各种音视频编解码学习详解

合集下载

多媒体系统中的音视频编解码技术教程

多媒体系统中的音视频编解码技术教程

多媒体系统中的音视频编解码技术教程随着科技的迅猛发展,多媒体技术已经成为我们生活中不可或缺的一部分。

而音视频编解码技术作为多媒体系统的核心技术,发挥着至关重要的作用。

本文将介绍多媒体系统中的音视频编解码技术,包括其基本原理、常用的编解码算法及其应用场景和发展趋势。

一、音视频编解码技术的基本原理1、音视频编解码的定义音视频编解码是将音频和视频信号转换为数字形式并进行压缩的过程。

编码是指将原始的音频和视频信号转换为数字信号,而解码则是将压缩的数字信号转换为可播放的音频和视频信号。

2、音视频编解码的步骤音视频编解码一般包括以下几个步骤:采样、量化、编码、解码和重构。

采样是将连续的音频和视频信号转换为离散的数字信号,量化是将连续的信号转换为离散的幅度值,编码是将幅度值转换为数字编码,解码是将数字编码还原为幅度值,而重构则是将数字信号转换为可播放的音频和视频信号。

3、音视频编解码的基本原理音视频编解码的基本原理是通过去除信号中的冗余和不可察觉的部分信息,从而实现信号的压缩。

音频信号可以利用声音的听觉特性实现压缩,视频信号则可利用人眼的视觉特性实现压缩。

常用的音视频编解码算法包括MPEG-1、MPEG-2、MPEG-4和H.264等。

二、常用的音视频编解码算法及其应用场景1、MPEG-1MPEG-1是最早的音视频编解码标准之一,它适用于低码率的音视频压缩。

MPEG-1可以有效地压缩音频和视频信号,并在带宽有限的网络条件下进行传输和播放。

MPEG-1广泛应用于CD、VCD和网络视频等领域。

2、MPEG-2MPEG-2是一种高质量的音视频编解码标准,它适用于高清晰度的视频和多声道的音频压缩。

MPEG-2广泛应用于数字电视、DVD和蓝光光盘等领域,具有较好的兼容性和稳定性。

3、MPEG-4MPEG-4是一种面向互联网的音视频编解码标准,它能够实现更高的压缩比和更好的音视频质量。

MPEG-4在视频会议、流媒体和移动多媒体等领域得到广泛应用,具有较好的可扩展性和适应性。

音视频编解码 文件格式 协议内容详解

音视频编解码 文件格式 协议内容详解

音视频编解码文件格式协议内容详解1. 引言在现代多媒体技术中,音视频编解码是一种重要的处理方式。

它将音频和视频信号转换为数字信息,以便在不同设备之间传输和存储。

而音视频文件格式则是用来存储这些数字信息的一种特殊格式。

在音视频传输和存储中,同时使用音频编解码器和视频编解码器来处理音视频数据,以实现高质量的音视频播放和传输。

2. 音频编解码音频编解码是将音频信号转换为数字数据的过程。

音频编码器将音频信号经过一系列算法处理,压缩成较小的数据包,再通过音频解码器进行解码。

常见的音频编解码算法有PCM、MP3、AAC等。

2.1 PCM(脉冲编码调制)PCM是一种广泛应用的音频编码算法,它将模拟音频信号转换为数字数据。

PCM采样音频信号,将其离散化,并进行量化处理,最后将结果存储为数字数据。

MP3是一种常用的有损音频编码算法,通过去除人耳无法察觉的音频信号细节,实现音频数据的压缩。

MP3编码算法在音频质量和存储空间之间进行权衡,适合在互联网输和存储音频文件。

2.3 AACAAC是一种高级音频编码算法,其压缩效率更高,并且质量更好。

AAC编码器能减小音频文件的大小,同时保持音频质量。

由于其高效性和广泛应用性,AAC成为音频文件的主流格式之一。

3. 视频编解码视频编解码是将视频信号转换为数字数据的过程。

视频编码器通过对视频信号进行采样、压缩和量化处理,将视频信号转换为数字数据。

在接收端,视频解码器将数字数据解码,并还原成视频信号进行播放。

3.1 H.264H.264是一种常用的视频编码标准,具有高压缩比和高质量的特点。

它能够提供更好的视频质量,同时减小视频文件的大小。

H.264广泛应用于视频通信、视频会议、流媒体等领域。

H.265是H.264的升级版视频编码标准,也被称为HEVC(High Efficiency Video Coding)。

H.265相对于H.264可以提供更好的压缩效率,进一步减小视频文件的大小,同时保持高质量的视频播放。

网络通信中的音视频编码与解码技术(九)

