高中数学2.2.3_2.2.4直线与平面、平面与平面平行的性质同步教案北师大版必修2

合集下载

说课稿北师大版数学必修2《直线与平面平行》

说课稿北师大版数学必修2《直线与平面平行》

《直线与平面平行》说课稿各位评委、老师大家好:我是来应聘高中数学的04号考生,今天我说课的题目是《直线与平面平行》下面我将从说教材、说学情、说教法、说学法、说教学过程以及板书设计等六个方面来阐述我对本节课的理解和设计。

一、教材分析(一)教材的地位与作用《直线与平面平行》选自北师大版高中数学必修二第一章第五节第一课时的内容,在此之前,学生已经学习了点、直线、平面之间的位置关系,这为过渡到本节的学习起着铺垫作用。

本节内容是学生学过的直线与平面平行的判定的延续,又是后续研究平面与平面平行的性质的基础,它是立体几何中起承上启下作用的核心知识之一,所以,在立体几何中占据重要的位置。

(二)教学目标1.知识与技能目标:掌握直线与平面平行的性质定理,并能用数学符号语言表示,同时掌握该定理的应用/2.过程与方法目标:学生通过观察,借助实物模型,推理论证后整理得到直线与平面平行的性质定理,并能用该定理来解决一些问题。

最后,3.情感、态度与价值观目标:通过对问题的探讨,使学生形成积极主动的学习态度,并进一步提升学生的空间想象水平。

(三)教学重难点据对教材的分析以及确定的教学目标,我确定本节课的教学重点是直线与平面平行的性质定理的探索、理解、表达和应用。

考虑到学生现有的知识水平,我确定本节课的难点为直线与平面平行的性质定理的证明与应用。

不过,学好本节课的关键是理清直线与平面的位置关系及直线与直线的位置关系。

二、学情在本节课之前,学生已经学习了柱、锥、台、球等简单几何体和平面的基本性质,但基于数学本身的抽象性和概括性,要求学生对空间图形的理解不但停留在直观感知和观察上,而是要实行空间想象、抽象概括,得到相关定义、以及公理、定理,使学生对空间图形的理解能适当的上升到理性层面。

三、说教法以教师为主导,以学生为主体,以水平发展为目标,从学生的认知规律出发,实行启发、诱导、探索,使用讨论法、阅读指导法、讲授法等充分调动学生的积极性,层层设疑,发挥学生的主体作用,引导学生在自主学习与分组讨论交流过程中体会知识的价值,感受知识的无穷魅力。

2.2.3《直线与平面平行的性质》

2.2.3《直线与平面平行的性质》

直线与平面平行的性质定理: 直线与平面平行的性质定理: 一条直线和一个平面平行, 一条直线和一个平面平行,则过这条直线的 任一平面与这个平面的交线与该直线平行。 任一平面与这个平面的交线与该直线平行。 符号表示: 符号表示:
a // α , a ⊂ β , α ∩ β = b
a // b
β a b
例题示范 例4:已知平面外的两条平行直线中的一条平行 于这个平面,求证:另一条也平行于这个平面。 于这个平面,求证:另一条也平行于这个平面。 第一步: 第一步:将原题改写成数学 符号语言 如图,已知直线a,b,平面 如图,已知直线a,b,平面α, a,b,平面 a//b,a//α,a,b都在平面 且a//b,a//α,a,b都在平面 α外.求证:b// . 求证:b//α. :b// 第二步:分析:怎样进行平 第二步:分析: 行的转化? 行的转化?→如何作辅助平 面? 第三步: 第三步:书写证明过程
探研新知
已知:如图,a∥α, 已知:如图,a∥α, α∩β= a ⊂β,α∩β=b。 求证:a∥b。 求证:a∥b。 证明: α∩β= 证明:∵α∩β=b,∴b⊂α a∥α, 无公共点, ∵ a∥α,∴a与b无公共点, a∥b。 ∵a⊂β,b⊂β,∴a∥b。 我们可以把这个结论作定理来用. 我们可以把这个结论作定理来用.
探究: 变式:如果AD∥BC BC∥面A′C′,那么, AD∥BC, 变式:如果AD∥BC,BC∥面A′C′,那么,AD 和面BC′ BC′、 BF、 A′C′都有怎样的位置关 和面BC′、面BF、面A′C′都有怎样的位置关 为什么? 系.为什么?
练一练: 练一练: 设平面α α∩β= β∩γ= 设平面α、β、γ,α∩β=a,β∩γ=b, γ∩α= 求证: γ∩α=c,且a//b. 求证:a∥b∥c.

