数列的定义域是正整数集
数列的概念数列的极限收敛数列的性质

例8 证 对于任意给定的正数 (不妨设0< <1),由于
三、收敛数列的性质
数列收敛于a的几何意义如下:
当我们把 看成是数轴上的点列时,数列 收敛于a,就是对点a 的任何一
个邻域
,都存在一个序号N,使得点列
的第N个点 以后的
所有点
都在这个邻域之内,即点列中最多除去前N个点外,都聚集在点a
的这个邻域之内,或者说至多有N个点
落在区间
之外.
当我们把数列 看成是n的整标函数,即
其图形是在平面直角坐标系中的二维点列:
数列 收敛于a,就是对于任意给定的正数 (无论其多么
小),总存在正整数N,当n>N时,二维点 都在直线
与直线
形成的带状域之内,一般来说, 越小( 带宽小),N越大.
定理2.1(极限的唯一性) 若数列 收敛,则其极限唯一.
例1、例5中的数列是单调增加的,例2中的数列是单调减少的. 对于数列 ,若存在正数M,使得对于一切的n都有
成立,则称数列 是有界的,否则称 是无界的. 容易验证例2,例3和例4中的数列是有界的;而例1和例5中的数列是无界的.
在几何上,通常用数轴上的点列
来表示数列 .
这种表示法可以显示数列的某些性态.如单调增加的数列
是自左
向右依次排列的点列.表示有界数列的点列全部落在某一区间[-M,M]之内,表示无
界数列的点列,无论区间[-M,M]多么长,总有落在该区间之外的点.
二、数列的极限
我国古代著名的“一尺之棰,日取其半,万世不竭”的论断,就是数列极限 思想的体现.
数列的变化趋势,也可以通过平面直角坐标系上的图形来直观表示.
以
为例来讨论数列极限的含义.
前面已经看到:
数列概念及通项公式1

本例的关键是应用an= 本例的关键是应用
S1
(n=1)
题型三 利用递推公式求数列的通项 例3 根据下列条件 写出数列的通项公式: 根据下列条件,写出数列的通项公式 写出数列的通项公式:
(1)a1=2,an+1=an+n; ) , ; (2)a1=1,an-1=2n-1an. ) , )将递推关系写成n-1个等式累 分析 (1)将递推关系写成 个等式累 累加法” 加,即“累加法”. 个等式相乘, (2)将递推关系写成 个等式相乘,即 )将递推关系写成n-1个等式相乘 累积法”或用逐项迭代法. “累积法”或用逐项迭代法
点评
Sn-Sn-1 (n≥2)求 求 数列的通项, 特别要注意验证a 数列的通项 , 特别要注意验证 1 的值是 否 满 足 “ n≥2” 的 通 项 公 式 ; 同 时 认 清 “ an+1-an=d( 常数 ) (n≥2)”与 “ an-an-1=d ( 常数) 与 为常数, (d为常数,n≥2)”的细微差别 为常数 ) 的细微差别.
满足: 变式练习 已知数列 {an} 的前 n 项和 Sn 满足 log2(1+Sn)=n+1, 求数列 {an} 的通项公式 的通项公式.
3, n=1, an= n 2 , n≥2.
走进高考
湖北卷)古希腊人常用小石子 湖北卷 学例1 (2009·湖北卷 古希腊人常用小石子 在沙滩上摆成各种行状来研究数,例如: 在沙滩上摆成各种行状来研究数,例如:
例4 求满足条件 a1 = 1, an +1 的数列{a 的通项公式 的数列 n}的通项公式
an = (n ∈ N *) 1 + nan
分析:两边取倒数, 分析:两边取倒数,利用逐差法求即利用公式
二轮复习【数列专题】专题1数列的单调性微点5数列单调性的判断方法(五)——递推法

专题1 数列的单调性微点5 数列单调性的判断方法(五)——递推法12n n nn x x x ++++;112n b ⎛⎫− ⎪⎭⎝,若在k b 与m b m ++−n a (,m n ∈N参考答案:()1122941n a a −−⎛⎫== ⎪⎝⎭⋅⋅+由10a >可得若21a a >,即,解得10a <<即当10a <<,此时数列k由③知∑是递增数列.21c c >>>>,11024, 是单调递增;当10n ≥时3n n++,由此利用错位相减法能求出)问得到m =)N n *∈时,12212333n n nn nnx x x +++++=+++,① 1133n n n n+−+++,② 211111()1111133(11333332313n n n n n n n ++⎡⎤−⎢⎥⎣⎦+++−=−=−−. m ,n ,使T 11m +=+112n ⎫⎛⎫−⎪ ⎪⎭⎝⎭从而求得n t 的最大值,项,然后对{2k k +++=,当9k =时的情况即可求得是等比数列,且各项均为正数,所以112n ⎫⎛⎫−⎪ ⎪⎭⎝⎭11142n ⎫⎛⎫−⎪ ⎪⎭⎝⎭112n ⎫⎛⎫⎛−⎪⎪⎭⎝⎭⎝224848n n n +=+233λ<<,2k k +++=9922−=+, 2019=m b ++,设m b m ++−212222m mm b m ++=++++, 22222m m +++,则2311212222m m T −=++++21111111112222222m m m m m m T ++=+++−=−−=2222222m m mm mb m m m ++++−=+−−=−,22mm+−,N *m ∈, 2122222m m ++++=−−+77922S =−21n b −+++112n ⎛ −+−⎝121n +单调递减,23=−,显然b,a ()3,⎫+∞⎪⎪⎭②,②-①即得()3,⎫+∞⎪⎪⎭考查数列的单调性的判定和最值的求法,意在考查学生对这些知识的理解掌握水平(8n n b ++=256125125()2()()940n n b b b b b b b b b b n n ++−++=+++−++++=−+9,15940,6n n n n +≤≤+≥;)由题知12111(1)(1)(1)222n nA a a a =−−−, 21n +,则111()21(1)(1)(1)22ng n n a a =+−−−, (21)2(22)2n n n n ++3(1)g =都成立,则3a >.。
4.2.1等差数列的概念(第1课时)课件(人教版)

五、作业布置 课本P15:练习 第4、5题
例3 求等差数列8,5,2,…,的通项公式an 和第20项,并判断289是否是数列中的项,若是,是第几项?
解:由已知条件,得 = 5 − 8 = −3,
把1 = 8, = −3代入 = 1 + − 1 ,得
= 8 + − 1 ×(−3)= −3+11,
所以,a20 = −3×20+11=-49
③
对于数列①,我们发现:
18=9+9, 27=18+9,…,81=72+9,即 从第二项起,每一项
18 − 9=9, 27 − 18=9,…,81 − 72=9.