网络通信中的音视频编码与解码技术(九)

网络通信中的音视频编码与解码技术随着互联网的普及和科技的进步,网络通信的需求也日益增加。

音视频通信作为其中重要的一部分,发挥着越来越重要的作用。

通过网络实现音视频通信需要依赖于音视频编码与解码技术,它们扮演着传输和呈现音视频数据的关键角色。

一、音视频编码技术音视频编码技术是将音频或视频信号转化为数字数据的过程,以便在网络中传输和存储。

在这个过程中,编码器将原始的音频或视频信号采样并进行压缩处理。

音频和视频的编码技术各自有不同的算法和标准。

1. 音频编码技术音频编码是将声音信号转换为数字数据的过程,使其能够以高效的方式进行存储和传输。

常见的音频编码技术包括MP3、AAC、Opus等。

其中,MP3是一种流行的音频编码格式,它通过减少声音的数据量来实现压缩。

AAC(Advanced Audio Coding)是MP3的升级版本,它提供了更高的音频质量和更低的比特率。

2. 视频编码技术视频编码是将视频信号转换为数字数据的过程,使其能够以高效的方式进行存储和传输。

常见的视频编码技术包括、、VP9等。

是目前被广泛应用的视频编码标准,它具有高效的压缩率和优秀的视频质量。

是的升级版本,相比于,它能够更好地处理高分辨率视频。

二、音视频解码技术音视频解码技术是将经过编码的音视频数据转换为原始的音视频信号的过程。

当音视频数据在接收端接收到后,解码器将数据进行解压缩和解码处理,以便将其转化为可播放的音视频信号。

1. 音频解码技术音频解码是将经过编码的音频数据还原为原始音频信号的过程。

解码器通过解析压缩的音频数据,并对其进行还原和重构,使得原始音频信号能够得以恢复。

常见的音频解码技术包括MP3解码器、AAC解码器等。

2. 视频解码技术视频解码是将经过编码的视频数据还原为原始视频信号的过程。

解码器会解析压缩的视频数据,并还原出原始的视频帧。

视频解码技术需要处理的计算量较大,因为视频数据通常具有较高的分辨率和帧率。

常见的视频解码技术包括解码器、解码器等。

音视频编解码理解音视频处理的编程原理

音视频编解码理解音视频处理的编程原理

音视频编解码理解音视频处理的编程原理音视频编解码是指将音视频信号转换为数字信号的过程,然后再将数字信号转换为可播放的音视频信号的过程。

在现代多媒体应用中,音视频编解码在很多方面都扮演着重要的角色,包括音频录制、音频处理、视频录制、视频处理等。

本文将详细介绍音视频编解码的原理以及与编程相关的技术。

一、音视频编解码的基本原理音视频编解码的基本原理是将模拟信号(如声音、图像)转换为数字信号,然后对数字信号进行压缩和解压缩处理,最后将解压缩后的信号转换为模拟信号以供播放。

