频数直方图的用法

合集下载

频数直方图公开课用.pptx

频数直方图公开课用.pptx
(4) 列出频数表;
(5)画出频数直方图(横轴表示各组数据,纵轴表示频数,该组内的频数为高,画出一个个矩形 )
第8页/共14页
例 抽查20名学生每分脉搏跳动次数,获得如下数据(单位:次):81,73,77,79,80,78,85,80,68,90,80,89,82,81,84,72,83,77,79,75.请制作表示上述数据的频数分布直方图.
大部分同学处于哪个分数段?成绩的整体分布情况怎样?
第2页/共14页
列频数表的一般步骤:
某班一次数学测验成绩如下: 63,84,91,50,69,81,61,69,91,78,75,81,80,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77.
解 (1)列出频数表.
组别(次)
组中值(次)
频 数
67.5~72.5
70
2
72.5~77.5
75
4
77.5~82.5
80
9
82.5~87.5
85
3
87.5~92.5
90
2
第9页/共14页
组别(次)
组中值(次)
频 数
67.5~72.5
70
2
72.5~77.5
75
4
77.5~82.5
80
9
82.5~87.5
95
50
组别
划记
唱票
从图中可以清楚地看出79.5分到89.5分这个分数段的学生数最多,90分以上的同学较少,不及格的学生数最少.
第3页/共14页
(5)绘制频数直方图. 横轴表示各组数据,纵轴表示频数, 63,84,91,50,69,81,61,69,91,78,75,81,80,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77.

