细胞器的分离与观察
实验五 叶绿体的分离与荧光观察

实验五叶绿体的分离与荧光观察叶绿体是植物细胞所特有的能量转换细胞器,光合作用就是在叶绿体中进行的。
由于具有这一重要功能,所以它一直是细胞生物学、遗传学和分子生物学的重要研究对象。
叶绿体是植物细胞中较大的一种细胞器,利用低速离心即可分离集中进行各种研究。
实验目的一、通过植物细胞叶绿体的分离,了解细胞器分离的一般原理和方法。
二、观察叶绿体的自发荧光和次生荧光,并熟悉荧光显微镜的使用方法。
实验原理将组织匀浆后悬浮在等渗介质中进行差速离心,是分离细胞器的常用方法。
一个颗粒在离心场中的沉降速率取决于颗粒的大小、形状和密度,也同离心力以及悬浮介质的粘度有关。
在一给定的离心场中,同一时间内,密度和大小不同的颗粒其沉降速率不同。
依次增加离心力和离心时间,就能够使非均一悬浮液中的颗粒按其大小、密度先后分批沉降在离心管底部,分批收集即可获得各种亚细胞组分。
叶绿体的分离应在等渗溶液(0.35 mol/L氯化钠或0.4 mol/L蔗糖溶液)中进行.以免渗透压的改变使叶绿体受到损伤。
将匀浆液在1000 r/min的条件下离心2min,以去除其中的组织残渣和一些未被破碎的完整细胞。
然后,在3000 r/min的条件下离心5min,即可获得沉淀的叶绿体(混有部分细胞核)。
分离过程最好在0~5℃的条件下进行;如果在室温下,要迅速分离和观察。
荧光显微术是利用荧光显微镜对可发荧光的物质进行观测的一种技术。
某些物质在一定短波长的光(如紫外光)的照射下吸收光能进入激发态,从激发态回到基态时,就能在极短的时间内放射出比照射光波长更长的光(如可见光),这种光就称为荧光。
若停止供能荧光现象立即停止。
有些生物体内的物质受激发光照射后可直接发出荧光,称为自发荧光(或直接荧光),如叶绿素的火红色荧光和木质素的黄色荧光等。
有的生物材料本身不发荧光,但它吸收荧光染料后同样也能发出荧光.这种荧光称为次生荧光(或间接荧光),如叶绿体吸附吖啶橙后可发桔红色荧光。
分离各种细胞器的方法是

分离各种细胞器的方法是
有多种方法可以分离和纯化细胞器,其中一些常用的方法包括:
1. 差速离心法:通过不同细胞器的离心沉淀速度差异,将细胞破碎后的组织液经过一系列离心步骤,最终达到分离不同细胞器的目的。
2. 密度梯度离心法:将细胞破碎后的组织液通过离心在稀溶液和浓溶液的梯度之间分层,不同密度的细胞器会沉降到不同的位置,从而实现分离。
3. 断续梯度离心法:通过逐渐增加或减少离心机转速来做到细胞器的分离。
在不同速度下,不同细胞器会在不同离心机转速时分离出来。
4. 亲和层析法:利用特定化合物与细胞器的结构或功能特异性结合,通过将混合细胞器溶液通入预先固定某种化合物的树脂,然后洗脱其他细胞器,最终纯化目标细胞器。
5. 膜分离法:利用不同细胞器的膜特性,通过破碎和离心等步骤将膜分离出来,并进行纯化。
6. 免疫沉淀法:利用特异性抗体与特定抗原结合,使用磁珠或纳米粒子等辅助载体将目标细胞器选择性地沉淀下来。
7. 光学分选法:利用显微镜观察细胞器的形态和荧光标记,通过脉冲激光和光散射等方法,将不同细胞器分离出来。
这些方法可以根据需要的分离纯化细胞器的目的和细胞类型进行选择和结合使用。
高中生物细胞器的分离教案

高中生物细胞器的分离教案
课时:1课时
教学目标:
1. 了解细胞器的结构和功能;
2. 掌握生物学实验中的细胞器分离方法;
3. 提高学生的实验操作能力和综合分析能力。
教学重点和难点:
重点:细胞器的结构和功能,细胞器分离实验方法。
难点:细胞器的分离过程中的操作技巧和细胞器的鉴定。
教学准备:
1. 实验用具:显微镜、离心机、细胞破碎器、离心管、生理盐水、甘油等;
2. 实验材料:新鲜的细胞组织。