整个过程可以分为以下几个关键步骤:1. 采样与量化:音视频信号是连续的模拟信号,在进行编码处理之前,需要对信号进行采样和量化操作。

采样是指周期性地记录信号的数值,量化是指将采样得到的连续信号的值映射为离散的数值。

2. 压缩编码:在音视频处理过程中,数据量通常非常庞大,如果直接将原始数据进行存储和传输,会导致资源浪费和传输速度慢。

因此,压缩编码技术应运而生。

压缩编码是通过编码算法对音视频信号进行压缩,减小数据量。

常见的音视频压缩编码算法有MPEG、H.264等。

3. 压缩数据传输与存储:经过压缩编码后的音视频数据可以更加高效地进行传输和存储。

传输方面,可以通过网络协议(如RTSP、RTP)将音视频数据传输到远程设备进行播放。

存储方面,可以将音视频数据保存在本地设备或其他存储介质中。

4. 解压缩处理:在音视频播放过程中,需要对编码后的音视频数据进行解压缩处理。

解压缩是压缩的逆过程,通过解码算法将压缩后的音视频数据还原为原始的数字信号。

5. 数字信号转换为模拟信号:解压缩处理后的音视频数据是数字信号,需要将其转换为模拟信号以供播放。

这一过程叫做数模转换,常见的设备有扬声器和显示器等。

二、音视频编码相关的编程原理与技术音视频编码相关的编程原理与技术主要包括以下几个方面:1. 编码库与解码库:编码库是实现音视频压缩编码的关键组件,解码库则是实现解压缩处理的关键组件。

音视频编码标准的对比分析

音视频编码标准的对比分析

音视频编码标准的对比分析随着数字技术的快速发展和普及,音视频编码技术也迅猛发展。

为了适应不同的使用场景和需求,人们开发了多种编码标准。

本文将从压缩率、视频质量、编解码速度和适用领域四个方面对常见的音视频编码标准进行分析和比较,以期为读者提供更全面、系统的了解。

一、压缩率压缩率指的是编码后的音视频文件大小与未压缩文件大小之比。

一般情况下,压缩率越高,文件大小越小,传输和存储成本越低。

常见的音视频编码标准包括H.264、H.265、AV1和VP9等,它们的压缩率如下:1. H.264H.264是一种广泛使用的视频编码标准,具有很高的兼容性和稳定性。