直线与平面平行的性质教案

直线与平面平行的性质教案

课题:§2.2.3直线与平面平行的性质教学任务分析:知识与技能通过观察探究,进行合情推理发现直线与平面平行的性质定理,并能准确地用数学语言表述该定理;能够对直线与平面平行的性质定理作出严密的逻辑论证,并能进行一些简单的应用.过程与方法通过直观感知和操作确认的方法,培养和发展学生的几何直觉、运用图形语言进行交流的能力;体会和感受通过自己的观察、操作等活动进行合情推理发现并获得数学结论的过程.情感、态度、价值观通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法.教学重点与难点:重点通过直观感知、提出猜想进而操作确认,获得直线与平面平行的性质定理.难点综合应用线面平行的判定定理和性质定理进行线线平行与线面平行的相互转化.教学流程与环节设计:实际问题引入,激发学生探索兴趣和求知欲望.结合实际问题主动参与,通过直观感知、提出猜想进而操作确认获得定理;然后结合例题体会定理的应用.结合例题,总结线线平行与线面平行的相互转化,体会线面平行的判定定理和性质定理的综合运用.综合应用判定定理和性质定理解决简单问题,规范解题步骤与格式,培养学生良好的学习习惯.进一步巩固定理,深化基本方法.结合线线平行与线面平行的转化,思考线线平行、线面平行、面面平行的联系,提出合理猜想,主动探究并操作验证.教学情境与操作设计:组织探究例4.求证:如果一条直线和两个相交平面平行,那么这条直线和它们的交线平行.分析:1)用数学符号语言描述上述命题,写出已知和求证;2)用图形语言描述上述命题,即画出相应图形;3)综合利用线面平行的性质定理与判定定理解答本题.解:(略).师:本例应着重注意引导学生综合利用线面平行的性质定理与判定定理解决相关问题,渗透化归与转化的数学思想方法.并锻炼学生熟练文字叙述、数学符号语言、图形语言之间的相互转化.探究与发现结合例题探究发现:直线与平面平行的性质定理和直线与平面平行的判定定理经常要综合使用,亦即是通过线线平行推出线面平行,再通过线面平行推出新的线线平行,复杂的题目还可以继续推下去.在使用中要注意一种思想和一种方法:1)转化的数学思想即线线平行与线面平行之间的相互转化,亦即空间问题与平面问题之间的相互转化,这也是解决立体几何问题的重要思想方法.转化的关系如下:2)辅助平面法即构造辅助平面,以实现线线平行与线面平行间的相互转化.师:渗透转化的数学思想方法,即空间问题平面化;强调一种方法,辅助平面法.巩固练习一、选择题.1.若直线a不平行于平面α,则下列结论成立的是( )A.α内的所有直线都与直线a异面B.α内不存在与a平行的直线C.α内的直线都与a相交D.直线a与平面α有公共点2.直线a∥平面α,P∈α,过点P平行于α的直线( )A.只有一条,不在平面α内B.有无数条,不一定在α内C.只有一条,且在平面α内D.有无数条,一定在α内3.下列判断正确的是( )A.a∥α,b α,则a∥bB.a∩α=P,b α,则a与b不平行C.a α,则a∥αD.a∥α,b∥α,则a∥b4.直线和平面平行,那么这条直线和这个平面内的( )A.一条直线不相交通过练习,辨析线线、线面位置关系的各种情形,进一步深化对性质定理的理解与应用,培养学生良好的思维品质,规范解题方法、步骤与格式.线线平行线面平行线线平行判定定理性质定理。