频数直方图 知识讲解

频数直方图 知识讲解

频数直方图——知识讲解【学习目标】1. 理解组距、频数、频率、频数统计表的概念;2. 会制作频数统计表,理解频数统计表的意义和作用;3. 体会样本和总体的关系,会用样本的频数分布估计总体的频数分布;4. 掌握画频数直方图的一般步骤,会画频数直方图,理解频数分布直方图的意义和作用. 【要点梳理】要点一、组距、频数、频率与频数统计表1.组距:将数据按从小到大适当地分组,并绘制成统计表,其中每一组的后一个边界值与前一个边界值的差叫做组距.2. 频数:数据分组后落在各小组内的数据个数称为频数.3. 频率:每一组数据频数与数据总数的比叫做这一组数据的频率.4.频数统计表:把各个组别中相应的频数分布用表格的形式表示出来,这种反映数据分布情况的统计表叫做频数统计表,也称频数表.列频数统计表的一般步骤如下:1.选取组距,确定组数.组数通常取大于最大值-最小值组距的最小整数. 当数据在100个以内时,通常可按照数据的多少分成5~12组.2.确定各组的边界值.第一组的起始边界值通常取得比最小数据要小一些.为了使数据不落在边界上,边界值可以比实际数据多取一位小数.取定起始边界值后,就可以根据组距写出各组的边界值.3.列表,填写组别和统计各组频数.要点诠释:(1)各组频数总和等于样本容量,各组数据的频率之和等于1;(2)频数统计表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.要点二、频数直方图1.频数直方图由若干个宽等于组距,面积表示每一组频数的长方形组成的统计图,叫做频数直方图.简称直方图.它直观地呈现了频数的分布特征和变化规律.2.频数直方图的画法(1)列出频数表;(2)画具有相同原点,横、纵两条互相垂直的数轴,分别表示各组别和相应的频数.然后分别以横轴上每一组的两边界点为端点的线段为底边,作高为相应频数的长方形,就得到所求的频数直方图.3. 频数直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.要点诠释:(1)频数直方图是条形统计图的一种;(2)注意直方图与条形图、扇形图、折线图在表示数据方面的优缺点.【典型例题】类型一、组距、组数、频数、频率1. (1)对某班50名学生的数学成绩进行统计,90~99分的人数有10名,这一分数段的频数为_________.(2)有60个数据,其中最小值为140,最大值为186,若取组距为5,则应该分的组数是________.【答案】(1)10; (2)10.【解析】解:(1)利用频数的定义进行解答;(2)利用组数的计算方法求解.【总结升华】组数的确定方法:设数据总数目为n,一般地,当n≤50时,则分为5~8组;的整数部分+1.当50≤n<100.则分为8~12组较为合适,组数等于最大值-最小值组距举一反三:【变式】一个样本中有80个数据,最大值是141,最小值是50,取组距为10,则样本可分成()A.10组 B.9组 C.8组 D.7组【答案】A.2. 我校八年级学生在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,则这50个数据在37~40之间的个数是()A.1 B.2 C.10 D.5【思路点拨】根据频率、频数的关系:频率=频数÷数据总和,可得频数=频率×数据总和.【答案】C.【解析】解:∵在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,∴这50个数据在37~40之间的个数=50×0.2=10.故选C.【总结升华】本题考查频率、频数、总数的关系:频率=频数÷数据总和.举一反三:【变式】(黄浦区三模)将样本容量为100的样本编制成组号①~⑧的八个组,简况如表所示:组号①②③④⑤⑥⑦⑧频数14 11 12 13 13 12 10那么第⑤组的频率为()A.14 B.15 C.0.14 D.0.15【答案】D.解:根据表格中的数据,得第⑤组的频数为100﹣(14+11+12+13+13+12+10)=15,其频率为15:100=0.15.类型二、频数统计表3.某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数统计表:类别频数(人数)频率文学m 0.42艺术22 0.11科普66 n其它28合计 1(1)表中m=______,n=______;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普类读物的学生有多少人?【思路点拨】(1)由频率统计表可看出艺术类的频数22,频率是0.11,由频率=频数÷数据总数计算,可得到总数;根据频数的总和为200,可求出m的值;(2)频数统计表中可以直接看出答案;(3)用样本估计整体:用整体×样本的百分比即可.【答案与解析】解:(1)学生总数:22÷0.11=200,m=200-22-66-28=84,n=66÷200=0.33,(2)从频数统计表中可以看出:最喜爱阅读文学类读物的学生最多84人,最喜爱阅读艺术类读物的学生最少22人.(3)1200×0.33=396(人).【总结升华】此题主要考查了读频数统计表的能力,利用图表得出正确的信息是解决问题的关键.类型三、频数直方图4.某地区对八年级的英语教学情况进行期末质量调查,从中抽出的20个班级的英语期末平均成绩如下(单位:分):80 81 83 79 64 76 80 66 70 7271 68 69 78 67 80 68 72 70 65试列出频数统计表并绘出频数直方图.