与前一项的差都等于
如果用{ } 表示数列①,则有:
同一个常数.
2 − 1 =9, 3 − 2 =9,…, 9 − 8 =9.
数列的定义域是正整数集或它的子集.
数列{ } 是从正整数集(或它的有限子集)到实数集的函数,
记为 =().
如果数列{an } 的第项 与它的序号之间的对应关系可以用一
个式子来表示,那么这个式子就是数列的函数解析式,叫做这个
数列的通项公式.
如果一个数列的相邻两项或多项之间的关系可以用一个式子来
4.2.1
等差数列的概念
第1课时
人教A版(202X)选择性必修第二册
学习目标
Hale Waihona Puke 1.理解等差数列的含义.2.掌握等差数列通项公式的推导过程及其运用.
3.理解等差数列与一次函数的关系.
4.核心素养:直观想象、数学运算、数学抽象
一、复习导入
定义:一般地,我们把按照确定的顺序排列的一列数称为数列,
数列中的每一个数叫做这个数列的项.
高中数学数列知识点归纳

高中数学数列知识点归纳在高中数学的学习中,数列是一个非常重要的知识点,它不仅在数学学科中有着广泛的应用,也是高考中的重点考查内容。
为了帮助同学们更好地掌握数列这一板块,下面将对高中数学数列的相关知识点进行详细归纳。
一、数列的概念数列是按照一定顺序排列的一列数。
例如:1,3,5,7,9 就是一个数列。
数列中的每一个数称为数列的项,排在第一位的数称为首项,记为\(a_1\),第\(n\)个数称为第\(n\)项,记为\(a_n\)。
数列可以用通项公式来表示,通项公式是一个用\(n\)表示\(a_n\)的式子。
例如,数列 1,3,5,7,9 的通项公式为\(a_n = 2n 1\)。
二、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
这个常数称为等差数列的公差,通常用\(d\)表示。
2、通项公式\(a_n = a_1 +(n 1)d\),其中\(a_1\)为首项,\(d\)为公差。
3、前\(n\)项和公式\(S_n =\frac{n(a_1 + a_n)}{2} = na_1 +\frac{n(n 1)d}{2}\)4、性质(1)若\(m + n = p + q\),则\(a_m + a_n = a_p + a_q\)。
(2)\(a_n\)是关于\(n\)的一次函数,\(S_n\)是关于\(n\)的二次函数且常数项为 0 。
三、等比数列1、定义如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
这个常数称为等比数列的公比,通常用\(q\)表示(\(q ≠ 0\))。
2、通项公式\(a_n = a_1q^{n 1}\)。
3、前\(n\)项和公式当\(q = 1\)时,\(S_n = na_1\);当\(q ≠ 1\)时,\(S_n =\frac{a_1(1 q^n)}{1 q}\)。
4、性质(1)若\(m + n = p + q\),则\(a_m × a_n = a_p × a_q\)。
2.1数列的概念与简单表示法(二)

§2.1数列的概念与简单表示法(二)学习目标 1.理解数列的几种表示方法,能从函数的观点研究数列;2.理解递推公式的含义,能根据递推公式求出数列的前几项(重、难点).预习教材P30-31完成下列问题:知识点一数列的函数性质1.数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.2.在数列{a n}中,若a n+1>a n,则{a n}是递增数列;若a n+1<a n,则{a n}为递减数列;=a n,则{a n}为常数列.若a n+1【预习评价】1.从定义上看,数列是特殊的函数,因此,表示数列除可以用通项公式外,还可以有哪些方法?提示还可以用列表法,图象法.2.数列单调性与函数单调性的区别和联系是什么?提示联系:若函数f(x)在[1,+∞)上单调,则数列f(n)也单调.反之不正确,例如f(x)=(x-52,数列f(n)单调递增,但函数f(x)在(1,+∞)上不是单调递增.4)区别:二者定义不同,函数单调性的定义:函数f(x)的定义域为D,设D⊇I,对任意x1,x2∈I,当x1<x2时,若f(x1)>f(x2),则f(x)在I上单调递减,若f(x1)<f(x2),则f(x)在I上单调递增,定义中的x1,x2不能用有限个数值来代替.数列单调性的定义:只需比较相邻的a n与a n+1的大小来确定单调性.知识点二数列的表示方法1.数列的递推公式:如果数列{a n}的第1项或前几项已知,并且数列{a n}的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式.2.数列的表示方法:数列的表示方法有通项公式法、图象法、列表法、递推公式法.【预习评价】1.已知数列{a n }满足a 1=3,a n +1=2a n +1,则数列的第5项a 5=________,由此归纳出{a n }的一个通项公式为________,可以求得a 8=________.解析 ∵a 1=3,∴a 2=2a 1+1=7,a 3=2a 2+1=15,a 4=2a 3+1=31,a 5=2a 4+1=63,∴a 5=63.可以看出a n =2n +1-1, ∴a 8=29-1=511.答案 63 a n =2n +1-1 5112.数列的通项公式与递推公式有什么区别? 提示 不同点相同点通项公式 要根据某项的序号,直接用代入法求出该项都可确定一个数列,都可求出数列的任何一项递推公式可根据第1项或前几项的值,通过一次或多次赋值逐项求出数列的项,直至求出所需的项都可确定一个数列,都可求出数列的任何一项题型一 数列的函数特性【例1】 已知数列{a n }的通项公式是a n =(n +1)⎝ ⎛⎭⎪⎫1011n,试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解 法一 a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n=(9-n )⎝ ⎛⎭⎪⎫1011n11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.法二 根据题意,令⎩⎪⎨⎪⎧a n -1≤a na n ≥a n +1,即⎩⎨⎧n ×⎝ ⎛⎭⎪⎫1011n -1≤(n +1)⎝ ⎛⎭⎪⎫1011n (n +1)⎝ ⎛⎭⎪⎫1011n ≥(n +2)⎝ ⎛⎭⎪⎫1011n +1,解得9≤n ≤10.又n ∈N *,则n =9或n =10.故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.规律方法 1.由于数列是特殊的函数,所以可以用研究函数的思想方法来研究数列的相关性质,如单调性、最大值、最小值等,此时要注意数列的定义域为正整数集或其有限子集{1,2,…,n }这一条件.2.可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.【训练】 已知数列{a n }的通项公式为a n =nn 2+9(n ∈N *),写出其前5项,并判断数列{a n }的单调性.解 当n =1,2,3,4,5时,a n 依次为110,213,16,425,534,a n +1-a n =n +1(n +1)2+9-nn 2+9=-n 2-n +9[(n +1)2+9][n 2+9]. ∵函数f (x )=-x 2-x +9=-⎝ ⎛⎭⎪⎫x +122+374在[1,+∞)上单调递减,又f (1)=7>0,f (2)=3>0,f (3)<0,∴当n =1,2时,a n +1>a n ,当n ≥3,n ∈N *时,a n +1<a n , 即a 1<a 2<a 3>a 4>a 5>….∴数列{a n }的前3项是递增的,从第3项往后是递减的.方向1 由递推公式写出数列的项【例2-1】 已知数列{a n }的第一项a 1=1,以后的各项由递推公式a n +1=2a na n +2给出,试写出这个数列的前5项. 解 ∵a 1=1,a n +1=2a na n +2,∴a 2=2a 1a 1+2=23, a 3=2a 2a 2+2=2×2323+2=12,a 4=2a 3a 3+2=2×1212+2=25,a 5=2a 4a 4+2=2×2525+2=13.故该数列的前5项为1,23,12,25,13. 方向2 由数列的递推公式求通项公式【例2-2】 已知数列{a n }满足a 1=1,a n =a n -1+1n (n -1)(n ≥2),写出该数列前5项,并归纳出它的一个通项公式. 