教学过程:
一、细胞器的介绍
1. 介绍细胞器的种类及其功能。
2. 展示细胞器的结构,让学生对细胞器有一个基本的了解。
二、细胞器分离实验
1. 实验步骤:
(1) 取新鲜的细胞组织放入细胞破碎器中;
(2) 加入生理盐水,用离心机进行离心,分离出细胞器;
(3) 将分离出的细胞器放入离心管中,用甘油处理;
(4) 观察分离出的细胞器。
2. 学生操作:
(1) 学生进行实验操作,观察细胞器的分离过程;
(2) 学生用显微镜观察分离出的细胞器,进行细胞器的鉴定。
三、讨论与总结
1. 讨论实验中的操作技巧和结果;
2. 总结细胞器分离实验的要点和注意事项。
四、作业
完成实验报告,包括实验目的、原理、步骤、结果及分析。
教学反思:
通过本节课的教学,学生对细胞器的结构和功能有了更深入的了解,同时也提高了实验操作能力和综合分析能力。
希望通过这样的教学方式,能够激发学生对生物学的兴趣,培养他们的实验技能和解决问题的能力。
细胞器线粒体的分离与观察

细胞器线粒体的分离与观察高熹1120152430(李安一)(北京理工大学生命学院16121501班)摘要:差速离心法是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法。
此法适用于混合样品中各沉降系数差别较大组分的分离。
离心分离出细胞核与线粒体,进行染色,对细胞核和线粒体的形态进行观察并记录。
关键词:差速离心法;细胞核;线粒体;实验。
1 引言差速离心主要是采取逐渐提高离心速度的方法分离不同大小的细胞器。
起始的离心速度较低,让较大的颗粒沉降到管底,小的颗粒仍然悬浮在上清液中。
收集沉淀,改用较高的离心速度离心悬浮液,将较小的颗粒沉降,以此类推,达到分离不同大小颗粒的目的。
线粒体是真核细胞特有的,司能量转换的重要细胞器。
细胞种的能源物质——糖、脂肪、部分氨基酸在此进行最终的氧化,并通过偶联磷酸华生成ATP,供给细胞生理活动之需。
对线粒体的结构和功能的研究通常是在离体线粒体上进行的。
制备线粒体用组织匀浆在悬浮介质中进行差速离心的方法。
在一给定的离心场中(对于所使用的离心机,就是选用一定的转速),球形颗粒的沉降速度取决于它的密度、半径和悬浮介质的粘度。
在一均匀悬浮介质中离心某一时间内,组织匀降中的各种细胞器及其它内含物由于沉降速度不同而停留在高低不同的位置。
依次增加离心力和离心时间,就能使这些颗粒按其大小、轻重分批沉降在离心管底部,从而分批收集。
细胞器中最先沉降的是细胞核,其次是线粒体,其他更轻的细胞器和大分子可依次再分离。
悬浮介质通常用缓冲的蔗糖溶液,它比较接近细胞质的分散相,在一定程度上能保持细胞器的结构和酶的活性,在pH7.2的条件下,亚细胞组分不容易重新聚集,有利于分离。
整个操作过程应注意样品保持4,避免酶失活。
线粒体的鉴定用詹纳斯绿活染法。
詹纳斯绿B(janus green B)是对线粒体专一的活细胞染料,毒性很小,属于碱性染料,解离后带正电,由电性吸引而堆积在线粒体膜上。
分离细胞器的常用方法

分离细胞器的常用方法分离细胞器的常用方法在生物学中,分离细胞器是一些生物学研究中不可或缺的部分。
它可以用来将活细胞中的细胞器功能特异性隔离出来,以更好地了解细胞的结构和功能之间的关系。
因此,本文将重点介绍分离细胞器的常用方法。
第一种常用的方法是通过机械方法来分离细胞器。
这一方法是通过利用活细胞受电外力作用下的离心力,使细胞膜上的细胞器被分离出来。
这种方法的优点是简单易行,它可以很容易地将细胞器从在细胞膜上结合的蛋白质中分离出来,而且可以用于大规模样品分离。
另一种是通过化学方法来分离细胞器。
该方法主要利用脂质膜的特性,在细胞膜上使用不同溶剂和盐浓度,以改变脂质膜的敏感性,使细胞膜上的细胞器被分离出来。