【思路点拨】按照画频数直方图的步骤进行解答.解答时,应注意每个步骤中需要注意的事项.【答案与解析】解:(1)计算最大值与最小值的差.83-64=19.(2)决定组距与组数.若取组距为4,则有194≈5,所以组数为5.(3)列频数统计表.(4)画频数直方图.【总结升华】按步骤进行操作.因选取的组距不同,所列的频数统计表及所画的频数直方图也不一样.在统计时,数据不能出现重复或遗漏的现象.【高清课堂:数据的描述369923 例1】举一反三:【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图.已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%【答案】B.5. (安徽模拟)我校为了迎接体育中考,了解学生的体育成绩,从全校500名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:成绩段频数频率160≤x<170 5 0.1170≤x<180 10 a180≤x<190 b 0.14190≤x<200 16 c200≤x<210 12 0.24表(1)根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表(1)中,a=,b=c=;(2)补全图(2),所抽取学生成绩中中位数在哪个分数段;(3)“跳绳”数在180以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?【思路点拨】(1)根据第一组的频数是5,对应的频率是0.1据此即可求得总人数;(2)根据中位数的定义即可求解;(3)利用总人数500乘以对应的比例即可求解.【答案与解析】解:(1)抽测的人数是:5÷0.1=50(人),a==0.2,b=50×0.14=7,c==0.32.故答案是:50,0.2,7,0.32.(2)所抽取学生成绩中中位数在190~200分数段;(3)全校九年级有多少学生在此项成绩中获满分的人数是×500=350(人).答:全校九年级有多少学生在此项成绩中获满分的人数是350人.【总结升华】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.举一反三:【变式】随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):(1)请你把表中的数据填写完整;(2)补全频数直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?【答案】解:(1)36÷200=0.18,200×0.39=78,200-10-36-78-20=56,56÷200=0.28;(2)如图所示:(3)违章车辆数:56+20=76(辆).答:违章车辆有76辆.【巩固练习】一、选择题1.为了绘出一批数据的频数直方图,首先计算出这批数据的变动范围是指数据的( ).A.最大值 B.最小值 C.最大值与最小值的差 D.个数2.(太和县校级月考)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在16≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.23.已知一组数据有80个,其中最大值为140,最小值为40,取组距为10,则可分成( ).A.10组 B.9组 C.8组 D.7组4.某班50名学生期末考试数学成绩的频数直方图如图所示,对图中提供的信息做出如下判断:①成绩在50~60分段的人数与90~100分段的人数相等;②从左到右数,第4小组的频率是0.03;③成绩在80分以上的学生有20人;④及格率为90%.其中正确的判断有( ).A.4个 B.3个 C.2个 D.1个5.在样本频数直方图中,有11个小长方形.若中间的小长方形的面积等于其他10个小长方形面积之和的14,且样本容量为160个,则中间的一组的频数为( ).A.0.2 B.32 C.0.25 D.406. 某学校随机抽取了同龄的60名学生,对其身高进行测量,测量数据(均为整数)进行整理后绘成频率分布直方图(如下图),图中自左向右各小组数据的频率依次为:0.017,0.050,0.100,0.133,0.300,0.183,0.167,0.050.则身高在157.5以上的学生有()A.18人 B.24人 C.39人 D.42人7.有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是( ). A.4 B.5 C.6 D.78.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数直方图,则参加绘画兴趣小组的频率是( ).A.0.1 B.0.15 C.0.25 D.0.3二、填空题9.已知样本容量是40,在样本的频数直方图中各小矩形的高之比依次为3:2:4:1,则第二小组的频数为________,第四小组的频数为________.10.一个样本有20个数据:35,31,33,35.37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数统计表时,如果组距为2,那么应分成________组,36在第________组中.11.