遗传算法的C 代码实现教程
遗传算法旅行商问题c语言代码

遗传算法是一种模拟自然选择过程的优化算法,可以用于解决各种复杂的组合优化问题。
其中,旅行商问题是一个经典的组合优化问题,也是一个典型的NP难题,即寻找最优解的时间复杂度是指数级的。
在本文中,我们将讨论如何使用遗传算法来解决旅行商问题,并给出相应的C语言代码实现。
我们将介绍旅行商问题的数学模型,然后简要介绍遗传算法的原理,最后给出C语言代码实现。
旅行商问题是指一个旅行商要拜访n个城市,恰好拜访每个城市一次,并返回出发城市,要求总路程最短。
数学上可以用一个n*n的距离矩阵d[i][j]表示城市i到城市j的距离,问题可以形式化为求解一个排列p={p1,p2,...,pn},使得目标函数f(p)=Σd[p[i]][p[i+1]]+d[p[n]][p[1]]最小。
这个问题是一个组合优化问题,其搜索空间是一个n维的离散空间。
遗传算法是一种基于生物进化过程的优化算法,主要包括选择、交叉、变异等操作。
在使用遗传算法解决旅行商问题时,可以将每个排列p看作一个个体,目标函数f(p)看作个体的适应度,通过选择、交叉和变异等操作来搜索最优解。
以下是遗传算法解决旅行商问题的C语言代码实现:1. 我们需要定义城市的距离矩阵和其他相关参数,例如城市的数量n,种裙大小pop_size,交叉概率pc,变异概率pm等。
2. 我们初始化种裙,即随机生成pop_size个排列作为初始种裙。
3. 我们进入遗传算法的迭代过程。
在每一代中,我们首先计算种裙中每个个体的适应度,然后通过选择、交叉和变异操作来更新种裙。
4. 选择操作可以采用轮盘赌选择法,即根据个体的适应度来进行选择,适应度越高的个体被选中的概率越大。
5. 交叉操作可以采用部分映射交叉方法,即随机选择两个个体,然后随机选择一个交叉点,将交叉点之后的基因片段进行交换。
6. 变异操作可以采用变异率为pm的单点变异方法,即随机选择一个个体和一个位置,将该位置的基因值进行随机变异。
7. 我们重复进行迭代操作,直到达到停止条件(例如达到最大迭代次数或者适应度达到阈值)。
遗传算法C语言源代码(一元函数和二元函数)

.专业整理 .C语言遗传算法代码以下为遗传算法的源代码,计算一元代函数的代码和二元函数的代码以+++++++++++++++++++++++++++++++++++++为分割线分割开来,请自行选择适合的代码,使用时请略看完代码的注释,在需要更改的地方更改为自己需要的代码。
+++++++++++++++++++++++++++++++一元函数代码++++++++++++++++++++++++++++#include <stdio.h>#include<stdlib.h>#include<time.h>#include<math.h>#define POPSIZE 1000#define maximization 1#define minimization 2#define cmax 100#define cmin 0#define length1 20#define chromlength length1// 染色体长度//注意,你是求最大值还是求最小值.专业整理 .//变量的上下限的修改开始float min_x1=-2;//变量的下界float max_x1=-1;//变量的上界//变量的上下限的修改结束int popsize;// 种群大小int maxgeneration;// 最大世代数double pc;// 交叉率double pm;// 变异率struct individual{char chrom[chromlength+1];double value;double fitness;// 适应度};int generation;// 世代数int best_index;int worst_index;struct individual bestindividual;// 最佳个体.专业整理 . struct individual worstindividual; //最差个体struct individual currentbest;struct individual population[POPSIZE];//函数声明void generateinitialpopulation();void generatenextpopulation();void evaluatepopulation();long decodechromosome(char *,int,int);void calculateobjectvalue();void calculatefitnessvalue();void findbestandworstindividual();void performevolution();void selectoperator();void crossoveroperator();void mutationoperator();void input();void outputtextreport();void generateinitialpopulation( )// 种群初始化{int i,j;.专业整理 .for (i=0;i<popsize; i++){for( j=0;j<chromlength;j++){population[i].chrom[j]=(rand()%20<10)?'0':'1';}population[i].chrom[chromlength]='\0';}}void generatenextpopulation()// 生成下一代{selectoperator();crossoveroperator();mutationoperator();}void evaluatepopulation()// 评价个体,求最佳个体{calculateobjectvalue();calculatefitnessvalue();findbestandworstindividual();}long decodechromosome(char *string ,int point,int length) //给染色体解码{int i;long decimal=0;char*pointer;for(i=0,pointer=string+point;i<length;i++,pointer++)if(*pointer-'0'){decimal +=(long)pow(2,i);}return (decimal);}void calculateobjectvalue()// 计算函数值{int i;long temp1,temp2;double x1;for (i=0; i<popsize; i++){temp1=decodechromosome(population[i].chrom,0,length1);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;//目标函数修改开始population[i].value=(pow(x1,5)-3*x1-1)*(pow(x1,5)-3*x1-1);//目标函数修改结束}}void