解 ∵a 1=1,a n =a n -1+1n (n -1)(n ≥2),∴a 2=a 1+12×1=1+12=32,a 3=a 2+13×2=32+16=53,a 4=a 3+14×3=53+112=74,a 5=a 4+15×4=74+120=95.故数列的前5项分别为1,32,53,74,95.由于1=2×1-11,32=2×2-12,53=2×3-13,74=2×4-14,95=2×5-15,故数列{a n }的一个通项公式为a n =2n -1n =2-1n . 方向3 构造数列法求通项公式【例2-3】 设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________.解析 法一 (累乘法):把(n +1)a 2n +1-na 2n +a n +1a n =0分解因式,得[(n +1)a n +1-na n ](a n +1+a n )=0. ∵a n >0,∴a n +1+a n >0, ∴(n +1)a n +1-na n =0, ∴a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ,∴a n a 1=1n .又∵a 1=1,∴a n =1n a 1=1n . 法二 (迭代法):同法一,得a n +1a n =nn +1,∴a n +1=nn +1a n ,∴a n =n -1n ·a n -1=n -1n ·n -2n -1·a n -2=n -1n ·n -2n -1·n -3n -2·a n -3…=n -1n ·n -2n -1·n -3n -2·…·12a 1=1n a 1.又∵a 1=1,∴a n =1n .法三 (构造特殊数列法):同法一,得a n +1a n =nn +1,∴(n +1)a n +1=na n , ∴数列{na n }是常数列, ∴na n =1·a 1=1, ∴a n =1n . 答案 1n规律方法 1.由递推公式写出通项公式的步骤 (1)先根据递推公式写出数列的前几项(至少是前3项).(2)根据写出的前几项,观察归纳其特点,并把每一项统一形式. (3)写出一个通项公式并证明.2.递推公式的常见类型及通项公式的求法(1)求形如a n +1=a n +f (n )的通项公式.将原来的递推公式转化为a n +1-a n =f (n ),再用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1). (2)求形如a n +1=f (n )a n 的通项公式.将原递推公式转化为a n +1a n =f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a na n -1= f (n -1),累乘可得a na 1=f (1)f (2)…f (n -1).课堂达标1.下列四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项; ②数列23,34,45,56,…的通项公式是a n =n n +1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列. 其中真命题的个数是( ) A.1 B.2 C.3D.4解析 只有③正确.①中,如已知a n +2=a n +1+a n , a 1=1,无法写出除首项外的其他项.②中a n =n +1n +2,④中-1和1排列的顺序不同,即二者不是同一数列. 答案 A2.数列2,4,6,8,10,…的递推公式是( ) A.a n =a n -1+2(n ≥2)B.a n =2a n -1(n ≥2)C.a 1=2,a n =a n -1+2(n ≥2)D.a 1=2,a n =2a n -1(n ≥2)解析 A ,B 中没有说明某一项,无法递推,D 中a 1=2,a 2=4,a 3=8,不合题意. 答案 C3.数列{x n }中,若x 1=1,x n +1=1x n +1-1,则x 2 017等于( )A.-1B.-12 C.12 D.1解析 ∵x 1=1,∴x 2=-12,∴x 3=1, ∴数列{x n }的周期为2,∴x 2 017=x 1=1. 答案 D4.已知数列{a n },对于任意的p ,q ∈N *,都有a p +a q =a p +q ,若a 1=19,则a 36=________.解析 由已知得a 1+a 1=a 1+1=a 2,∴a 2=29, 同理a 4=49,a 8=89,∴a 9=a 8+1=a 8+a 1=89+19=1, ∴a 36=2a 18=4a 9=4. 答案 45.求数列{-2n 2+29n +3}中的最大项. 解 由已知,得a n =-2n 2+29n +3=-2⎝ ⎛⎭⎪⎫n -2942+10818.由于n ∈N *,故当n 取距离294最近的正整数7时,a n 取得最大值108, ∴数列{-2n 2+29n +3}中的最大项为a 7=108.课堂小结1.{a n }与a n 是不同的两种表示,{a n }表示数列a 1,a 2,…,a n ,…,是数列的一种简记形式.而a n 只表示数列{a n }的第n 项,a n 与{a n }是“个体”与“整体”的从属关系.2.数列的表示方法:①图象法;②列表法;③通项公式法; ④递推公式法.3.通项公式和递推公式的区别:通项公式直接反映a n 和n 之间的关系,即a n 是n 的函数,知道任意一个具体的n 值,就可以求出该项的值a n ;而递推公式则是间接反映数列的式子,它是数列任意两个(或多个)相邻项之间的推导关系,不能由n 直接得出a n .基础过关1.已知数列{a n }满足a 1=2,a n +1-a n +1=0(n ∈N *),则此数列的通项a n 等于( ) A.n 2+1 B.n +1 C.1-nD.3-n解析 a n +1-a n =-1,利用累加法可以求得a n =3-n .选D. 答案 D2.已知数列{a n }中的首项a 1=1,且满足a n +1=12a n +12n ,此数列的第3项是( ) A.1 B.12 C.34D.58解析 a 1=1,a 2=12a 1+12=1,a 3=12a 2+12×2=34.答案 C3.数列{a n }中,a n =n - 2 011n - 2 012,则该数列前100项中的最大项与最小项分别是( ) A.a 1,a 50 B.a 1,a 44 C.a 45,a 44D.a 45,a 50解析 a n =n - 2 011n - 2 012=1+2 012- 2 011n - 2 012.∴当n ∈[1,44]且n ∈N *时,{a n }单调递减, 当n ∈[45,+∞)且n ∈N *时,{a n }单调递减, 结合函数f (x )=2 012- 2 011x - 2 012的图象,可知(a n )max =a 45,(a n )min =a 44. 答案 C4.数列{a n }中,a 1=2,a n =a n +1-3,则14是{a n }的第________项.解析 a 1=2,a 2=a 1+3=5,a 3=a 2+3=8,a 4=a 3+3=11,a 5=a 4+3=14. 答案 55.数列{a n }中,a 1=2,a n =2a n -1(n ∈N *,2≤n ≤10),则数列{a n }的最大项为________.解析 ∵a 1=2,a n =2a n -1, ∴a n ≠0,∴a na n -1=2>1,∴a n >a n -1,即{a n }单调递增,∴{a n }的最大项为a 10=2a 9=4a 8=…=29·a 1=29·2=210=1 024. 答案 1 0246.已知数列{a n }中,a 1=1,a 2=23,1a n -2+1a n =2a n -1(n ∈N *,n ≥3),求a 3,a 4.解 由a 1=1,a 2=23且1a n -2+1a n =2a n -1,知当n =3时,1a 1+1a 3=2a 2,∴1a 3=2a 2-1a 1=3-1=2,∴a 3=12.当n =4时,1a 2+1a 4=2a 3,∴1a 4=2a 3-1a 2=4-32=52,∴a 4=25.7.根据下列条件,写出数列的前四项,并归纳猜想它的通项公式.(1)a 1=0,a n +1=a n +2n -1(n ∈N *);(2)a 1=1,a n +1=a n +a n n +1(n ∈N *); (3)a 1=-1,a n +1=a n +1n (n +1)(n ∈N *). 