为了解各年龄段观众对某电视节目的收视率,小明调查了部分观众的收视情况,并分成A,B,C,D,E,F六组进行调查,其频率分布直方图如图所示,各长方形上方的数据表示该组的频率,若E组的频数为48,那么被调查的观众总人数为__________.12.某单位职工的年龄(取正整数)的频数直方图如图所示,根据图中提供的信息,进行填空.(1)该单位职工共有________人;(2)不小于38岁但小于44岁的职工人数占职工总人数的百分率是________.13. (杨浦区二模)某校为了解本校学生每周阅读课外书籍的时间,对本校全体学生进行了调查,并绘制如图所示的频率分布直方图(不完整),则图中m的值是.14.某校为了了解某个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,列出表格:分组50~59分60~69分70~79分80~89分90~99分频率0.04 0.04 0.16 0.34 0.42(1)本次测试90分以上的人数有________人;(包括90分)(2)本次测试这50名学生成绩的及格率是________;(60分以上为及格,包括60分)(3)这个年级此学科的学习情况如何?请在下列三个选项中,选一个填在题后的横线上________.A.好 B.一般 C.不好三、解答题15.为了了解中学生的体能状况,某校抽取了50名学生进行1分钟跳绳测试,将所得数据整理后,分成5组绘成了频数直方图,如图(图中数据含最低值不含最高值).其中前4个小组的频率依次为0.04,0.12,0.4,0.28.(1)第4组的频数是多少?(2)第5组的频率是多少?(3)哪一组的频数最大?(4)请补全频数直方图.16.(建湖县校级月考)八(1)班同学为了解2015年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,月均用水量x(t)频数(户)频率0<x≤5 6 0.125<x≤10 m 0.2410<x≤15 16 0.3215<x≤20 10 0.2020<x≤25 4 n60≤x<70 2 0.04请解答以下问题:(1)填空:m=,n=,并把频数分布直方图补充完整;(2)若该小区有1000户家庭,求该小区月均用水量超过10t的家庭大约有多少户?17.今年起,兰州市将体育考试正式成为中考考查科目之一,其等级作为考生录取的重要依据之一.某中学为了了解学生体育活动情况,随即调查了720名初二学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数直方图.根据下图所示,解答下列问题:(1)“没时间”锻炼的人数是多少?并补全频数直方图;(2)2011年兰州市市区的初二学生约为2.4万人,按此调查,可以估计2011年兰州市区初二学生中每天锻炼未超过1小时的学生约有多少万人?(3)请根据以上结论谈谈你的看法.【答案与解析】一、选择题1. 【答案】C;【解析】频数直方图是按照数据从小到大的顺序排列,包括所有的数据,即数据的变化范围是指数据的最大值和最小值的差.2. 【答案】B;3. 【答案】A;【解析】根据组数=(最大值-最小值)÷组距进行计算,注意小数部分要进位.4. 【答案】B;【解析】正确的是①③④.5. 【答案】B;【解析】根据在频数直方图中,某一组相应的小长方形的面积与直方图中所有小矩形面积的比值即这小组的频率,求得中间一个长方形对应的频率后,再由频数、频率、总数的关系求解.6. 【答案】D;【解析】解:根据题意身高157.5以上的频率为:1-(0.017+0.050+0.100+0.133)=0.7,因抽取了60名学生,则身高在157.5以上的学生有:60×0.7=42;故答案为D.7. 【答案】B;【解析】351554-=.8. 【答案】D;【解析】根据频率=频数数据总数计算.二、填空题9.【答案】8,4;【解析】频数直方图中,各个长方形的高之比依次为3:2:4:1,则指各组频数之比为3:2:4:1,据此即可求出第二小组的频数第四小组的频数.10.【答案】5;3.11.【答案】200;【解析】解:∵E组的频率为:1-0.04-0.08-0.16-0.36-0.12=0.24,又∵E组的频数为48,∴被调查的观众总人数为:48÷0.24=200.故答案为200.12.【答案】 (1)50 (2)58%;【解析】正确读图是解题的关键.13.【答案】0.05.【解析】由题意可得组距为2,则8﹣10小时对应的频率为:0.075×2=0.15,所以0﹣2小时对应的频率为:1﹣0.2﹣0.3﹣0.25﹣0.15=0.1,所以010052.m.==.14.【答案】(1)21 ;(2)96%;(3)A.【解析】(1)0.42×50=21.(2)1-0.04-0.96=96%.(3)理由是优秀率和及格率都很高.三、解答题15.【解析】解:(1)第4组的频数是0.28×50=14.(2)第5组频率为1-0.04-0.12-0.4-0.28=0.16.(3)170~180这一组频数最大.(4)补全如图:16.【解析】解:(1)6÷0.12=50,所以m=50×0.24=12,n==0.08,如图,故答案为12,0.08;(2)1000×(0.32+0.2+0.04+0.08)=640(户),答:该小区月均用水量超过10t的家庭大约有640户.17. 【解析】解:(1)3720120204004⨯--=;(2)32.4 1.84⨯=(万人);所以估计2011年兰州市区初二学生中每天锻炼未超过1小时的学生约有1.8万人.(3)要重视体育锻炼;要抽时间参加体育锻炼等等.(符合题意即可).。