它可以很好地保留细胞器内部的结构和功能,并且可以被用于少量样品的分离。
第三种是通过生物物质化学法来分离细胞器,也称为受体物理化学法。
这种方法是通过在活细胞表面设置受体和抗原,使细胞器能够与受体结合来实现分离。
该方法可以有效地区分不同细胞器,并且可以用于标记实验中的独特情况。
最后,介绍一种通过生物分子技术来分离细胞器的方法。
该方法是通过利用蛋白质的表达水平特异性,对有特定基因的细胞器来进行特异性的分离。
这种方法具有高灵敏度、高选择性和快速的特点,便于细胞器的结构和功能的研究。
总的来说,上述分离细胞器的方法均具有一定的优势,能够很好地满足研究者研究细胞结构和功能的需求。
未来,人们可能会针对不同类型细胞器,进一步研发更精细、更高效的分离细胞器技术,以更好地探索细胞的结构和功能。
实验3植物叶片活细胞和叶绿体的分离提取及观察

五、实验方法和步骤
1.取材:取新鲜的嫩菠菜叶,洗净擦干后,除 取材:取新鲜的嫩菠菜叶,洗净擦干后, 叶梗及粗脉,剪成0.5x0.5cm小块。 0.5x0.5cm小块 叶梗及粗脉,剪成0.5x0.5cm小块。 匀浆:将称取60g 60g叶片小块放入组织捣碎机套 2.匀浆:将称取60g叶片小块放入组织捣碎机套 筒内,加入200ml SNT溶液 匀浆20 溶液, 20秒 筒内,加入200ml SNT溶液,匀浆20秒(最高 速度)制成匀浆液。 速度)制成匀浆液。 过滤:将匀浆液经四层纱布过滤, 400目尼 3.过滤:将匀浆液经四层纱布过滤,或400目尼 龙网过滤,滤液分装离心管,平衡。 龙网过滤,滤液分装离心管,平衡。
三、实验用具和试剂
1/3000中性红染液 中性红染液: ③ 1/3000中性红染液: 称取0.5中性红溶于50ml Ringer溶液 0.5中性红溶于 溶液, 称取0.5中性红溶于50ml Ringer溶液, 稍加热(30~400C)使之很快溶解, 稍加热(30~400C)使之很快溶解,用滤纸过 装入棕色瓶于暗处保存,否则易氧化沉淀, 滤,装入棕色瓶于暗处保存,否则易氧化沉淀, 失去染色能力。 失去染色能力。 临用前,取已配制的1%中性红溶液1ml 1%中性红溶液1ml, 临用前,取已配制的1%中性红溶液1ml, 加入29ml Ringer溶液混匀 装入棕色瓶备用。 溶液混匀, 加入29ml Ringer溶液混匀,装入棕色瓶备用。 ④ 香柏油 材料: 3.材料:新鲜菠菜
叶肉细胞
细胞核
活细胞及细胞核
叶绿体
绘图参考
提示: 提示:下次实验为 实验五 细胞膜的通透性 实验六 细胞凝集反应
六、实验结果
1.在普通光学显微镜下,在悬浮液1滴片中可以看到含细胞核 在普通光学显微镜下,在悬浮液1 和大量叶绿体的叶肉细胞 叶肉细胞( 和大量叶绿体的叶肉细胞(形态为球形或椭圆形的原生质 体)。 在普通光学显微镜下,在悬浮液2滴片中可以看到细胞核 2.在普通光学显微镜下,在悬浮液2滴片中可以看到细胞核 形态为球形)。 (形态为球形)。 在普通光学下,在悬浮液1 滴片中性红染色可以鉴别活细 3.在普通光学下,在悬浮液1、2滴片中性红染色可以鉴别活细 胞及细胞核(中性红是液泡系特殊的活体染色剂, 胞及细胞核(中性红是液泡系特殊的活体染色剂,在细胞处 于生活状态时,中性红只将液泡染成红色, 于生活状态时,中性红只将液泡染成红色,而细胞质及细胞 核不着色。如果细胞死亡,红色会弥散在整个细胞中)。 核不着色。如果细胞死亡,红色会弥散在整个细胞中)。 在普通光学显微镜下,在悬浮液3滴片中可以看到叶绿体 4.在普通光学显微镜下,在悬浮液3滴片中可以看到叶绿体 叶绿体为绿色椭圆形, (叶绿体为绿色椭圆形,在高倍镜下可以看到叶绿体内部含 有较深的绿色小颗粒,即基粒)。 有较深的绿色小颗粒,即基粒)。