解 (1)a 1=0,a 2=1,a 3=4,a 4=9.猜想a n =(n -1)2(n ∈N *).(2)a 1=1,a 2=32,a 3=42=2,a 4=52.猜想a n =n +12(n ∈N *).(3)a 1=-1,a 2=-12,a 3=-13,a 4=-14.猜想a n =-1n (n ∈N *).能力提升8.已知数列{x n }满足x 1=a ,x 2=b ,x n +1=x n -x n -1(n ≥2),设S n =x 1+x 2+…+x n ,则下列结论正确的是( )A.x 100=-a ,S 100=2b -aB.x 100=-b ,S 100=2b -aC.x 100=-b ,S 100=b -aD.x 100=-a ,S 100=b -a解析 x 1=a ,x 2=b ,x 3=x 2-x 1=b -a ,x 4=x 3-x 2=-a ,x 5=x 4-x 3=-b ,x 6=x 5-x 4=a -b ,x 7=x 6-x 5=a =x 1,x 8=x 7-x 6=b =x 2,∴{x n }是周期数列,周期为6,∴x 100=x 4=-a ,∵x 1+x 2+…+x 6=0,∴S 100=x 1+x 2+x 3+x 4=2b -a .答案 A9.已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则其前6项之和是( ) A.16B.20C.33D.120解析 a 1=1,a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,∴前6项之和为33.答案 C10.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 010=________,a 2 015=________.解析 依题意,得a 2 010=a 2×1 005=a 1 005=a 4×252-3=1,a 2 015=a 4×504-1=0.答案 1 011.在数列{a n }中,a 1=1,a n +1=a n 1+a n (n ∈N *),试归纳出这个数列的通项公式a n =________.解析 由a 1=1,a n +1=a n 1+a n得a 2=12,a 3=13,a 4=14,…,所以可归纳出a n =1n . 答案 1n12.已知数列{a n }满足a 1=12,a n a n -1=a n -1-a n ,求数列{a n }的通项公式.解 ∵a n a n -1=a n -1-a n ,∴1a n -1a n -1=1. ∴故n ≥2时,1a n =1a 1+⎝ ⎛⎭⎪⎫1a 2-1a 1+⎝ ⎛⎭⎪⎫1a 3-1a 2+…+⎝ ⎛⎭⎪⎫1a n -1a n -1=2+=n +1.∴1a n =n +1,∴当n ≥2时,a n =1n +1.a 1=12也适合上式,∴a n =1n +1(n ∈N *). 13.(选做题)设f (x )是定义在实数集R 上的函数,且满足f (x +2)=f (x +1)-f (x ),对数列f (n )(n ∈N *),若f (1)=lg 32,f (2)=lg 15,求f (2 016).解 f (3)=f (2)-f (1)=lg 15-lg 32=lg 10=1,f (4)=f (3)-f (2)=1-lg 15=lg 23,f (5)=f (4)-f (3)=lg 23-1=lg 115,f (6)=f (5)-f (4)=lg 115-lg 23=lg 110=-1,f (7)=f (6)-f (5)=-1-lg 115=-1+lg 15=lg 32=f (1),f (8)=f (7)-f (6)=lg 32+1=lg 15=f (2).∴f (n )是周期为6的周期数列.∴f (2 016)=f (336×6)=f (6)=-1.。
七年级数学数列公式大全
七年级数学数列公式大全一、数列的定义数列是一组有序的数字排列,其特点是每项都有一个特定的位置,且每一项都具有前一项和后一项的关联。
数列可以视为一种特殊的函数,其定义域和值域分别是正整数集和实数集。
二、数列的表示方法数列的表示方法有两种,一种是列举法,即将数列中的所有项一一列举出来,如:1,2,3,...,n。
另一种是通项公式法,即用数学公式表示数列的每一项,如:an=n(n为自然数)。
三、等差数列等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
这个常数叫做等差数列的公差。
等差数列的通项公式为:an=a1+(n-1)d。
四、等比数列等比数列是指从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
这个常数叫做等比数列的公比。
等比数列的通项公式为:an=a1*q(n-1)。
五、数列的求和数列的求和有两种方法,一种是公式法,即直接套用求和公式进行计算;另一种是裂项相消法,即将数列中的每一项都拆分成两个部分,然后将它们相加,最终得到结果。
六、数列的应用数列在现实生活中有着广泛的应用,如计算利息、计算折扣、计算概率等等。
同时,数列也是数学中的一个重要分支,它在数学竞赛中有着重要的地位。
七、数列的拓展除了等差数列和等比数列之外,还有许多其他类型的数列,如斐波那契数列、杨辉三角等等。
这些数列都具有各自独特的性质和特点,值得我们去探索和学习。
八、数列与函数的关系数列可以看做是一种特殊的函数,它的定义域和值域分别是正整数集和实数集。
同时,数列和函数之间也存在着密切的联系,许多函数的性质都可以通过数列来探究和理解。
因此,在学习数列的过程中,也需要注意与函数的联系和区别。
九、数列的学习方法学习数列需要掌握一定的方法和技巧。
首先,需要理解数列的基本概念和性质;其次,需要掌握常见的数列求和方法;最后,需要多做练习题,加深对数列的理解和应用。
同时,也需要注重与其他数学知识的联系和综合运用。
总之,七年级数学中的数列知识点是一个重要的内容,它不仅在数学中有着广泛的应用,同时也是后续数学知识的基础。
专题6.1 数列的通项公式与求和(原卷版) 文科生
【考点1】数列的概念与表示 【备考知识梳理】1.定义:按照一定顺序排列着的一列数.2.表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.3.分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列. 4.n a 与n S 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥.5.处理方法:.用函数的观点处理数列问题 【规律方法技巧】1. 数列是定义域为正整数集或其有限子集的函数,故数列具有函数的特征(周期性、单调性等).2. 观察法是解决数列问题的法宝,先根据特殊的几项,找出共同的规律,横看“各项之间的关系结构”,纵看“各项与项数n 的关系”,从而确定数列的通项公式. 【考点针对训练】1. 【2016年4月河南八市高三质检卷】已知*1log (2)()n n a n n N +=+∈,观察下列算式:1223lg 3lg 4log 3log 42lg 2lg 3a a •=•=•=;123456237lg 3lg 4lg8log 3log 4log 83lg 2lg 3lg 7a a a a a a •••••=•=•=,…;若*1232016()m a a a a m N ••••=∈,则m 的值为( )A .201622+ B .20162 C .201622- D .201624-2.数列 ,817,275,31,31--的一个通项公式是 A .n n a n n 312)1(1--=+ B .n n a n n 312)1(--= C . n n n n a 312)1(1--=+ D . nn n n a 312)1(--= 【考点2】递推关系与数列通项公式【备考知识梳理】在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈.数列通项公式的求解常用方法:1、定义法,直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.2、公式法, 若已知数列的前项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解.3、由递推式求数列通项法,对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列.4、待定系数法(构造法),求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高.