数学知识点总结之频数分布直方图

数学知识点总结之频数分布直方图

数学知识点总结之频数分布直方图数学知识点总结之频数分布直方图在学习中,是不是听到知识点,就立刻清醒了?知识点在教育实践中,是指对某一个知识的泛称。

还在为没有系统的知识点而发愁吗?下面是小编为大家整理的数学知识点总结之频数分布直方图,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学知识点总结之频数分布直方图11.频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。

2.频数分布表:运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。

画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来。

3.频数分布直方图:(1)当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

(2)绘制的频数分布直方图的一般步骤:①计算最大值与最小值的差(极差),确定统计量的范围;②决定组数和组距,数据越多,分的组数也应当越多;③确定分点;④列频数分布表;⑤画频数分布直方图。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。

统计学中的频率分布和直方图

统计学中的频率分布和直方图

统计学中的频率分布和直方图统计学是一门研究数据收集、分析和解释的学科。

频率分布和直方图是统计学中常用的工具,用于展示变量的分布情况。

本文将介绍频率分布和直方图的概念、用途以及如何创建它们。

一、频率分布频率分布是指将数据按照数值大小划分为若干个区间,并统计每个区间内数据出现的次数或频数。

频率分布可以展示数据的分布情况和密度,帮助我们了解数据的特征和规律。

创建频率分布的步骤:1. 确定数据的范围和区间大小:根据数据的取值范围和数量,选择合适的区间大小,一般要求每个区间的范围相等。

2. 划分区间:将数据按照区间的范围进行划分,并计算每个区间的频数。

3. 绘制频率分布表:按照区间和频数的顺序,列出每个区间和对应的频数。

4. 绘制频率分布图:根据频率分布表绘制柱状图或折线图,以展示数据的分布情况。

二、直方图直方图是一种用矩形条表示数据频率的图表。

它将数据按照区间划分,以矩形高度表示频率或频数,矩形的宽度表示区间的范围。

直方图可以直观地显示数据的频数分布,帮助我们分析数据的集中趋势、偏态和离散程度。

创建直方图的步骤:1. 确定数据的范围和区间大小:与频率分布相同,根据数据的取值范围和数量选择合适的区间大小。

2. 划分区间:将数据按照区间的范围进行划分,并计算每个区间的频数。

3. 绘制直方图:以区间为横轴,频数为纵轴,绘制矩形条来表示数据的频数。

4. 添加标签和标题:为直方图添加横轴和纵轴的标签,以及图表的标题,使图表更具可读性。

频率分布和直方图的应用:1. 数据分析和解释:通过频率分布和直方图,我们可以看出数据的集中趋势、分散情况和偏态。

这有助于我们对数据进行更深入的分析和解释。

2. 数据比较:通过比较不同数据的频率分布和直方图,我们可以看出它们之间的差异和相似性,进而进行数据的比较和对比。

3. 预测和决策:统计学中的频率分布和直方图可以帮助我们理解问题背后的规律和趋势,从而为预测和决策提供依据。

总结:统计学中的频率分布和直方图是展示数据分布情况和密度的重要工具。

频率分布直方图

频率分布直方图

频率分布直方图频率分布直方图是一种常用的统计图表,用于展示数据的分布情况。

它通过将数据分成若干个等距的区间,然后统计每个区间内的数据个数,并将统计结果以柱形图的形式呈现,从而直观地反映数据的分布。

本文将详细介绍频率分布直方图的概念、构建方法、应用场景以及注意事项。

