动能定理:变力做功
动能定理在变力做功情况下的应用

在匀加速运动过程中加速度为
a=
F m
mg
120
810
m/s2=5
m/s2,
m
8
末速度
vt
P m
1 200
m/s=10
m/s
F 120
m
上升的时间
t1=
v t
10
s=2
s,
a5
上升高度为
h1=
v t
2
102
m=10 m
2a 2 5
在功率恒定的过程中,最后匀速运动的速率为
vm=
P m
P m
1 200
类型四: 动 能定理在变 力做功情况 下的应用
例1.如图所示,AB为1/4圆弧轨道,半 径为R=0.8m,BC是水平轨道,长x=3m, BC处的摩擦系数为μ=1/15,今有质量 m=1kg的物体,自A点从静止起下滑到C 点刚好停止。求物体在轨道AB段所受的 阻力对物体做的功。
例 2.如图所示,质量为 m 的物体被细绳经过光滑小孔而牵引,
m/s=15
m/s
F mg 810
外力对物体做的总功 W=Pmt2-mgh2, h1+h2=90 m
动能变化量为 ΔEk= 1 mvm2- 1 mvt2
2
2
由动能定理得 Pmt2-mgh2= 1 mvm2- 1 mvt2
2
2
代入数据后解得 t2=5.75 s,所以 t=t1+t2=7.75 s
所需时间至少为 7.75 s.
A R
D R
在光滑的水平面上做匀速圆周运动,拉力为某个值 F 时转动
半径为 R,当外力逐渐增大到 6F 时,物体仍做匀速圆周运动,
半径为 R/2.则外力对物体所做的功为( )
高中物理查补易混易错点09动能定理(解析版)

查补易混易错点09动能定理1.巧记知识一、易错易混知识大全【知识点一】功的分析与计算1.计算功的方法(1)对于恒力做功利用W=Fl cosα;(2)对于变力做功可利用动能定理(W=ΔEk);(3)对于机车启动问题中的定功率启动问题,牵引力的功可以利用W=Pt.2.合力功计算方法(1)先求合外力F合,再用W合=F合l cosα求功.(2)先求各个力做的功W1、W2、W3、⋯,再应用W合=W1+W2+W3+⋯求合外力做的功.3.几种力做功比较(1)重力、弹簧弹力、电场力、分子力做功与位移有关,与路径无关.(2)滑动摩擦力、空气阻力、安培力做功与路径有关.(3)摩擦力做功有以下特点:①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.③相互作用的一对滑动摩擦力做功过程中会发生物体间机械能转移和机械能转化为内能,内能Q=Ffx相对.【知识点二】功率的分析与计算1.平均功率的计算方法(1)利用P=W t.(2)利用P=Fv cosα,其中v为物体运动的平均速度.2.瞬时功率的计算方法(1)P=Fv cosα,其中v为t时刻的瞬时速度.(2)P=FvF,其中vF为物体的速度v在力F方向上的分速度.(3)P =Fvv ,其中Fv 为物体受到的外力F 在速度v 方向上的分力.【知识点三】动能定理的理解1.动能定理表明了“三个关系”(1)数量关系:合力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合力做的功。
(2)因果关系:合力做功是引起物体动能变化的原因。
(3)量纲关系:单位相同,国际单位都是焦耳。
2.标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题。
当然动能定理也就不存在分量的表达式。
【知识点四】动能定理的应用1.应用动能定理解题应抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况,“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息.2.应用动能定理解题的基本思路二、真题演练1(2022·福建·高考真题)(多选)一物块以初速度v 0自固定斜面底端沿斜面向上运动,一段时间后回到斜面底端。
如何求变力做功