calculatefitnessvalue()//计算适应度{int i;double temp;for(i=0;i<popsize;i++){if(functionmode==maximization){if((population[i].value+cmin)>0.0){temp=cmin+population[i].value;}else{temp=0.0;}}else if (functionmode==minimization){if(population[i].value<cmax){temp=cmax-population[i].value;}else{ temp=0.0;}}population[i].fitness=temp;}}void findbestandworstindividual( ) //求最佳个体和最差个体{int i;double sum=0.0;bestindividual=population[0];worstindividual=population[0];.专业整理 .for (i=1;i<popsize; i++){if (population[i].fitness>bestindividual.fitness){bestindividual=population[i];best_index=i;}else if (population[i].fitness<worstindividual.fitness) {worstindividual=population[i];worst_index=i;}sum+=population[i].fitness;}if (generation==0){currentbest=bestindividual;}else{if(bestindividual.fitness>=currentbest.fitness){currentbest=bestindividual;}}}void performevolution() //演示评价结果{if (bestindividual.fitness>currentbest.fitness){ currentbest=population[best_index];}else{population[worst_index]=currentbest;}}void selectoperator() //比例选择算法{int i,index;double p,sum=0.0;double cfitness[POPSIZE];struct individual newpopulation[POPSIZE];for(i=0;i<popsize;i++){sum+=population[i].fitness;}for(i=0;i<popsize; i++){cfitness[i]=population[i].fitness/sum;}for(i=1;i<popsize; i++){cfitness[i]=cfitness[i-1]+cfitness[i];}for (i=0;i<popsize;i++){p=rand()%1000/1000.0;index=0;while (p>cfitness[index]){index++;}newpopulation[i]=population[index];}for(i=0;i<popsize; i++){population[i]=newpopulation[i];}}void crossoveroperator() //交叉算法{int i,j;int index[POPSIZE];int point,temp;double p;char ch;for (i=0;i<popsize;i++){index[i]=i;}for (i=0;i<popsize;i++){point=rand()%(popsize-i);temp=index[i];index[i]=index[point+i];index[point+i]=temp;}for (i=0;i<popsize-1;i+=2){p=rand()%1000/1000.0;if (p<pc){point=rand()%(chromlength-1)+1;for ( j=point; j<chromlength;j++){ch=population[index[i]].chrom[j];population[index[i]].chrom[j]=population[index[i+1]].chrom[j];population[index[i+1]].chrom[j]=ch;}}}}void mutationoperator() //变异操作{int i,j;double p;for (i=0;i<popsize;i++){for( j=0;j<chromlength;j++){p=rand()%1000/1000.0;if (p<pm){population[i].chrom[j]=(population[i].chrom[j]=='0')?'1':'0';}}}}void input() //数据输入{ //printf(" 初始化全局变量 :\n");//printf("种群大小 (50-500) : ");//scanf("%d", &popsize);popsize=500;if((popsize%2) != 0){//printf( "种群大小已设置为偶数\n");popsize++;};//printf("最大世代数 (100-300) : ");//scanf("%d", &maxgeneration); maxgeneration=200;//printf("交叉率 (0.2-0.99) : ");//scanf("%f", &pc);pc=0.95;//printf("变异率 (0.001-0.1) :");//scanf("%f", &pm);pm=0.03;}void outputtextreport()//数据输出{int i;double sum;double average;sum=0.0;for(i=0;i<popsize;i++){sum+=population[i].value;}average=sum/popsize;printf("当前世代=%d\n当前世代平均函数值=%f\n当前世代最优函数值=%f\n",generation,average,population[best_index].value);}void main()// 主函数{ int i;long temp1,temp2;double x1,x2;generation=0;input();generateinitialpopulation();evaluatepopulation();while(generation<maxgeneration){generation++;generatenextpopulation();evaluatepopulation();performevolution();outputtextreport();}printf("\n");printf("统计结果 :");printf("\n");//printf("最大函数值等于:%f\n",currentbest.fitness);printf(" 其染色体编码为:");for (i=0;i<chromlength;i++){printf("%c",currentbest.chrom[i]);}printf("\n");temp1=decodechromosome(currentbest.chrom,0,length1);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;printf("x1=%lf\n",x1);.