高中数学北师大版精品教案《直线与平面平行》

高中数学北师大版精品教案《直线与平面平行》

直线与平面平行【教学目标】借助直线与平面平行的性质与判定的学习,提升数学抽象、逻辑推理的数学核心素养。

【教学重难点】1.掌握直线与平面平行的性质定理和判定定理,并能利用这两个定理解决空间中的平行关系问题。

2.利用直线与平面平行的判定定理和性质定理证明空间平行问题。

【教学过程】一、直接导入前面我们已经通过几何体,直观地认识了直线在平面内、直线与平面平行、直线与平面相交,其中直线与平面平行是比较特殊的一种位置关系。

因为直线与平面都可以无限延伸,所以要判定一条直线与一个平面有没有公共点,并不是一件容易的事情,因此我们有必要寻求其他判定直线与平面平行的方法。

二、合作探究1.直线与平面的位置关系【例】下列说法:①若直线a在平面α外,则a∥α;②若直线a∥b,直线b⊂α,则a∥α;③若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线。

其中说法正确的个数为A.0个B.1个C.2个D.3个B[对于①,直线a在平面α外包括两种情况:a∥α或a与α相交,∴a和α不一定平行,∴①说法错误。

对于∴,∴直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a不一定平行于α,∴②说法错误。

对于③,∴a∥b,b⊂α,∴a⊂α或a∥α,∴a与平面α内的无数条直线平行,∴③说法正确。

]【教师小结】空间中直线与平面只有三种位置关系:直线在平面内、直线与平面相交、直线与平面平行。

在判断直线与平面的位置关系时,这三种情形都要考虑到,避免疏忽或遗漏。

另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断。

2.直线与平面平行的性质与判定[探究问题](1)如图,一块矩形木板ABCD的一边AB在平面α内,把这块木板绕AB转动,在转动过程中,AB的对边CD不落在α内是否都和平面α平行?[提示]平行。

(2)若直线∥平面α,则平行于平面α内的所有直线吗?[提示]不是。

数学必修2——2.2.3-2.2.4《直线与平面、平面与平面平行的性质》导学导练

数学必修2——2.2.3-2.2.4《直线与平面、平面与平面平行的性质》导学导练

高中数学必修2个人原创,版权所有,翻印必究,如需借用,QQ 索取密码 第1页 解密佛山吉红勇老师扣扣:一0七669八11高中数学必修二2.2.3《直线与平面平行的性质》2.2.4《平面与平面平行的性质》导学导练【知识要点】1、直线与平面平行的性质定理(重点)1)直线与平面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.2)符号语言描述:b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα3)图形语言描述,如右图.2、平面与平面平行的性质(重点、难点)1)、两个平面平行的性质(1):如果两个平面平行,那么其中一个平面内的直线平行于另一个平面. 简言之,“面面平行,则线面平行.”2)、两个平面平行的的性质(2):如果两个平行平面同时和第三个平面相交,那么它们的交线平行.【范例析考点】考点一.线面平行性质的应用考点1:由“线面平行”证明“线线平行”例1、如图,已知异面直线AB 、CD 都与平面α平行,CA 、CB 、DB 、DA 分别交α于点E 、F 、G 、H .求证:四边形EFGH 是平行四边形.HGFEBADCα【针对练习】1.若直线a 不平行于平面α,则下列结论成立的是( )A .α内的所有直线都与直线a 异面B .α内不存在与a 平行的直线C .α内的直线都与a 相交D .直线a 与平面α有公共点2.直线a ∥平面α,P ∈α,过点P 平行于α的直线( )A .只有一条,不在平面α内B .有无数条,不一定在α内C .只有一条,且在平面α内D .有无数条,一定在α内 3.下列判断正确的是( )A .a ∥α,b α,则a ∥bB .a ∩α=P ,b α,则a 与b 不平行C .aα,则a ∥α D .a ∥α,b ∥α,则a ∥b4.直线和平面平行,那么这条直线和这个平面内的( )A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交 5、判断下列说法是否正确:①一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何一条直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l 和平面α平行,那么过平面α内一点和直线l 平行的直线在α内。

高中数学必修二《直线与平面平行的性质》教学设计

高中数学必修二《直线与平面平行的性质》教学设计

《直线与平面平行的性质》教学设计一、课 题:直线与平面平行的性质北师大版高中数学必修2第一章第五节第二课时二、教学内容解析:《直线与平面平行的性质》是北师大版高中数学必修2第一章第五节的内容,属于立体几何初步的知识。