一、频率分布直方图的概念频率分布直方图是一种数据可视化工具,用于展示数据的分布情况。

它将数据划分成若干个等距的区间,然后统计每个区间内的数据个数,最后以柱形图的形式呈现。

每个区间的宽度通常相等,但高度则表示该区间内数据的频数。

频率分布直方图可以帮助人们更好地理解数据的特征,比如中心位置、离散程度和偏态与峰态等。

二、频率分布直方图的构建方法构建频率分布直方图的步骤主要包括:确定划分区间、统计频数、绘制柱形图。

1. 确定划分区间在构建直方图之前,需要确定划分区间的个数和宽度。

划分区间的个数通常由数据的样本量和取值范围决定。

如果样本量较大,可以选择更多的区间,以便更准确地反映数据的细节;反之,如果样本量较小,可以选择较少的区间。

划分区间的宽度应该尽可能相等,以避免误导读者。

常用的划分区间方法有等距划分和等频划分。

等距划分是将整个取值范围等分成若干个区间,如每个区间的宽度为5;等频划分是根据数据的频数将取值范围划分为若干个区间,使每个区间内的频数相等。

2. 统计频数统计频数是指计算每个区间内数据的个数。

可以使用计数器或者计算机软件进行统计。

对于连续数据,需要考虑边界问题,即数据应该分到哪个区间中。

3. 绘制柱形图绘制柱形图是最后一步,通过将每个区间的频数表示为柱形的高度来反映数据的分布情况。

柱形图的横轴表示区间,纵轴表示频数。

每个区间的柱形应该相邻且不重叠。

为了增加可读性,可以在柱形上方标注频数的值。

三、频率分布直方图的应用场景频率分布直方图广泛应用于各个领域,可以帮助人们更好地理解数据的分布情况。

1. 经济学在经济学中,频率分布直方图可以用来展示收入、消费等经济指标的分布情况。

频率分布直方图知识点

频率分布直方图知识点

频率分布直方图知识点1. 介绍频率分布直方图是一种用于可视化定量数据分布的图表。

它将数据分割成若干等宽的区间,并显示每个区间的频率或频数。

通过直方图,我们可以直观地了解数据的分布情况,识别异常值和趋势,并得出有关数据集的一些基本统计特征。

2. 绘制频率分布直方图的步骤绘制频率分布直方图的步骤如下:步骤1:确定区间首先,我们需要确定数据的区间个数。

可以根据数据的范围和数据量来选择适当的区间个数。

一般情况下,建议选择5-20个区间。

步骤2:计算区间宽度根据数据的范围和区间个数,计算每个区间的宽度。

宽度可以通过公式(数据范围 / 区间个数)来计算得出。

步骤3:确定每个区间的频数或频率遍历数据集,将每个数据分到对应的区间中。

可以使用逻辑判断或数学公式来确定数据所属的区间。

步骤4:绘制直方图使用柱状图(bar chart)来绘制直方图,其中横轴表示区间,纵轴表示频数或频率。

每个区间对应一个柱状条,柱状条的高度表示该区间的频数或频率。

步骤5:添加标题和标签为直方图添加标题和标签,使得图表更加清晰和易懂。

标题通常描述了数据集的主要特征,标签可以包括横轴和纵轴的名称。

3. 直方图的解读与应用频率分布直方图提供了一种方法来理解数据的分布情况。

通过观察直方图,可以得出以下信息:•数据的中心趋势:观察直方图的峰值,可以推断数据的中心趋势。

峰值较高且集中的直方图表示数据分布较为集中,而峰值较低或分散的直方图表示数据分布较为分散。

•数据的偏斜程度:直方图的偏斜程度可以通过观察分布的形状来判断。

如果数据分布向左偏斜,则直方图的左侧较高;如果数据分布向右偏斜,则直方图的右侧较高;如果数据分布接近对称,则直方图会呈现类似钟型曲线的形状。

•异常值的识别:直方图可以帮助我们识别数据集中的异常值。

异常值通常是与整体数据分布差异较大的值,在直方图中可能会显示为独立的柱状条或与其他柱状条不同高度的柱状条。

直方图的应用广泛,例如在市场调查中,可以通过绘制直方图来分析产品价格的分布;在财务分析中,可以使用直方图来观察公司营收的分布情况;在学术研究中,可以通过绘制直方图来分析样本数据的分布情况。