专业整理 .//这是需要修改的地方printf(" 最优值等于:%f\n",(pow(x1,5)-3*x1-1)*(pow(x1,5)-3*x1-1));}+++++++++++++++++++++++++二元函数代码+++++++++++++++++++++++++++++++++++++++++#include <stdio.h>#include<stdlib.h>#include<time.h>#include<math.h>#define POPSIZE 500#define maximization 1#define minimization 2#define cmax 100#define cmin 0#define length1 20#define length2 20#define chromlength length1+length2// 染色体长度//-----------求最大还是最小值int functionmode=maximization;//-----------//-----------变量上下界float min_x1=0;float max_x1=3;float min_x2=1;float max_x2=5;//-----------int popsize;// 种群大小int maxgeneration;// 最大世代数double pc;// 交叉率double pm;// 变异率struct individual{char chrom[chromlength+1];double value;double fitness;// 适应度};int generation;// 世代数int best_index;int worst_index;struct individual bestindividual;// 最佳个体struct individual worstindividual; //最差个体struct individual currentbest;struct individual population[POPSIZE];//函数声明void generateinitialpopulation();void generatenextpopulation();void evaluatepopulation();long decodechromosome(char *,int,int);void calculateobjectvalue();void calculatefitnessvalue();void findbestandworstindividual();void performevolution();void selectoperator();void crossoveroperator();void mutationoperator();void input();void outputtextreport();void generateinitialpopulation( )// 种群初始化{int i,j;for (i=0;i<popsize; i++){for( j=0;j<chromlength;j++){population[i].chrom[j]=(rand()%40<20)?'0':'1';}population[i].chrom[chromlength]='\0';}}void generatenextpopulation()// 生成下一代{selectoperator();crossoveroperator();mutationoperator();}void evaluatepopulation()// 评价个体,求最佳个体{calculateobjectvalue();calculatefitnessvalue();findbestandworstindividual();}long decodechromosome(char *string ,int point,int length) //给染色体解码{int i;long decimal=0;char*pointer;for(i=0,pointer=string+point;i<length;i++,pointer++)if(*pointer-'0'){decimal +=(long)pow(2,i);}return (decimal);}void calculateobjectvalue()// 计算函数值{int i;long temp1,temp2;double x1,x2;for (i=0; i<popsize; i++){temp1=decodechromosome(population[i].chrom,0,length1);temp2=decodechromosome(population[i].chrom,length1,length2);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;x2=(max_x2-min_x2)*temp2/(1024*1024-1)+min_x2;//-----------函数population[i].value=x1*x1+sin(x1*x2)-x2*x2;//-----------}}void calculatefitnessvalue()//计算适应度{int i;double temp;for(i=0;i<popsize;i++){if(functionmode==maximization){if((population[i].value+cmin)>0.0){temp=cmin+population[i].value;}else{temp=0.0;}}else if (functionmode==minimization){if(population[i].value<cmax){temp=cmax-population[i].value;}else{ temp=0.0;}}population[i].fitness=temp;}}void findbestandworstindividual( ) //求最佳个体和最差个体{int