它的压缩率相对较低,在同等视频质量下,文件大小通常比其他标准要大。

2. H.265H.265是一种高效的视频编码标准,也称为HEVC。

相比于H.264,在同等视频质量下,H.265的压缩率可以提高40%-60%,文件大小更小。

3. AV1AV1是由联合视频编码小组(Alliance for Open Media,简称AOM)开发的一种新型视频编码标准。

它借鉴了现有的编码标准,并进行了优化,压缩率比H.265更高。

4. VP9VP9也是由Google开发的一种视频编码标准,与AV1类似,也是由现有的标准进行优化。

它的压缩率比H.264高,但比H.265和AV1低一些。

综合来看,AV1的压缩率最高,H.264的压缩率最低,而H.265和VP9介于两者之间。

二、视频质量视频质量是衡量一个视频编码标准好坏的重要指标之一。

常见的评估方法有RMSE和PSNR等,这里不再赘述。

下面是不同编码标准在视频质量方面的表现:1. H.264H.264具有较好的画质表现,尤其对于快速移动的物体,能够保持较高的清晰度和稳定性。

2. H.265H.265在相同码流下具有更好的画质表现,可以在高压缩比下保持较高的清晰度和细节还原度。

3. AV1AV1在视频质量方面表现优异,可以在压缩率很高的情况下仍然保持高质量的视频。

视频会议的音视频编解码技术

视频会议的音视频编解码技术

视频会议的音视频编解码技术随着全球化的发展和工作场景的变迁,视频会议已经成为了我们日常工作和社交交流的必要方式。

而视频会议能够正常进行,离不开音视频编解码技术的支持。

本文将从编解码原理、编解码标准、编解码器选择、编解码效果等方面,探讨视频会议的音视频编解码技术。

一、编解码原理音视频编解码技术是通过压缩和解压缩实现的。

所谓压缩,是指通过算法等方式将音视频信号中的冗余内容去掉,从而降低信号的数据量,以达到传输、存储等目的;解压缩则是指将压缩后的音视频信号还原成原始信号。

在音视频编解码中,编码是通过将原始信号转换成数字信号,并将数字信号压缩来实现的。

解码则是对压缩后的信号进行还原,并将其转换为显示或播放所需的信号。

二、编解码标准编解码标准是指压缩和解压缩音视频信号所使用的数据格式、算法、参数等规范。

在视频会议中,常用的编解码标准包括H.264/AVC、H.265/HEVC、VP8、VP9等。

H.264/AVC是目前视频会议中最普及的编解码标准。

它采用了先进的压缩算法,可以在保证视频质量的前提下实现更小的数据传输量。

而H.265/HEVC则是H.264/AVC的升级版,它能够在不降低画质的情况下,实现更高的压缩比,进一步降低视频传输成本。

VP8和VP9则是由Google开发的开源编解码标准,在一些商业应用中得到一定应用。

它们的优势在于能够在低带宽情况下保证视频质量,同时在压缩比方面也有较高的表现。

三、编解码器的选择选择正确的编解码器对于视频会议的流畅程度和画质有着至关重要的影响。

目前,常见的编解码器包括x264、x265、ffmpeg 等。

x264是一款开源的H.264/AVC编码器,它的编码速度快,压缩比高,适合在较低带宽环境中进行视频会议。

x265则是x264的升级版,能够更高效地运用CPU的处理能力,同时在保证视频质量的前提下,实现更小的视频文件大小。

而ffmpeg则是一款集多种视频编解码器于一身的开源软件,能够对多种视频编码进行支持,能够应对各种视频会议场景。

音视频编解码 文件格式 标准协议内容详解

音视频编解码 文件格式 标准协议内容详解

音视频编解码: 文件格式与协议内容详解1. 引言音视频编解码是指将音频和视频信号进行压缩编码和解压缩解码的技术过程。

在现代多媒体应用中,音视频编解码技术被广泛应用于娱乐、通信、广告等领域。

而音视频的存储和传输则需要使用特定的文件格式和协议。

本文将详细介绍音视频编解码的文件格式与协议内容,讨论各种常见的音视频文件格式与协议,并对其进行一定的比较分析。

2. 音视频文件格式音视频文件格式定义了音视频数据在文件中的组织方式,包括文件头、音视频流的结构、元数据等信息的存储形式。

常见的音视频文件格式有几种:2.1 AVIAVI(Audio Video Interleave)是微软开发的音视频文件格式,使用了容器格式来封装音频和视频数据。

它可以支持多种编解码器,并且兼容性较好。

但是由于其较为简单的设计,不适合存储高质量的音视频数据。

MPEG(Moving Picture Experts Group)是一组制定音视频压缩标准的组织。

MPEG系列包括了多个不同的文件格式,如MPEG-1、MPEG-2、MPEG-4等。

其中,MPEG-2常用于DVD视频压缩,而MPEG-4则广泛应用于流媒体、网络传输等领域。

2.3 MP3MP3是一种常见的音频文件格式,作为一种有损压缩格式,它采用了MPEG-1 Audio Layer III音频编码。

MP3文件格式在音质和文件大小之间取得了很好的平衡,因此被广泛应用于音乐存储、传输等领域。

2.4 WAVWAV是一种无损音频文件格式,它采用了脉冲编码调制(PCM)来存储音频数据。

WAV文件格式广泛应用于音乐制作、音频处理等领域,因为它可以提供更高质量的音频数据。

3. 音视频协议音视频协议定义了音视频数据在网络传输过程中的规范和流程,以确保音视频数据能够正确地传输和播放。

常见的音视频协议有几种:RTP(Real-time Transport Protocol)是一种应用层协议,用于在IP网络输实时的音视频数据。

音视频编解码技术全景

音视频编解码技术全景

音视频编解码技术全景随着互联网时代的到来,各种类型的音视频数据也随之大量涌现。

尤其是在移动互联网的普及下,视频的传输和应用变得越来越普遍。

音视频编解码技术作为整个音视频处理系统中的核心技术,也越来越成为人们关注的焦点。

本文将全面探讨音视频编解码技术的相关知识。

1. 编解码技术概括编解码技术全称为视频编码解码技术,它由以下两部分组成:(1) 视频编码技术:处理音视频信号,将音视频信号转化为数字信号,以便在数字化设备上存储或传输,从而适应数字化通信电路和存储设备;(2) 视频解码技术:将数字信号转换回原始音视频信号的技术,即接收数字信号,恢复原始音视频信号,并播放出来。