频数直方图

频数直方图
)确定所有数据中的最大值与最小值,并计算二者的差。 (2)确定组数、组距,并进行分组。 组距是每组数据的上限与下限的差; 组距=所有数据中的最大值与最小值的差÷组数; (3)列出相应的频数、频率分布表:利用画“正”的方法, 统计各组的频数,并计算出相应的频率,制成频数、频率分 布表。 (4)画出频数直方图:在横轴上先标出各组的上限和下限, 纵轴表示频数,分别以组距为宽,以各组的频数为高,在横 轴之上分别作出连续的矩形条,便绘制出了频数直方图。
神龙教育
制作
同行 配套课件
《同行》学案 教师用书课件 数学(青岛版)9年级下册
知识点1:频数直方图
(1)根据频数的分布绘制的条形统计图叫做频数 直方图。 (2)频数直方图由横轴、纵轴、条形图三部分组 成。横轴表示分组情况,纵轴表示频数,条形图 是直方图的主体部分,每一条都是立于横轴之上 的一个矩形,且该矩形的宽相等,即等于组距, 高分别等于各组的频数。
神龙教育

频数分布直方图

频数分布直方图

频数分布直方图引言频数分布直方图是一种用于可视化频数分布的图表。

频数分布是指将一组数据按照数值范围进行分类,并统计每个类别中数据出现的次数。

频数分布直方图有助于展示数据的分布情况,帮助我们了解数据的集中程度、离散程度以及可能存在的异常值。

它是统计学中最为常见的可视化工具之一,被广泛用于数据分析和数据科学的领域。

绘制频数分布直方图的步骤要绘制频数分布直方图,需要经过以下几个步骤:1.确定数据的范围,即最小值和最大值。

2.使用数据范围和每个区间的宽度来确定区间的个数。

3.将数据按照区间进行分类,并统计每个区间中数据的频数。

4.绘制直方图,横轴表示区间,纵轴表示频数。

5.对于连续变量,可以将直方图转换为频率分布直方图,将纵轴改为表示相对频数。

下面将通过一个例子来演示如何绘制频数分布直方图。

示例假设我们有一组学生成绩的数据,我们希望绘制这些成绩的频数分布直方图。

首先,我们需要确定数据的范围和区间的宽度。

假设我们的数据范围是 0 到100,我们可以选择将数据划分为 10 个等宽的区间,每个区间的宽度为 (100-0)/10 = 10。

接下来,我们将数据按照区间进行分类,并统计每个区间中数据的频数。

假设我们有以下数据:89, 78, 92, 85, 95, 76, 88, 91, 82, 87, 90, 84, 93, 80, 79, 88, 94, 81, 83, 86根据区间范围和宽度,我们可以将数据分为以下 10 个区间:[0-10), [10-20), [20-30), [30-40), [40-50), [50-60), [60-70), [70-8 0), [80-90), [90-100]统计每个区间中数据的频数,我们得到以下结果:[0-10): 0[10-20): 0[20-30): 0[30-40): 0[40-50): 0[50-60): 0[60-70): 1[70-80): 4[80-90): 8[90-100]: 7现在我们可以绘制直方图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频数直方图的用法
频数直方图是一种图表,用于展示数据集中每个变量的频率分布情况。

它通过将数据分组并将每组的频数绘制在坐标轴上,以可视化数据的分布情况。

频数直方图可以用于以下方面:
1. 描述数据:通过展示数据分布情况,可以更直观地了解数据的性质和特点。

2. 比较数据:将多个数据集的频数直方图重叠在一起,可以更容易地比较它们的分布情况,找出差异和相似之处。

3. 发现异常值:通过观察频数直方图,可以发现一些异常数据点,例如离群值或异常值。

4. 提取信息:可以使用频数直方图提取一些有用的信息,例如数据的峰度、偏度和分布形状等。

总之,频数直方图可以帮助人们更好地理解和分析数据,从而支持数据驱动的决策和行动。

相关文档
最新文档