在此之前我们刚学习了空间中点、线、面的位置关系,以及线面平行的判定定理。

这节内容是线面平行判定的延续,又是后面研究面面平行的性质的基础,它是立体几何中承上启下的核心知识之一,特别渗透了空间问题平面化的数学思想。

三、教学目标:1、知识与技能:掌握直线和平面平行的性质定理,并会应用;2、过程与方法:通过让学生观察归纳出线面平行的性质定理,提高学生发现问题解决问题的能力;3、情感、态度、价值观目标:通过问题、猜想、证明,让学生亲身经历数学研究过程,享受成功喜悦,感受数学魅力,形成积极主动的学习态度。

四、教学重、难点:教学重点:直线与平面平行的性质定理的探索过程和应用;教学难点:直线与平面平行的性质定理的证明和应用。

五、学情分析学生掌握了线面平行的判定定理,对线线平行与线面平行的转化有了进一步探究的动机,从感性到理性认识立体几何问题,还有待加强,立体几何语言的规范表述也不严谨。

六、教学策略分析:学生是学习和发展的主体,教师是教学活动的组织者和引导者。

为了把发现创造的机会还给学生,把成功的体验让给学生,采用引导发现法,可激发学生学习的积极性和创造性,分享探索知识的乐趣,使数学教学变成再发现、再创造的过程。

通过学生自主与师生研讨的学习过程,激发学生学习数学的自信心和积极性,培养学生分析问题解决问题的能力,不断发现和探索新知的精神。

七、教学过程设计:(一)温故求新1.线面平行的判定方法有哪些?(1)定义法:若直线与平面无公共点,则直线与平面平行.(2)直线与平面平行的判定定理学生整齐回答:平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行.(“线线平行,线面平行”)再由学生写出符号语言.强调:体现了方法“线线平行到面面平行”,思想“从平面到空间”。

2.2.3-2.2.4_直线与平面,平面与平面平行的性质定理-悠


b α
内找出和直线a (2)已知直线 ∥平面 ,如何在平面 内找出和直线 )已知直线a∥平面α,如何在平面α内找出和直线 平行的一条直线? 平行的一条直线?
思考
如图, 直线A 如图,在长方体 ABCD-A1B1C1D1中,直线 1B1//面CDD1C1. 面
D1 A1
E
C1 由长方体性质,我们知道A1B1 // C1D1.
β b α a
⊂ β.
又因为a 又因为 ∥α, 所以a,b无公共点. 所以 , 无公共点. 无公共点 又因为a β 所以a∥ 又因为 ⊂ ,b ⊂β,所以 ∥b
back
已知平面外的两条平行直线中的一条平行于这个平面, 例 已知平面外的两条平行直线中的一条平行于这个平面, 求证另一条也平行于这个平面. 求证另一条也平行于这个平面.
α
(2)该定理作用:“线面平行⇒线线平行” 该定理作用: 线面平行⇒线线平行” 该定理作用 线面平行性质定理也是找平行线的重要依据. 线面平行性质定理也是找平行线的重要依据 (3)应用该定理,关键是经过直线找平面或作出平面与已知平面相 应用该定理,关键是经过直线找平面或作出平面与已知平面相 应用该定理 并找出两平面的交线. 交,并找出两平面的交线 (4)平面外的两平行线同平行于同一个平面 平面外的两平行线同平行于同一个平面. 平面外的两平行线同平行于同一个平面
O
C1
E
D
在 DBD1中,O为DB的中点,BD1 // OE. 所以点E为DD1的中点.
A
B
练习
三棱柱ABC-A1B1C1中,D是BC上的点,A1B//平面 上的点, 平面ADC1 . 三棱柱 是 上的点 平面 求证:点 为 的中点 的中点. 求证 点D为BC的中点

必修2教案2.2.3 — 2.2.4直线与平面、平面与平面平行的性质

§2.2.3 — 2.2.4直线与平面、平面与平面平行的性质一、教学目标:1、知识与技能(1)掌握直线与平面平行的性质定理及其应用;(2)掌握两个平面平行的性质定理及其应用。

2、过程与方法学生通过观察与类比,借助实物模型理解性质及应用。

3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。

二、教学重点、难点重点:两个性质定理。

难点:(1)性质定理的证明;(2)性质定理的正确运用。

三、学法与教学用具1、学法:学生借助实物,通过类比、交流等,得出性质及基本应用。

2、教学用具:投影仪、投影片、长方体模型四、教学思想(一)创设情景、引入新课1、思考题:教材第60页,思考(1)(2)学生思考、交流,得出(1)一条直线与平面平行,并不能保证这个平面内的所有直线都与这个直线平行;(2)直线a与平面α平行,过直线a的某一平面,若与平面α相交,则直线a就平行于这条交线。