i;double sum=0.0;bestindividual=population[0];worstindividual=population[0];for (i=1;i<popsize; i++){if (population[i].fitness>bestindividual.fitness){bestindividual=population[i];best_index=i;}else if (population[i].fitness<worstindividual.fitness){worstindividual=population[i];worst_index=i;}sum+=population[i].fitness;}if (generation==0){currentbest=bestindividual;}else{if(bestindividual.fitness>=currentbest.fitness){currentbest=bestindividual;}}}void performevolution() //演示评价结果{if (bestindividual.fitness>currentbest.fitness){currentbest=population[best_index];}else{population[worst_index]=currentbest;}}void selectoperator() //比例选择算法{int i,index;double p,sum=0.0;double cfitness[POPSIZE];struct individual newpopulation[POPSIZE];for(i=0;i<popsize;i++){sum+=population[i].fitness;}for(i=0;i<popsize; i++){cfitness[i]=population[i].fitness/sum;}for(i=1;i<popsize; i++){cfitness[i]=cfitness[i-1]+cfitness[i];}for (i=0;i<popsize;i++){p=rand()%1000/1000.0;index=0;while (p>cfitness[index]){index++;}newpopulation[i]=population[index];}for(i=0;i<popsize; i++){population[i]=newpopulation[i];}}void crossoveroperator() //交叉算法{int i,j;int index[POPSIZE];int point,temp;double p;char ch;for (i=0;i<popsize;i++){index[i]=i;}for (i=0;i<popsize;i++){point=rand()%(popsize-i);temp=index[i];index[i]=index[point+i];index[point+i]=temp;}for (i=0;i<popsize-1;i+=2){p=rand()%1000/1000.0;if (p<pc){point=rand()%(chromlength-1)+1;for ( j=point; j<chromlength;j++){ch=population[index[i]].chrom[j];population[index[i]].chrom[j]=population[index[i+1]].chrom[j];population[index[i+1]].chrom[j]=ch;}}}}void mutationoperator() //变异操作{int i,j;double p;for (i=0;i<popsize;i++){for( j=0;j<chromlength;j++){p=rand()%1000/1000.0;if (p<pm){population[i].chrom[j]=(population[i].chrom[j]=='0')?'1':'0';}}}}void input() //数据输入{ //printf(" 初始化全局变量 :\n");//printf("种群大小 (50-500) : ");//scanf("%d", &popsize);popsize=200;if((popsize%2) != 0){//printf( "种群大小已设置为偶数\n");popsize++;};//printf("最大世代数 (100-300) : ");//scanf("%d", &maxgeneration);maxgeneration=200;//printf("交叉率 (0.2-0.99): ");//scanf("%f", &pc);pc=0.9;//printf("变异率 (0.001-0.1):");//scanf("%f", &pm);pm=0.003;}void outputtextreport()//数据输出{int i;double sum;double average;sum=0.0;for(i=0;i<popsize;i++){sum+=population[i].value;}average=sum/popsize;printf("当前世代=%d\n当前世代平均函数值=%f\n当前世代最优函数值=%f\n",generation,average,population[best_index].value);}void main()// 主函数{ int i;long temp1,temp2;double x1,x2;generation=0;input();generateinitialpopulation();evaluatepopulation();while(generation<maxgeneration){generation++;generatenextpopulation();evaluatepopulation();performevolution();outputtextreport();}printf("\n");printf("统计结果 :");printf("\n");//printf("最大函数值等于:%f\n",currentbest.fitness);printf(" 其染色体编码为:");for (i=0;i<chromlength;i++){printf("%c",currentbest.chrom[i]);}printf("\n");temp1=decodechromosome(currentbest.chrom,0,length1);temp2=decodechromosome(currentbest.chrom,length1,length2);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;x2=(max_x2-min_x2)*temp2/(1024*1024-1)+min_x2;printf("x=%lf,y=%lf\n",x1,x2);//-----------修改函数printf(" 最大值 =%f\n",x1*x1+sin(x1*x2)-x2*x2);//-----------}。
