌比球菌易破碎,G-细菌 比G+细菌易破碎,对酵母菌的效果较差。
➢ 该法在实验室小规模细胞破碎中常用。
非机械法
1.酶溶法(Enzymatic Lysis)
(1)外加酶法
常用的溶酶
溶菌酶 β-1,3-葡聚糖酶 β-1,6-葡聚糖酶 蛋白酶 甘露糖酶 糖苷酶 肽键内切酶 壳多糖酶等
机械法
1.珠磨法(Bead mill)
原理:
进入珠磨机的细胞悬浮液与极细的玻璃小珠、石英 砂、氧化铝等研磨剂(直径小于1mm)一起快速搅 拌或研磨,研磨剂、珠子与细胞之间的互相剪切、 碰撞,使细胞破碎,释放出内含物。在珠液分离器 的协助下,珠子被滞留在破碎室内,浆液流出从而 实现连续操作。破碎中产生的热量一般采用夹套冷 却的方式带走。
(2)自溶法(Autolysis)
诱发微生物产生过剩的溶胞酶或激发自身溶胞 酶的活力,以达到细胞自溶的目的。
影响自溶过程的主要因素有温度、时间、pH值、 激活剂和细胞代谢途径等。
缺点:对不稳定的微生物,易引起所需蛋白质 的变性,自溶后细胞悬浮液粘度增大,过滤速度 下降。
2.化学渗透法(Chemical permeation)
利用溶解细胞壁的酶处理菌体细胞,使细胞壁受 到部分或完全破坏后,再利用渗透压冲击等方法 破坏细胞膜,进一步增大胞内产物的通透性。
利用溶酶系统处理细胞时必须根据细胞壁的结构 和化学组成选择适当的酶,并确定相应的次序。
酶溶法的优点: 选择性释放产物,条件温和,核酸泄出量少,细胞外 形完整。
酶溶法的缺点: 溶酶价格高,溶酶法通用性差,产物抑制的存在。