通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法. 【规律方法技巧】 数列的通项的求法: ⑴公式法:①等差数列通项公式;②等比数列通项公式.⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥.⑶已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩.⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥.⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a aa a a a a a ---=⋅⋅⋅⋅(2)n ≥.⑹已知递推关系求n a ,用构造法(构造等差、等比数列).特别地,(1)形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为的等比数列后,再求n a .如(21)已知111,32n n a a a -==+,求n a ;(2)形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项.注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解. (3)由n S 与1n S -的关系,可以先求n S ,再求n a ,或者先转化为项与项的递推关系,再求n a . 【考点针对训练】1. 【2016届榆林市高三二模】在数列{}n a 中,()1111,114n n a a n a -=-=->,则2016a 的值为( ) A .14-B .5C .45D .以上都不对 2. 【2016湖北省八校高三.二联】数列{}n a 满足1=1a ,()()1=11n n na n a n n ++++,且2=cos 3n n n b a π,记n S 为数列{}n b 的前项和,则120S = . 【考点3】数列求和 【备考知识梳理】数列的求和也是高考中的热点内容,考察学生能否把一般数列转化为特殊数列求和,体现了化归的思想方法,其中错位相减和裂项相消是高考命题的热点.估计在以后的高考中不会有太大的改变.数列求和的常用方法,尤其是利用裂项法和错位相减法求一些特殊数列的和,数列求和的基本方法:1.基本公式法:()1等差数列求和公式:()()11122n n n a a n n S na d +-==+ ()2等比数列求和公式:()111,11,111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩()30122nn n n n n C C C C ++++=.2.错位相消法:一般适应于数列{}n n a b 的前向求和,其中{}n a 成等差数列,{}n b 成等比数列.3.分组求和:把一个数列分成几个可以直接求和的数列,然后利用公式法求和.4.拆项(裂项)求和:把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和.常见的拆项公式有:()1若{}n a 是公差为d 的等差数列,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭; ()2()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;()31k=;()411m m m n n n C C C -+=-;()5()!1!!n n n n ⋅=+-.5.倒序相加法:根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的. 【规律方法技巧】数列求和关键是研究数列通项公式,根据通项公式的不同特征选择相应的求和方式,若数列是等差数列或等比数列,直接利用公式求和;若通项公式是等差乘等比型,利用错位相减法;若通项公式可以拆分成两项的差且在累加过程中可以互相抵消,利用裂项相消法,从近年的考题来看,逐渐加大了与函数不等式的联系,通过对通项公式进行放缩,放缩为易求和的数列问题处理. 【考点针对训练】1. 【2016年江西九江高三第三次联考】设n S 是等差数列{}n a 的前项和,若12,21344672==S S ,则=2016S ( )A .22B .26C .30D .342. 【2016届淮北一中高三最后一卷】已知函数()()()()1210log 110ax x f x x x ⎧->⎪=⎨+-<≤⎪⎩且334f f ⎡⎤⎛⎫-= ⎪⎢⎥⎝⎭⎣⎦,在各项为正的数列{}n a 中,{}1112,,2n n n a a f a a +⎛⎫==+⎪⎝⎭的前项和为n S ,若126n S =,则n =____________.【应试技巧点拨】1. 由递推关系求数列的通项公式 (1)利用“累加法”和“累乘法”求通项公式此解法来源与等差数列和等比数列求通项的方法,递推关系为1()n n a a f n +-=用累加法;递推关系为1()n n a f n a +=用累乘法.解题时需要分析给定的递推式,使之变形为1n n a a +-、1n naa +结构,然后求解.要特别注意累加或累乘时,应该为)1(-n 个式子,不要误认为个. (2)利用待定系数法,构造等差、等比数列求通项公式求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高.通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法.递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ).把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解. 3.如何选择恰当的方法求数列的和在数列求和问题中,由于题目的千变万化,使得不少同学一筹莫展,方法老师也介绍过,就不清楚什么特征用什么方法.为此提供一个通法 “特征联想法”:就是抓住数列的通项公式的特征,再去联想常用数列的求和方法.通项公式作为数列的灵魂,只有抓住它的特征,才能对号入座,得到求和方法. 特征一:....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. 特征二:n n n C a b =⋅,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错位相减法”. 特征三:1n n nC a b =⋅,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. 特征四:nn n n C C a =⋅,数列{}n C 的通项公式是一个组合数和等差数列通项公式组成,一般采用“倒序相加法”.4. 利用转化,解决递推公式为n S 与n a 的关系式. 数列{n a }的前项和n S 与通项n a 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥.通过纽带:12)n n n a S S n -=-≥(,根据题目求解特点,消掉一个n n a S 或.然后再进行构造成等差或者等比数列进行求解.如需消掉n S ,利用已知递推式,把n 换成(n+1)得到递推式,两式相减即可.若消掉n a ,只需把1n n n a S S -=-带入递推式即可.不论哪种形式,需要注意公式1n n n a S S -=-成立的条件 2.n ≥ 【三年高考】1. 【2016高考上海文科】无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.2. 【2016高考新课标Ⅲ文数】已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}n a 的通项公式.3.【2016高考浙江文数】设数列{n a }的前项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈.(I )求通项公式n a ;(II )求数列{2n a n --}的前项和.4.