在教师的启发下,师生共同完成该结论的证明过程。

于是,得到直线与平面平行的性质定理。

定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:a //β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题。

2、例3 培养学生思维,动手能力,激发学习兴趣。

例4 性质定理的直接应用,它渗透着化归思想,教师应多做引导。

3、思考:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么样的位置关系?学生借助长方体模型思考、交流得出结论:异面或平行。

再问:平面AC内哪些直线与B'D'平行?怎么找?在教师的启发下,师生共同完成该结论及证明过程,于是得到两个平面平行的性质定理。

定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示:α∥βα∩γ= a a∥bβ∩γ= b教师指出:可以由平面与平面平行得出直线与直线平行4、例5以讲授为主,引导学生共同完成,逐步培养学生应用定理解题的能力。

北师大版高中数学必修二直线与平面平行的判定教案

1.5.1 直线与平面平行的判定一、教学目标1、知识与技能:(1)理解并掌握直线与平面平行的判定定理;(2)进一步培养学生观察、发现的能力和空间想象能力;2、过程与方法:学生通过观察图形,借助已有知识,掌握直线与平面平行的判定定理。

3、情感、态度与价值观:(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想。

二、教学重点、难点重点、难点:直线与平面平行的判定定理及应用。

三、学法与教法1、学法:学生借助实例,通过观察、思考、交流、讨论等,理解判定定理。

2、教法:探究讨论法四、教学过程(一)创设情景、揭示课题引导学生观察身边的实物,如教材第55页观察题:封面所在直线与桌面所在平面具有什么样的位置关系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。

(二)研探新知1、探究问题直线a 与平面α平行吗?若α内有直线b 与a 平行,那么α与a 的位置关系如何?是否可以保证直线a 与平面α平行?学生思考后,师生共同探讨,得出以下结论直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

α a α a b符号表示:a αb β => a ∥αa ∥b2、例1 引导学生思考后,师生共同完成:该例是判定定理的应用,让学生掌握将空间问题转化为平面问题的化归思想。

例1求证::空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.证明:连结BD ,在△ABD 中,因为E 、F ,分别是AB 、AD 的中点,∴EF ∥BD 又EF 平面BCD ,BD平面BCD ,EF ∥平面BCD AE FDBC→改写:已知:空间四边形ABCD 中,E,F 分别是AB,AD 的中点,求证:EF//平面BCD.→ 分析思路 → 学生试板演例2在正方体ABCD- A ’B ’C ’D ’中,E 为DD ’中点,试判断BD ’与面AEC 的位置关系,并说明理由.→ 分析思路 →师生共同完成 → 小结方法 → 变式训练:还可证哪些线面平行(三)自主学习、发展思维(让学生独立完成,教师检查、指导、讲评。