编解码技术是在数字媒体技术基础上产生的,在保证图像质量、数据压缩以及传输带宽的前提下,尽可能地减少数据量,增加数据的可靠性、高清晰度、高保真度和传输速率,目的是为了更好地适应对音视频数据时效性、流畅性要求,以及更好地提升用户的观看体验。

2. 视频编码技术在音视频编解码技术中,视频编码是整个处理流程中的第一步。

视频编码可分为三个环节:视频处理、编码预处理和编码操作。

2.1 视频处理视频编码前需要对信号进行处理,包括:色度信息下采样(Chrominance subsampling)、运动估计等,以提高图像压缩比。

2.2 编码预处理编码预处理包括熵编码和变换编码(Transform Coding)。

熵编码通常使用的是哈夫曼编码(Huffman),这种编码方法可以对数字化视频信号中的一些统计特性进行优化压缩,以达到数据最佳的压缩效果;而变换编码使用的是离散余弦变换(DCT)或者小波变换(Wavelet Transform)等算法来对输入的图像或图像块进行转换,以尽可能的减少其相关性。

2.3 编码操作编码操作是视频编码中的核心环节。

通常可以分为两步:预测和量化。

(1) 预测:预测技术通过分析当前帧与邻近帧之间的差异,以提高数据压缩比。

预测技术主要分为帧内预测和帧间预测两种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种音视频编解码学习详解编解码学习笔记(一):基本概念媒体业务是网络的主要业务之间。

尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析、应用开发、释放license收费等等。

最近因为项目的关系,需要理清媒体的codec,比较搞的是,在豆丁网上看运营商的规范标准,同一运营商同样的业务在不同文档中不同的要求,而且有些要求就我看来应当是历史的延续,也就是现在已经很少采用了。

所以豆丁上看不出所以然,从wiki上查。

中文的wiki信息量有限,很短,而wiki的英文内容内多,删减版也减肥得太过。

我在网上还看到一个山寨的中文wiki,长得很像,红色的,叫―天下维客‖。

wiki的中文还是很不错的,但是阅读后建议再阅读英文。

我对媒体codec做了一些整理和总结,资料来源于wiki,小部分来源于网络博客的收集。

网友资料我们将给出来源。

如果资料已经转手几趟就没办法,雁过留声,我们只能给出某个轨迹。

基本概念编解码编解码器(codec)指的是一个能够对一个信号或者一个数据流进行变换的设备或者程序。

这里指的变换既包括将信号或者数据流进行编码(通常是为了传输、存储或者加密)或者提取得到一个编码流的操作,也包括为了观察或者处理从这个编码流中恢复适合观察或操作的形式的操作。

编解码器经常用在视频会议和流媒体等应用中。

容器很多多媒体数据流需要同时包含音频数据和视频数据,这时通常会加入一些用于音频和视频数据同步的元数据,例如字幕。

这三种数据流可能会被不同的程序,进程或者硬件处理,但是当它们传输或者存储的时候,这三种数据通常是被封装在一起的。

通常这种封装是通过视频文件格式来实现的,例如常见的*.mpg, *.avi, *.mov, *.mp4, *.rm, *.ogg or *.tta. 这些格式中有些只能使用某些编解码器,而更多可以以容器的方式使用各种编解码器。

FourCC全称Four-Character Codes,是由4个字符(4 bytes)组成,是一种独立标示视频数据流格式的四字节,在wav、avi档案之中会有一段FourCC来描述这个AVI档案,是利用何种codec来编码的。