细胞器的分离方法

细胞器的分离方法
细胞器的分离主要分为物理法和化学法两类。
1、物理法:该方法主要是通过改变细胞内外环境的渗透压,使细胞器发生变形或破裂,使细胞器和细胞质分离。
其中普遍采用的有浓缩法、磁选法、离心法和拆离弹簧杆法等。
2、化学法:利用人工合成的表面活性剂,改变细胞表面电荷,使细胞器和细胞质分离。
其中普遍采用的有抑制剂法、蛋白质酶共沉淀法、离子交换法、反相色谱法、聚丙烯酰胺树脂快速层析法等。
总的来说,细胞器的分离依赖于细胞内外环境的变化,从而起到分离细胞器和细胞质的作用。
只要根据不同的细胞类型和要求,正确选择适当的分离方法,就可以获得足够纯度的细胞器样品。
实验四、细胞器分离、制备与观察

h
10
2.差速离心:
将0.34 mol/L蔗糖溶液4.5mL放入离 心管,然后沿管壁小心地加入4.5mL鼠肝 匀浆覆盖于上层。用冷冻控温的高速离 心按下图顺序进行差速离心。
h
11
分离细胞核:
鼠肝匀浆700×g离心10 min
沉淀(细胞核及质膜碎片)
上清液(1)
洗涤(0.25 mol/L预冷蔗糖溶液5 mL洗涤2次, 每次1000×g离心15 min。
沉淀(细胞核及质膜碎片) 清(1)合并
h
上清液(2)→与上
12
分离线粒体:
混合上清液10000×g离心10 min
沉淀(线粒体)
上清液(弃去)
洗涤
加预冷的0.25 mol/L蔗糖溶液10 mL,10000×g 离心10 min
沉淀(纯化的线粒体)
上清液(弃去)
h
13
3.活性鉴定:
(1) 细胞核:取核沉淀1滴涂于载玻片,加入 Carnoy固定液15 min,晾干。Giemsa染液染 10 min,蒸馏水漂洗数秒,用滤纸吸干水、用 显微镜(40×)检查,细胞核呈紫红色,混杂的胞 质为浅蓝色碎片。
h
4
詹纳斯绿B是一种活体染料,能对动、植物的 细胞或组织在活体状态下进行无毒害的染色。 由于染料(碱性染料)的胶粒表面带有阳离子, 酸性染料的胶粒表面带阴离子,而被染部分本 身具有阴离子或阳离子,这样,它们彼此之间 发生吸引作用,染料就被堆集下来。染色法可 以显示出活细胞内的某种天然结构存在的真实 性,而不影响细胞的生命活动和产生任何物理、 化学变化以至引起细胞的死亡。
8.观察叶绿体的形态结构、测量5~10个叶绿体 的长轴和短轴、叶绿体发射荧光的现象。
h
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.14沉淀用1ml0.25mol/L蔗糖溶液洗涤离心2次,每次1000g(3900r/min)离心10min;
4.15纯化:将沉淀用500μL0.34mol/L蔗糖溶液悬浮,然后用注射器加入0.88mol/L蔗糖溶液400μL,1500g(4800r/min)离心15—20min;
4.16用PBS溶液悬浮——干燥——95%乙醇固定(5min)——甲基绿-派洛宁染色20-30min——丙酮分离30S——蒸馏水漂洗——吸干镜检;
2.实验原理、试验流程或装置示意图
2.1新鲜取出的小鼠肝脏为组织块,为了得到细胞核和线粒体,首先需要进行匀浆,将细胞从组织块中分离出来,然后再经过进一步匀浆,使细胞膜破碎,细胞解体,各种细胞器被分离出来;同时,0.25mol/L蔗糖溶液,使肝脏细胞在匀浆的过程中处于低渗条件下,使得细胞更容易破碎,匀浆彻底;
4.实验方法步骤及注意事项
4.1实验方法步骤:
4.11称取0.5g小鼠肝脏置于小烧杯中,用解剖剪将其剪碎,然后用生理盐水清洗数次,最后用0.25mol/L的蔗糖溶液清洗一次;
4.12将清洗好的小鼠肝脏置于玻璃匀浆器中加入1.5ml0.25mol/L的蔗糖溶液即可进行细胞匀浆,待其充分匀浆后备用;