【2016高考上海文科】对于无穷数列{n a }与{n b },记A ={x |x =a ,*N n ∈},B ={x |x =n b ,*N n ∈},若同时满足条件:①{n a },{n b }均单调递增;②A B ⋂=∅且*N A B =,则称{n a }与{n b }是无穷互补数列.(1)若n a =21n -,n b =42n -,判断{n a }与{n b }是否为无穷互补数列,并说明理由; (2)若n a =2n 且{n a }与{n b }是无穷互补数列,求数列{n b }的前16项的和;(3)若{n a }与{n b }是无穷互补数列,{n a }为等差数列且16a =36,求{n a }与{n b }得通项公式. 5.【2015高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 .6.【2015高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .7.【2015高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬•⎩⎭的前项和为21nn +. (I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前项和n T .8.【2015高考湖南,文19】设数列{}n a 的前项和为n S ,已知121,2a a ==,且13n n a S +=*13,()n S n N +-+∈,(I )证明:23n n a a +=; (II )求n S .9.【2015高考浙江,文17】已知数列n a 和n b 满足,*1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n+++++=-∈. (1)求n a 与n b ;(2)记数列n n a b 的前n 项和为n T ,求n T .10.【2014高考全国2卷文第16题】数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 11.【2014高考湖南卷文第16题】已知数列{}n a 的前项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.12.【2014高考山东文第19题】在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项.(1)求数列{}n a 的通项公式; (2)设(1)2nn n b a +=,记1234(1)n n n T b b b b b =-+-+++-,求n T .【一年原创真预测】1. 已知数列{}n a 的前项和n S 满足21(1)22n n nS n S n n +-+=+*()n N ∈,13a =,则数列{}n a 的通项n a =( )A .41n -B .21n +C .3nD .2n + 2.已知数列{}n a 中,12a =,12(1)n n na n a +=+,则5a =( ) A .320 B .160 C .80 D .403.已知数列{}n a 的前项和为n S ,11a =.当2n ≥时,1221n n a S n -+=+,则299S = ( ) A .246 B .299 C .247 D .2484.m b 为数列{2}n 中不超过3*()Am m N ∈的项数,2152=b b b +且310b =,则正整数A 的值为_______.5.已知数列{}n a 的首项1a m =,其前项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +<恒成立,则m 的取值范围是_______. 6.已知数列{}n a 的前n 项和2n 33S n n 22=+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n an b 2=,*n n *n3,n 2k 1,k N 2S 3n c b ,n 2k,k N ⎧=-∈⎪+=⎨⎪=∈⎩,设数列n {c }的前n 项和为n T ,求2n T .7.已知数列{}n a 满足*1221212221,2,2,3,()n n n n a a a a a a n N +-+===+=∈.数列{}n a 前项和为n S .(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ)若12m m m a a a ++=,求正整数m 的值; (Ⅲ)是否存在正整数m ,使得221mm S S -恰好为数列{}n a 中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由.8.已知数列{}n a 中任意连续三项的和为零,且212 1.a a ==- (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足*1111(N ),n n n b b a n b a ++=∈=,求数列{}n b 的前n 项和n S 的取值范围.【考点1针对训练】 1. 【答案】C【解析】由题意:1223lg 3lg 4log 3log 42lg 2lg 3a a •=•=•=;123456237lg 3lg 4lg8log 3log 4log 83lg 2lg 3lg 7a a a a a a •••••=•=•=,…;12345613142315lg3lg 4lg16log 3log 4log 1616,lg 2lg3lg15a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅=⋅=⋅=…;据此可知,*1232016()m a a a a m N ••••=∈,则m 的值为201622-2.【答案】C.【考点2针对训练】 1. 【答案】C 【解析】2341415,,,54a a a a ===-=因此周期为3,即2016345a a ==,选C. 2. 【答案】7280140418111201212413972802626⨯⨯⨯⨯=⨯⨯⨯-⨯= 【考点3针对训练】1. 【答案】C【解析】由134420166721344672,,S S S S S --成等差数列,得1221022016-+=⨯S ,即=2016S 30,故选C.2. 【答案】6【三年高考】 1. 【答案】42. 【解析】(Ⅰ)由题意得41,2132==a a . (Ⅱ)由02)12(112=---++n n n n a a a a 得)1()1(21+=++n n n n a a a a .因为{}n a 的各项都为正数,所以211=+n n a a ,故{}n a 是首项为,公比为21的等比数列,因此121-=n n a . 3.4.【解析】(1)因为4∉A ,4∉B ,所以4∉AB ,从而{}n a 与{}n b 不是无穷互补数列.(2)因为416a =,所以1616420b =+=.数列{}n b 的前16项的和为()()23412202222++⋅⋅⋅+-+++=()512020221802+⨯--=. (3)设{}n a 的公差为d ,d *∈N ,则1611536a a d =+=.由136151a d =-≥,得1d =或. 若1d =,则121a =,20n a n =+,与“{}n a 与{}n b 是无穷互补数列”矛盾;若2d =,则16a =,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.综上,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.5.【答案】27【解析】∵2≥n 时,21,21121+=+=-a a a a n n 且,∴{}1a a n 是以为首项,21为公差的等差数列,∴2718921289199=+=⨯⨯+⨯=S 6.【答案】6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴264n =,∴n=6. 7.8.9.【解析】 (1)由112,2n n a a a +==,得2nn a =.当1n =时,121b b =-,故22b =.