F 图1如何求变力做功在高中阶段求变力做功的问题是很常见的。
既可以运用公式W=FScos α来求解,又可以运用动能定理、功能原理等来求解。
对于具体问题要具体分析。
为此笔者在教学中总结了以下几种方法。
一、运用公式W=FScos α求解在不知物体初、末位置的速度时,就无法运用动能定理或功能原理求解,只有将变力转化为恒力,依据功的定义式W=FScos α求解。
例1 如图1所示,某个力F 作用于半径为R 的圆盘, 力F 的大小不变,但方向始终与过力的作用点的圆盘的切线 一致,则转动圆盘一周该力做多少功。
分析与解 在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),既F 在每瞬时与转盘转过的极小位移∆s 同向。
这样,无数瞬时的极小位移∆s 1,∆s 2,∆s 3…∆s n 都与当时的F 方向同向。
因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和。
即W=F ∆s 1+F ∆s 2+…F ∆s n= F(∆s 1+∆s 2+∆s 3+…∆s n )=F 2πR当变力始终与速度在同一直线上或成某一固定角度时可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FScos α计算功,而且变力所做功等于变力在各小段所做功之和。
再者,若问题中的变力与位移成线形关系,即F=ks+b ,其F-s 图象如图2所示。
则图中阴影部分的面积大小在数值上等于变力所做功的大小,即W=)(21221s s F F -+。
也就是说,变力F 由F 1线形地变化到F 2的过程中所做的功等于该过程的平均力221F F F +=-所做的功。
二、用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,即W 外 =∆E K ,W 外系指物体受到的所有外力对物体所做功的代数和,∆E K 是物体动能的变化量。
例2 如图3所示,质量为m 的物块在半径为R 的半球形容器中从上部边缘A 由静止起下滑,滑到最底点B时对容器底部的压力为2mg 。
变力做功的六种常见计算方法

变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。
解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。
此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。
理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。
方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。
例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
变力做功的六种常见计算方法

变力做功的六种常见计算方法在高中阶段,力做功的计算公式是W=FScosα,但是学生在应用时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0。
25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小.解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/R;当拉力为0。
25F时,0.25F=mv22/2R。
此题中,当半径由R 变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定理,求得外力对物体所做的功的大小W=0。
5mv12—0。
5mv22=0。
25RF.方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2。
25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0。
5mv2—0,把P=Fv=fv代入得,阻力f=25000N.方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可.例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
动能定理物体的动能与力的做功

动能定理物体的动能与力的做功动能定理:物体的动能与力的做功动能定理是物理学中的基本定理之一,它描述了物体的动能与力的做功之间的关系。
在本文中,我们将探讨动能定理的定义、原理以及应用。
一、动能定理的定义动能定理是指在外力作用下,物体的动能的变化量等于力的做功。
简而言之,物体的动能增加或减少的大小,正好等于作用于物体的力所作的功。
二、动能定理的原理物体的动能可以通过它的质量和速度来定义,即动能 = 1/2 ×质量 ×速度的平方。
力的功可以用力的大小、物体的位移和力与位移之间的夹角来定义,即做功 = 力 ×位移× cosθ。
根据动能定理,在外力作用下,物体的动能的变化量等于力的做功。
表示为:物体的动能的增量 = 力的做功。
三、动能定理的应用1. 物体的动能和速度关系:根据动能定理,物体的动能正比于其速度的平方。
当速度增加时,动能增加;当速度减小时,动能减小。
2. 动能与重力势能的转换:在重力场中,当物体从较高位置下降到较低位置时,重力对物体做功,并将其势能转化为动能。
反之,当物体由较低位置上升到较高位置时,动能将转化为重力势能。
3. 动能与弹性势能的转换:在弹性体系中,物体由于受到压缩或伸展而具有弹性势能。
当物体释放出弹性势能时,它将转化为动能。
4. 动能定理的应用于机械工作:在机械运动中,动能定理可应用于机器的工作原理和能量转换的分析。
比如,在运输系统中,我们可以通过应用动能定理来计算物体在传送过程中所需的能量和功率。
总结:动能定理是物体的动能与力的做功之间的关系。
它可以帮助我们理解物体运动时的能量转化过程,并应用于各种实际情况的分析和计算。
通过深入研究动能定理,我们可以更好地理解物体运动的本质和力学规律。
第29讲 变力做功的6种计算方法(原卷版)