4.13取1.5ml匀浆置离心管中,600g(3000r/min)离心10min,上清液留作线粒体分离;
一、实验方案设计
实验序号
4
实验名称
细胞器的分离与观察
实验时间
2010年12月17日
实验室
生科院综合生物实验室2
1.实验目的
1.1了解细胞器分离的原理;
1.2掌握差数离心、密度梯度离心的技术原理和离心方法;
1.3掌握细胞核、线粒体等细胞器的染色方法;
1.4了解甲基绿-派洛宁、中性红-詹姆斯绿的染色原理和着色现象。
3.实验材料及设备
3.1实验工具设备:高速冷冻离心机、显微镜、玻璃匀浆器、解剖剪、天平、滴管、移液枪、移液管、洗耳球、镊子、离心管、小烧杯、载玻片、盖玻片、试管、吸水纸、注射器、牙签等;
3.2实验材料试剂:新鲜小鼠肝脏、生理盐水、0.25mol/L蔗糖溶液、0.34mol/L蔗糖溶液、0.88mol/L蔗糖溶液、PBS溶液、95%乙醇、丙酮、甲基绿—派洛宁、中性红—詹纳斯绿、蒸馏水、冰块。
2.22差速离心(differential centrifugation)
差速离心主要是采取逐渐提高离心速度的方法分离不同大小的细胞器。起始的离心速度较低,让较大的颗粒沉降到管底,小的颗粒仍然悬浮在上清液中。收集沉淀,改用较高的离心速度离心悬浮液,将较小的颗粒沉降,以此类推,达到分离不同大小颗粒的目的。
4.2注意事项:
4.21整个实验的操作都要在较低的温度下进行,一般需要在4度以下,以保证经过匀浆之后,细胞器能够在低活性状态下,保持比较完整的形状,所以实验的操作过程中都需要采取冰浴或者通过其他方式保持低温条件;
4.22使用离心机时应注意离心管内液体的配平;离心开始前或者离心完成后,不能保持离心机盖长时间开放,以免使离心机温度升高,影响离心效果;
[2]崔泳王金生张文海周勇.冷保存鼠肝脏细胞线粒体的分离[J].中国医科大学学报.2000年8月.第29卷第4期.
二、实验报告
1.实验现象及结果分析
1.1细胞核的观察
1.11现象:在显微镜下,可看到富集分离的细胞核,细胞核呈圆球形,核中央可见到两个或多个被染成红色的核仁,外围的物质被染成蓝绿色,但仔细观察,发现细胞核中蓝绿色的着色部分中混有红色
2.实验总结
在本次实验中,我学习到了细胞器分离与观察的基本方法、差速离心与密度梯度离心的基本原理、甲基绿-派洛宁和中性红-詹姆斯绿的染色机理和方法,对于以后的学习和实验都是很有帮助的;
从实验的结果上看,没有观察到着色的线粒体,究其原因,可参考文章《冷保存鼠肝脏细胞线粒体的分离》(崔泳王金生张文海周勇·2000年)中得到的实验结果:4℃下保存1 h见线粒体肿胀,但大部分结构基本完整,轮廓和内膜嵴尚清楚。2 h时见线粒体肿胀部分结构完整,轮廓尚清晰,内膜嵴不清晰,可见空泡形成。3 h时见线粒体肿胀结构不完整,轮廓大清晰,内膜嵴断裂甚至消失,可见大量空泡形成。4 h时见线粒体结构基本消失,仅见线粒体轮廓……鼠肝冷保存超过4 h,由于肝细胞线粒体破坏重,仅见轮廓,尤其在需要测定生化指标时本法不适用。为提高分离线粒体获取率。如果冷保存液改用UW液则可获得保存时间更长的肝细胞线粒体。我们认为:在0~4℃生理盐水保存下,本法可以有效地分离保存3 h以内的大鼠肝细胞线粒体。
4.23在对细胞核进行染色时,需要控制好甲基绿-派洛宁染色的时间,也要把握好用丙酮洗脱的时间,才能保证细胞核中的DNA能够显示甲基绿的染色效果。
4.24在进行线粒体的分离观察时,需要保证所取的动物组织是新鲜的,才能观察到明显的线粒体的形态。
5.参考文献
[1]翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2007.