当2n ≥时,11n n n b b b n+=-,整理得11n n b n b n ++=,所以n b n =. (2)由(1)知,2nn n a b n =⋅,所以23222322n n T n =+⋅+⋅++⋅2341222232(1)22n n n T n n +=+⋅+⋅++-⋅+⋅,所以2311222222(1)22n n n n n n T T T n n ++-=-=++++-⋅=--,所以1(1)22n n T n +=-+.10.【答案】12. 【解析】由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=. 11.12.【一年原创真预测】 1. 【答案】A【解析】由21(1)22n n nS n S n n +-+=+,得121n n S S n n +-=+,则数列{}n S n 是首项为131S=,公差为2的等差数列,则32(1)21nS n n n=+-=+,即22n S n n =+,则当2n ≥时,1n n n a S S -=-=2222(1)(1)41n n n n n +----=-.又当1n =时,113a S ==,满足41n a n =-,故选A .2.【答案】B【解析】由12(1)n n na n a +=+,得121n n a a n n +=⋅+,则数列{}n an是首项为2,公比为2的等比数列,所以1222n n na n-=⋅=,即2n n a n =⋅,所以5552160a =⋅=,故选B . 3.【答案】B4.【答案】64或65【解析】设1b t =,则由2152=b b b +,可设*25=,=2,()b t d b t d d N ++∈ (0d =不满足题意)因此122t t A +≤<,1221282,21252,++t dt d t d t d A A ++++≤<≤<从而22131222max{2,2,}min{2,2,}125125++t d t d tt d t t d A ++-++-≤<,再由3122,t d t -+<+得4d <,d 为正整数 1,2,3d ∴=,代入验证得3d =,因此12822125ttA ≤<⨯,由23536t b b b t +=≤≤=+及310b =得4,5,67t =,,由310b =得10112272A ≤<,再结合12822125tt A ≤<⨯验证只有当6t =时,13622125A ≤<有解,解得64A =或65.5.【答案】15(,)43-6.【解析】()I 当n 2≥时,()()2n 133S n 1n 122-=-+-,n n n 1a S S 3n -∴=-=,又n 1=时,11a S 3==满足上式, 所以n a 3n =.()II ()*n n*1,n 2k 1,k N n n 2c 8,n 2k,k N ⎧=-∈⎪+=⎨⎪=∈⎩.()()21321242n n n T c c c c c c -=+++++++111111123352n 12n 1⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦()242n 888++++()n6416411122n 1164-⎛⎫=-+ ⎪+-⎝⎭()n n 646412n 163=+-+. 7.(II )由12m m m a a a ++=,①若2()m k k *=∈N ,则22122k k k a a a ++= 即2131k k +=⇒=,即2m =, ② 若21()m k k *=-∈N ,即21221k k k a a a -+= 即1(21)2321k k k --⋅⋅=+,1223121k k -⋅=+-,123k -⋅为正整数∴221k -为正整数,即211k -=,即1k =,但此时式为0233⋅=不合题意,综上,2m =.(III )若221m m S S -为{}n a 中的一项,则221mm S S -为正整数,2113212422(...+)(...)m m m S a a a a a a ---=++++++ 112(121)2(31)31231m m m m m --+--=+=+--,221221213m m m m m S S a S S ---+∴==-2122(1)331m m m --≤+-, 故若221m m S S -为{}n a 中的某一项只能为123,,a a a ,①若2122(1)3131m m m ---=⇒+-无解;②若212122(1)3231031m m m m m ----=⇒+-=+-,显然1m =不符合题意,2m =符合题意,当3m ≥时,设12()31m f m m -=+-,则112()3ln 32,()3(ln 3)20m m f m m f m --'''=-=->,即1()3ln 32m f m m -'=-为增函数,故()(3)0f m f ''≥>,即()f m 为增函数,,故()(3)10f m f >=>,故当3m ≥时方程12310m m -+-=无解,即2m =是方程唯一解;③若22122(1)33131m m m m ---=⇒=+-即1m =,综上所述,1m =或2m =. 8.(II )因为33132231331322132131323313()()4n n n n n n n n n n n n b b b b b b a a a a a a a a b b b b -------=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅==,所以11313212113()()24n n n b a a a a a ---==⋅,1132321113()()24n n n b a a a a ---==-⋅,从而当*3,n k k N =∈时,。
第四章 数列(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)
第四章数列(公式、定理、结论图表)一.数列的概念:1.定义:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应函数的解析式。
2.数列是按一定顺序排列的一列数,记作,,,,321 n a a a a 简记{}n a .3.数列{}n a 的第n 项n a 与项数n 的关系若用一个公式)(n f a n =给出,则这个公式叫做这个数列的通项公式。
4.数列的项为当自变量由小到大依次取值时对应的一列函数值,它的图像是一群孤立的点。
5、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.6、求数列中最大最小项的方法:最大⎩⎨⎧≥≥-+11n n n n a a a a 最小⎩⎨⎧≤≤-+11n n n n a a a a 考虑数列的单调性二、等差数列1、定义:(1)文字表示:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.(2)符号表示:11(2)(1)n n n n a a d n a a d n -+-=≥-=≥或2、通项公式:若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.通项公式的变形:①()n m a a n m d =+-;②n ma a d n m-=-.通项公式特点:1()n a d n a d =+-),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。
3、等差中项若三个数a ,A ,b 组成等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.即a 、b 、c 成等差数列<=>2a cb +=4、等差数列{}n a 的基本性质),,,(*∈N q p n m 其中(1)q p n m a a a a q p n m +=++=+,则若。
第一课数列概念及通项公式1
= n2 n 4 .
2
(所 相2)乘a(方2=得法2aa11一2·,aa)3因3·=…为2a·22aan,n=a=42a=112a2ann33·2a11,22…, ·,…an·2a=nn2a11nn11
,
(所方以法ana二=n=2)1因aa2nan为11(n·a1aa)annnn1=12
352= 495=01225.
2
学例2 (2009·重庆卷)已知
a1=1,a2=4,an+2=4an+1+an,bn= (1)求b1,b2,b3的值;
an1 an
,n∈N*.
(2)设cn=bnbn+1,Sn为数列{cn}的前n项和,
求证Sn>17n;
(3)求证:|b2n-bn|<
1 64
·171n2
所以Sn=c1+c2+…+cn>17n.