第29讲变力做功的6种计算方法一.知识回顾方法举例说法1.应用动能定理用力F把小球从A处缓慢拉到B处,F做功为W F,则有:W F-mgL(1-cosθ)=0,得W F=mgL(1-cosθ)2.微元法质量为m的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f=F f·Δx1+F f·Δx2+F f·Δx3+…=F f(Δx1+Δx2+Δx3+…)=F f·2πR3.等效转换法恒力F把物块从A拉到B,绳子对物块做功W=F·⎝⎛⎭⎪⎫hsinα-hsinβ4.平均力法弹簧由伸长x1被继续拉至伸长x2的过程中,克服弹力做功W=kx1+kx22·(x2-x1)6.图像法在Fx图像中,图线与x轴所围“面积”的代数和就表示力F在这段位移上所做的功7.功率法汽车恒定功率为P,在时间内牵引力做的功W=Pt二.例题精析题型一:应用动能定理例1.如图所示,质量均为m的木块A和B,用一个劲度系数为k的竖直轻质弹簧连接,最初系统静止,重力加速度为g,现在用力F向上缓慢拉A直到B刚好要离开地面,则这一过程中弹性势能的变化量△E p和力F做的功W分别为()A .m 2g 2k,m 2g 2kB .m 2g 2k,2m 2g 2kC .0,m 2g 2kD .0,2m 2g 2k题型二:微元法例2.在水平面上,有一弯曲的槽道AB ,槽道有半径分别为R2和R 的两个半圆构成,现用大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向时时刻刻均与小球运动方向一致,则此过程中拉力所做的功为( )A .0B .FRC .32πFRD .2πFR题型三:等效转换法例3.如图所示,轻绳一端受到大小为F 的水平恒力作用,另一端通过定滑轮与质量为m 、可视为质点的小物块相连。
开始时绳与水平方向的夹角为θ,当小物块从水平面上的A 点被拖动到水平面上的B 点时,位移为L ,随后从B 点沿斜面被拖动到定滑轮O 处,BO 间距离也为L ,小物块与水平面及斜面间的动摩擦因数均为μ,若小物块从A 点运动到B 点的过程中,F 对小物块做的功为W F ,小物块在BO 段运动过程中克服摩擦力做的功为W f ,则以下结果正确的是( )A .W F =FL (2cos θ﹣1)B .W F =2FLcos θC .W f =μmgLcos θD .W f =FL ﹣mgLsin2θ题型四:平均值法例4.当前,我国某些贫困地区的日常用水仍然依靠井水。
动能定理解决变力做功人教版原创

-mgl
30°
例3拓展
1、斜面的变化,可由斜面变成竖直面或水平面分析,仍要 靠向心力来源来分析处末两个状态的动能。 2、在原先斜面的基础上再加上一些场力以实现其综合 效应,如电场磁场等(小球会带电,斜面会绝缘)。 3、位置变化,由地球上的情况转移到其他星球,再配以一 些条件综合万有引力的知识。凡是和重力加速度相关的题目 都可以和万有引力结合。
强调:完成题目以后的反思至关重要 ,
“三分做,七分想”
二、利用动能定理解决问题应注意的问题
1 2 1 2 1、动能定理:W合 Ek2 Ek1 2 mv2 2 mv1
注:动能变化涉及两个状态, 做功涉及一个过程 2、求外力总功的方法
a 、先求合外力,再求合外力做的功 b 、先求各个力做的功,再求代数和
3、用动能定理解题的步骤:
a 、选择研究对象明确研究过程
动能定理解决变力做功1与势能相关的变力可以由势能的变化来求解如弹簧弹力万有引力和电场力2全程变力分段恒力如滑动摩擦力和空气阻力等3利用变力对位移的平均作用力来求解尤其是力与位移成正比时4利用fs图像中的面积来解决5利用功率来解决比如在机车以额定功率启动过程中牵引力的做功
动能定理解决变力做功
一 、 解 决 变 力 做 功 的 方 法
b、对研究对象进行受力分析, 分析各个力所做的功
c、分析这个过程的初末两个状态, 解决初末动能问题 d 、列动能定理表达式,求解问题
例1、以质量为60kg的跳伞运动员刚刚拉开伞 时的速度为40m/s,拉开伞后受到与速度相关 的空气阻力影响,下落200m后,速度变为 20m/s,求这个过程当中空气阻力做的功。