4.17步骤3的上清液置离心管,10000g(12270r/min)离心10min,沉淀用预冷0.25mol/L蔗糖溶液悬浮,然后10000g(12270r/min)离心10min两次;
4.18在载玻片上滴加1-2滴中性红—詹纳斯绿,然后用牙签挑取沉淀均匀涂抹于玻片上,盖上盖玻片,染色5min即指示剂,变色范围pH6.4~8.0之间(由红变黄)。在中性或微碱性环境中,中性红的阳离子,与带有一定负电荷的原生质及细胞核结合,而使原生质与细胞核染色。詹纳斯绿,常用作线粒体专一性活体染色剂。线粒体中细胞色素氧化酶使染料保持氧化状态(即有色状态)呈蓝绿色,而在周围的细胞质中染料被还原,成为无色状态.
2.2细胞中,各种细胞器的结构、大小、比重及在同一介质中的沉降系数都是不同的。因此,细胞器的分离,通常使用的方法是最匀浆液进行离心,根据细胞器不同的大小、比重及沉降系数,选择合适的离心方法组合,就可以将不同的细胞器进行分离,得到富集的某种细胞器。常用的细胞器离心分离技术有差速离心和密度梯度离心:
2.21密度梯度离心(density gradient centrifugation)
在实验中,我们使用的介质为蔗糖,称为蔗糖密度梯度离心法。原理是:采用不同浓度的蔗糖溶液,预先在分离超离心机的样品地内制备出密度梯度,在其上面再加上一层少量的大分子溶液后,离心,大分子就形成层状而沉降。若含有沉降系数不同的许多成分,就会出现许多层。这种情况采用适当的编排号码,取出样品池内的溶液,然后进行研究。
2.23离心力和转速的换算公式
RCF = 1.118×10-5×N2×R
RCF表示相对离心力,单位为g
N表示转速,单位为rpm转/分
R表示离心半径,单位为cm
2.3染色方法
2.31甲基绿-派洛宁染色
甲基绿、派洛宁为两种碱性染料,与带负电和的磷酸根形成盐键。甲基绿分子有两个正电荷,易与双链DNA分子结合,使DNA显示绿色,派洛宁分子有一个正电荷,易与单链RNA分子结合,使RNA显示红色。也有人认为染色原理与核酸分子的空间构型有关。细胞核中,核仁的主要成分是RNA,而核仁外围为DNA与RNA的混合物,在细胞的不同活性状态下,外围的DNA和RNA的比例是不一样的,因此着色后的混合色也不一样,但一般情况下DNA的含量占优势,因此染色后,细胞核可以清晰地区分出被染成红色的核仁和显示混合蓝绿色的外围物质。
教师评语及评分:
签名:
日期:
1.12结果分析:核仁中的主要成分是RNA,被派洛宁染成红色,外围物质中主要是DNA,被甲基绿染成蓝绿色,但是外围物质中同样分布有一定量的RNA,因此可看到蓝绿色中混有的红色。
1.2线粒体的观察
1.21现象:在显微镜下,可以看到呈淡黄色,透亮的块状物质,但是不能找到被染成蓝绿色的线粒体
1.22结果分析:显微镜下看到的淡黄色物质,是细胞破碎之后剩下的细胞膜脂质成分,不能被中性红染色,故呈黄色透亮状态;由于小鼠肝脏经过长期冷冻,线粒体可以已经解体或被消化,所以在实验中很难找到线粒体的染色形态