高中北师大版数学必修二同步教案:2.2.2 平面与平面平行的判定

第十课时§2.2.2 平面与平面平行的判定一、教学目标:1、知识与技能:理解并掌握两平面平行的判定定理。

2、过程与方法:让学生通过观察实物及模型,得出两平面平行的判定。

3、情感、态度与价值观:进一步培养学生空间问题平面化的思想。

二、教学重点、难点:重点:两个平面平行的判定。

难点:判定定理、例题的证明。

三、学法与教法1、学法:学生借助实物,通过观察、类比、思考、探讨,教师予以启发,得出两平面平行的判定。

2、教法:探究讨论法四、教学过程(一)创设情景、引入课题引导学生观察、思考教材第57页的观察题,导入本节课所学主题。

(二)研探新知问题提出:1.空间两个不同平面的位置关系有哪几种情况?2.两个平面平行的基本特征是什么?有什么简单办法判定两个平面平行呢?知识探究(一):平面与平面平行的背景分析思考1:根据定义,判定平面与平面平行的关键是什么?思考2: 若一个平面内的所有直线都与另一个平面平行,那么这两个平面的位置关系怎样?若一个平面内有一条直线与另一个平面有公共点,那么这两个平面的位置关系又会怎样呢? 思考3:三角板的一条边所在直线与桌面平行,这个三角板所在平面与桌面平行吗? 思考4:三角板的两条边所在直线分别与桌面平行,三角板所在平面与桌面平行吗?思考5:一般地,如果平面α内有一条直线平行于平面β,那么平面α与平面β一定平行吗?如果平面α内有两条直线平行于平面β,那么平面α与平面β一定平行吗?αβαβ知识探究(二):平面与平面平行的判定定理思考1:对于平面α、β,你猜想在什么条件,下可保证平面α与平面β平行?思考2:设a,b是平面α内的两条相交直线,且 a//β,b//β. 在此条件下,若α∩β=l,则直线a、b与直线l 的位置关系如何?baαlβ思考3:通过上述分析,我们可以得到判定平面与平面平行的一个定理,你能用文字语言表述出该定理的内容吗?再通过长方体模型,引导学生观察、思考、交流,得出结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第十一课时§2.2.3 — 2.2.4直线与平面、平面与平面平行的性质
一、教学目标
1、知识与技能:(1)掌握直线与平面平行的性质定理及其应用;(2)掌握两个平面平行的性质定理及其应用。

2、过程与方法:学生通过观察与类比,借助实物模型理解性质及应用。

3、情感、态度与价值观:(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。

二、教学重点、难点:重点:两个性质定理 。

难点:(1)性质定理的证明;(2)性质定理的正确运用。

三、学法与教法
1、学法:学生借助实物,通过类比、交流等,得出性质及基本应用。

2、教法:探究讨论法
四、教学过程
(一)、创设情景、引入新课
思考题:教材第60页,思考(1)(2)。

学生思考、交流,得出
(1)一条直线与平面平行,并不能保证这个平面内的所有直线都与这个直线平行;
(2)直线a 与平面α平行,过直线a 的某一平面,若与平面α相交,则直线a 就平行于这条交线。

(二)、探究新知
知识探究(一):直线与平面平行的性质分析
思考1:如果直线a 与平面α平行,那么直线a 与平面α内的直线有哪些位置关系?
思考2:若直线a 与平面α平行,那么在平面α内与直线a 平行的直线有多少条?这些直线的位置关系如何?
思考3:如果直线a 与平面α平行,那么经过直线a 的平面与平面α有几种位置关系? a α a
α
2
思考4:如果直线a 与平面α平行,经过直线a 的平面与平面α相交于直线b ,那么直线a 、b 的位置关系如何?为什么?【平行】
思考5:如果直线a 与平面α平行,那么经过平面α内一点P 且与直线a 平行的直线怎样定位?
知识探究(二):直线与平面平行的性质定理
思考1:综上分析,在直线与平面平行的条件下可以得到什么结论?并用文字语言表述之. 定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:
a ∥α
a β 则a ∥b
α∩β= b 作用:利用该定理可解决直线间的平行问题。

作平行线的方法,判断线线平行的依据.
在教师的启发下,师生共同完成该结论的证明过程。

例1、如图所示的一块木料中,棱BC 平行于面A ′C ′.(1)要经过面A ′C ′ 内一点P 和棱BC
α
a
A ′ α a
例 2 已知平面外的两条平行直线中的一条平行于这个平面,求证另一条也平行于这个平面.
学生练习,教师准对问题讲评。

知识探究(三):平面与平面平行的性质定理
思考:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么样的位置关系?
学生借助长方体模型思考、交流得出结论:异面或平行。

再问:平面AC内哪些直线与B'D'平行?怎么找?
在教师的启发下,师生共同完成该结论及证明过程,
于是得到两个平面平行的性质定理。

定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示:
α∥β
α∩γ= a 则a∥b
β∩γ= b 教师指出:可以由平面与平面平行得出直线与直线平行。

例3、课本例4 .以讲授为主,引导学生共同完成,逐步培养学生应用定理解题的能力。

(三)自主学习、巩固知识:练习:课本第63页;学生独立完成,教师进行纠正。

(四)归纳整理、整体认识
1、通过对两个性质定理的学习,大家应注意些什么?
2、本节课涉及到哪些主要的数学思想方法?
(五)布置作业:课本第65页习题2.2 A组第6题。

五、教后反思:
3。

相关文档
最新文档