因此wav、avi大量存在等于―IDP3‖的FourCC。

视频是现在电脑中多媒体系统中的重要一环。

为了适应储存视频的需要,人们设定了不同的视频文件格式来把视频和音频放在一个文件中,以方便同时回放。

视频档实际上都是一个容器里面包裹着不同的轨道,使用的容器的格式关系到视频档的可扩展性。

参数介绍采样率采样率(也称为采样速度或者采样频率)定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。

采样频率的倒数叫作采样周期或采样时间,它是采样之间的时间间隔。

注意不要将采样率与比特率(bit rate,亦称―位速率‖)相混淆。

采样定理表明采样频率必须大于被采样信号带宽的两倍,另外一种等同的说法是奈奎斯特频率必须大于被采样信号的带宽。

如果信号的带宽是100Hz,那么为了避免混叠现象采样频率必须大于200Hz。

换句话说就是采样频率必须至少是信号中最大频率分量频率的两倍,否则就不能从信号采样中恢复原始信号。

对于语音采样:∙8,000 Hz - 电话所用采样率, 对于人的说话已经足够∙11,025 Hz∙22,050 Hz - 无线电广播所用采样率∙32,000 Hz - miniDV 数码视频camcorder、DAT (LP mode)所用采样率∙44,100 Hz - 音频CD, 也常用于MPEG-1 音频(VCD, SVCD, MP3)所用采样率∙47,250 Hz - Nippon Columbia (Denon)开发的世界上第一个商用PCM 录音机所用采样率∙48,000 Hz - miniDV、数字电视、DVD、DAT、电影和专业音频所用的数字声音所用采样率∙50,000 Hz - 二十世纪七十年代后期出现的3M 和Soundstream 开发的第一款商用数字录音机所用采样率∙50,400 Hz - 三菱X-80 数字录音机所用所用采样率∙96,000 或者192,000 Hz - DVD-Audio、一些LPCM DVD 音轨、Blu-ray Disc(蓝光盘)音轨、和HD-DVD (高清晰度DVD)音轨所用所用采样率∙2.8224 MHz - SACD、索尼和飞利浦联合开发的称为Direct Stream Digital 的1 位sigma-delta modulation 过程所用采样率。

在模拟视频中,采样率定义为帧频和场频,而不是概念上的像素时钟。

图像采样频率是传感器积分周期的循环速度。

由于积分周期远远小于重复所需时间,采样频率可能与采样时间的倒数不同。

∙50 Hz - PAL 视频∙60 / 1.001 Hz - NTSC 视频当模拟视频转换为数字视频的时候,出现另外一种不同的采样过程,这次是使用像素频率。

一些常见的像素采样率有:∙13.5 MHz - CCIR 601、D1 video分辨率分辨率,泛指量测或显示系统对细节的分辨能力。

此概念可以用时间、空间等领域的量测。

日常用语中之分辨率多用于图像的清晰度。

分辨率越高代表图像品质越好,越能表现出更多的细节。

但相对的,因为纪录的信息越多,文件也就会越大。

目前个人电脑里的图像,可以使用图像处理软件,调整图像的大小、编修照片等。

例如photoshop,或是photoimpact 等软件。

图像分辨率:用以描述图像细节分辨能力,同样适用于数字图像、胶卷图像、及其他类型图像。

常用'线每毫米'、'线每英吋'等来衡量。

通常,―分辨率‖被表示成每一个方向上的像素数量,比如640x480等。

而在某些情况下,它也可以同时表示成―每英吋像素‖ (pixels per inch,ppi)以及图形的长度和宽度。

比如72ppi,和8x6英吋。

视频分辨率:各种电视规格分辨率比较视频的画面大小称为―分辨率‖。

数位视频以像素为度量单位,而类比视频以水平扫瞄线数量为度量单位。

标清电视频号分辨率为720/704/640x480i60(NTSC)或768/720x576i50(PAL/SECAM)。

新的高清电视(HDTV)分辨率可达1920x1080p60,即每条水平扫瞄线有1920个像素,每个画面有1080条扫瞄线,以每秒钟60张画面的速度播放。

画面更新率fpsFrame rate中文常译为―画面更新率‖或―帧率‖,是指视频格式每秒钟播放的静态画面数量。

典型的画面更新率由早期的每秒6或8张(frame persecond,简称fps),至现今的每秒120张不等。

PAL (欧洲,亚洲,澳洲等地的电视广播格式) 与SECAM (法国,俄国,部分非洲等地的电视广播格式) 规定其更新率为25fps,而NTSC (美国,加拿大,日本等地的电视广播格式) 则规定其更新率为29.97 fps。