(3)证明:当n=1时,结论|b2-b1|= 14<1674 成立.当
n≥2时,有|bn+1-bn|=|4+
1
-4-
bn
1
|
bn 1
=| bn bn1 |≤
bnbn1
117|bn-bn-1|≤
171|b2 n-1-bn-2|
1
≤…≤ 17n|b1 2-b1|=
例3 根据下列条件,写出数列的通项公式:
(1)a1=2,an+1=an+n; (2)a1=1,an-1=2n-1an.
分析(1)将递推关系写成n-1个等式累
加,即“累加法”. (2)将递推关系写成n-1个等式相乘,即
“累积法”或用逐项迭代法.
(1)(方法一)an+1=an+n,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列可以看成以正整数集N*(或它的有限子集 {1,2,3,4,…,n})为定义域的函数an=f(n),当自 变量按照从小到大的顺序依次取值时,所对应的一 列函数值。
思考
函数y 2 x 1与y 3x ,当x依次取1, 2, 3...时, 其函数值构成怎样的数列?
an
一.定义:
按照一定顺序排列的一列数叫数列。
思考1:数列 4,5,6,7,8,9,10;
数列 10,9,8,7,6,5,4;是否相同?
思考2:数列中的数是否可以重复? 如:数列-1,1,-1,1,· · · 。
二.数列的分类:
1)根据数列项数的多少分:
P28观察
有穷数列:项数有限的数列. 例如数列1,2,3,4,5,6。是有穷数列 无穷数列:项数无限的数列. 例如数列1,2,3,4,5,6,…是无穷数列 2)根据数列项的大小分:
a1 1 a 1 1 n an 1
(n 1)
写出这个数列的前五项。 练习:P31 2
递推公式是数列所特有的表 示法,它包含两个部分,一是 递推关系,一是初始条件,二 者缺一不可.
( 1 ) 1,2,4,8.
写出下面数列的一个通项公式,使它 的前4项分别是下列各数:
正方形数 1, 4, 9, 16, ……
提问:这些数有什么规律吗?
一.定义:
按照一定顺序排列着的一列数叫数列。
(1)三角形数:1, 3, 6, 10, .….. (2)正方形数:1, 4, 9, 16, …… (3)4,5,6,7,8,9,10; (4)10,9,8,7,6,5,4; 数列中的每一个数叫做这个数列的项。
递增数列:从第2项起,每一项都大于它的前一项的数列。 递减数列:从第2项起,每一项都小于它的前一项的数列。 常数数列:各项相等的数列。 摆动数列:从第2项起,有些项大于它的前一项,
有些项小于它的前一项的数列
三.数列的表示: 观察下列数列的每一项与这一项的序号是 否有一定的对应关系? 1 1 1 1 1 1 , ,, ,, 项 2 3 4 5 n 序号 项 序号
练习:P31 1,3,4
数列
2,4,6,8,10,……
其通项公式是:
图象为:
an
10 9 8
an 2n
7
6 5
4
3 2
0
1
2
3
4
5
n
例2、图中的三角形称为谢宾斯基(Sierpinski)三 角形,在下图4个三角形中,着色三角形的个数依次 构成一个数列的前4项,请写出这个数列的一个通项 公式,并在直角坐标系中画出它的图象。
2
3
2
1 1
?
64个格子
8
7
6
5
4
3
2
8 7 6 5 4 3 2 1 1
你认为国王 有能力满足 上述要求吗
每个格子里的麦粒数都是 前 一个格子里麦粒数的 2倍 且共有 64 格子
1 2
0
2
1
2
2
2
3
63 ? 2
1844,6744,0737,0955,1615
观察下列图形:
三角形数 1, 3, 6, 10, .…..
2.1数列的概念与简 单表示法
8 7 6 5 4 你想得到 64个格子 3
8 7 6 5 4 3
什么样的 2 赏赐?
1
1
8 7 6 OK 5
4 3 2
8
陛下,赏小 请在第一个格 请在第三个格 人一些麦粒 请在第二个格 请在第四个格 子放 1 颗麦粒 4 颗麦粒 依次类推 … 子放 2 颗麦粒 7 子放 子放 8 颗麦粒 就可以 6 。 5 4
如果数列{an }的第n项与序号n之间的关系可以用一个式 子来表示,那么这个公式叫做数列的通项公式。
正方形数:1, 4, 9, 16, ……
an n 2
通项公式可以看成是数列的函数解析式。
如果只知道数列的通项公式,那能写出这个 数列吗?
根据下面数列 an 的通项公式,写出 它的前5项:
an 3
n 1
an 30 27 24 21 18 15
an 3
n 1
12
9 6 3
o
1
2
3
4
5
n
问题:如果一个数列{an}的首项a1=1,从第二项 起每一项等于它的前一项的2倍再加1, 即 an = 2 an-1 + 1(n∈N,n>1),(※)
你能写出这个数列的前三项吗? 递推公式 例3 设数列{an }满足
(1)三角形数:1, 3, 6, 10, .….. (2)正方形数:1, 4, 9, 16, ……
按照一定顺序排列着的一列数叫数列。
数列中的每一项都和它的序号有关,排第一位 的数称为这个数列的第1项(首项),
排第二位的数称为这个数列的第2项,· · · · · · , 排第n位的数称为这个数列的第n项. 数列的一般形式可以写成:a1 , a2 , a3 ,an ,, 其中 an是数列的第n项,上面的数列又可简记为
( 1)
n an n 1
(2) an 1 n
n
例1、 写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
an 2n 1 ( 1 ) 1,3,5,7; 2 an (n 1) (2) 4, 9, 16 , 25 ; 1 1 1 a (1) n 1 1 (3)1 , ,, ;n n 2 3 4 n1 an 1 (1) (4) 2, 0, 2, 0。
1 2 3 4 5
….
n 2n
2, 4, 6, 8, 10,…
1 2 3 4 5
……
n
数列中的每一个数都对应着一个序号, 反过来,每个序号也都对应着一个数。
数列与函数的关系 :
数列可以看作特殊的函数,序号是 其自变量,项是序号所对应的函数值, * N 数列的定义域是正整数集 ,或是 * 正整数集 的有限子集 . N
( 2)1 0 , 100 , 1000 , 10000 。 (3 ) 9, 99 , 999 , 9999 。 (4) 5, 55 , 555 , 5555 。 (5 ) 0.Байду номын сангаас,0.9 9,0.9 9 9 ,0.9 9 9 9 ( 6) 2, 5 ,2 2, 1 1.
小结
• • • • • • • • 1、数列的定义 2、数列的实质—特殊的函数(离散函数) 3、数列的通项公式 4、数列的表示方法: 列表法, 通项公式法, 图象法, 递推公式法