电影胶卷则是以稍慢的24fps在拍摄,这使得各国电视广播在播映电影时需要一些复杂的转换手续(参考Telecine转换)。

要达成最基本的视觉暂留效果大约需要10fps的速度。

压缩方法有损压缩和无损压缩在视频压缩中有损(Lossy )和无损(Lossless)的概念与静态图像中基本类似。

无损压缩也即压缩前和解压缩后的数据完全一致。

多数的无损压缩都采用RLE行程编码算法。

有损压缩意味着解压缩后的数据与压缩前的数据不一致。

在压缩的过程中要丢失一些人眼和人耳所不敏感的图像或音频信息,而且丢失的信息不可恢复。

几乎所有高压缩的算法都采用有损压缩,这样才能达到低数据率的目标。

丢失的数据率与压缩比有关,压缩比越小,丢失的数据越多,解压缩后的效果一般越差。

此外,某些有损压缩算法采用多次重复压缩的方式,这样还会引起额外的数据丢失。

∙无损格式,例如WAV,PCM,TTA,FLAC,AU,APE,TAK,WavPack(WV)∙有损格式,例如MP3,Windows Media Audio(WMA),Ogg Vorbis(OGG),AAC帧内压缩和帧间压缩帧内(Intraframe)压缩也称为空间压缩(Spatial compression)。

当压缩一帧图像时,仅考虑本帧的数据而不考虑相邻帧之间的冗余信息,这实际上与静态图像压缩类似。

帧内一般采用有损压缩算法,由于帧内压缩时各个帧之间没有相互关系,所以压缩后的视频数据仍可以以帧为单位进行编辑。

帧内压缩一般达不到很高的压缩。

采用帧间(Interframe)压缩是基于许多视频或动画的连续前后两帧具有很大的相关性,或者说前后两帧信息变化很小的特点。

也即连续的视频其相邻帧之间具有冗余信息,根据这一特性,压缩相邻帧之间的冗余量就可以进一步提高压缩量,减小压缩比。

帧间压缩也称为时间压缩(Temporalcompression),它通过比较时间轴上不同帧之间的数据进行压缩。

帧间压缩一般是无损的。

帧差值(Frame differencing)算法是一种典型的时间压缩法,它通过比较本帧与相邻帧之间的差异,仅记录本帧与其相邻帧的差值,这样可以大大减少数据量。

对称编码和不对称编码对称性(symmetric)是压缩编码的一个关键特征。

对称意味着压缩和解压缩占用相同的计算处理能力和时间,对称算法适合于实时压缩和传送视频,如视频会议应用就以采用对称的压缩编码算法为好。

而在电子出版和其它多媒体应用中,一般是把视频预先压缩处理好,尔后再播放,因此可以采用不对称(asymmetric)编码。

不对称或非对称意味着压缩时需要花费大量的处理能力和时间,而解压缩时则能较好地实时回放,也即以不同的速度进行压缩和解压缩。

一般地说,压缩一段视频的时间比回放(解压缩)该视频的时间要多得多。

例如,压缩一段三分钟的视频片断可能需要10多分钟的时间,而该片断实时回放时间只有三分钟。

除wiki外的资料来源:/csyy/Using/200411/3142.html编解码学习笔记(二):codec类型资料(港台将information翻译为资料)压缩是透过去除资料中的冗余资讯而达成。

就视讯资料而言,资料中的冗余资讯可以分成四类:时间上的冗余资讯(temporal redundancy)在视讯资料中,相邻的帧(frame)与帧之间通常有很强的关连性,这样的关连性即为时间上的冗余资讯。

这即是上一次学习中的帧间压缩。

空间上的冗余资讯(spatial redundancy)在同一张帧之中,相邻的像素之间通常有很强的关连性,这样的关连性即为空间上的冗余资讯。

这即是上一次学习中的帧内压缩。

统计上的冗余资讯(statistical redundancy)统计上的冗余资讯指的是欲编码的符号(symbol)的机率分布是不均匀(non-uniform)的。

相关文档
最新文档