(完整版)遗传算法c语言代码

遗传算法代码# iiiclude<stdio.h>#mclude<stnng.h> #mclude<stdlib.h> #mclude<math.h> #mclude<tmie.h>^define cities 10 〃城市的个数 ^define MAXX ]00//迭代次数 #define pc 0.8 〃交配概率 #define pm 0.05 〃变异概率 ^define num 10〃种群的人小 int bestsolution;//最优染色体int distance[cities] [cities];// 城市之间的距离stmct group //染色体的结构{int city [cities];// 城市的顺序int adapt;// 适应度 double p 〃在种群中的幸存概率} group [num] ,grouptemp [num];〃随机产生10个城市之间的相互距离 voidinit(){intij ;meniset(distance.0.sizeof(distance)); srand((uiisigned)tuue(NULL)); fbr(i=O ;i<cities;i++){fbr(j=i+l ;j<cities J++){distance [i] [j]=rand()% 100; distance[j][i]=distance[i]Ij];} }fbr(i=O;i<cities;i++)printf( ”************ 城市的距离矩阵如下************\ii n );pruitf(M%4d H,distance[i][j]);}}〃随机产生初试群void groupproduceQ{mt i j 丄k,flag;fbi(i=O ;i<num; i++) //初始化for(j=OJ<citiesj++) group[i].city[j]=-l;srand((uiisigned)tuue(NULL));fbi(i=O ;i<num: i++)血(J=Oj<citi 亡s;){ t=rand()%cities;flag=l;for(k=0;k<j;k++){if(group[i] .city[k]=t){flag=O;break:}} if(flag){group[i].city|j]=t; J++;}}}pnntfC************ 初始种群如下^***************^);fbi(i=0;i<num: i++)血(J=0 J <citi 亡s;j++) pimtf(M%4d,\gioup[i].city[j]);〃评价函数,找岀最优染色体void pmgjiaQint ij;iiit nl,ii2;mt sumdistance5biggestsum=O; double biggestp=O;fdr(i=O;i<num; i++){sumdistance=O;{nl=group[i].city|j-l];n2=group[i].city[j]; sumdistance4-=distance[nl][n2];}group [1] .adapt=sumd istaiice; 〃每条染色体的路径总和biggestsum+=sumdistance; 〃种群的总路径}fbi(i=O ;i<num: i++){group [i].p= 1 -(double)gioup(i] .adapt/(double)biggestsum;biggestp+=group[i].p;}fbi(i=O ;i<num: i++)gioup[i] .p=gioup[i] .p./biggestp;〃求最佳路劲bestsolution=0;fbi(i=O ;i<num: i++) if(gioup[i].p>gioup[bestsolution].p) bestsolution=i; }〃选择void xuanzeQ{mt ij^temp;double gradient[num]^/梯度概率double xuaiize[num];//选择染色体的随机概率mt xuaii[num];//选择了的染色体〃初始化梯度概率fbi(i=O ;i<num: i++)gradient[i]=O.O; xuaiize[i]=O.O;}gradient[0]=gioup[0].p;fbr(i= 1 ;i<num:i++)gradient[i]=gradient[i-1 ]+group[i] .p; srand((uiisigned)tune(NULL));〃随机产生染色体的存活概率fdr(i=O;i<num: i++){xuanze[i]=(rand()% 100); xuaiize[i]/=100;}〃选择能生存的染色体fdr(i=0;i<num: i++){{if(xu aiize [i] <gradient [j ]){xuan[i]=j; //第i个位置存放第j个染色体break;}}}〃拷贝种群fdr(i=0;i<num: i++){grouptenip [i]. adapt=gioup [i].adapt;giouptemp[i] .p=group[i] .p;fbi(j=0 j <cities;j ++)grouptenip [i].citv|j]=group [i]. c ity[j ];}〃数据更新fdr(i=0;i<num: i++){temp=xuan[i];groupfi] .adapt=giouptemp[temp] .adapt;group [1] .p=giouptemp [temp] .p;fbi(j=0 j <cities;j ++)group[i].city[j]=grouptemp[tenip].city[j];〃变异void bianyiQ{intij;mt t;mt temp 1 ,temp2.point;double buinyip[num]; 〃染色体的变异概率mtbianyiflag[num];//染色体的变异情况fbi(i=O ;i<num: i++)〃初始化bianyiflag[i]=O;〃随机产生变异概率srand((uiisigned)tune(NULL));fbi(i=O ;i<num: i++){bianyip[i]=(rand()% 100); bianyip[i]/=100;}〃确定可以变异的染色体t=0;for(i=0 ;i<num; i++){if(biaiivip[i]<pm){ biaiiviflag[i]=l; t++;}}〃变异操作,即交换染色体的两个节点srand((iuisigned)tiine(NULL));for(i=0 ;i<num; i++){if(biaiiviflag[i]== 1){templ=rand()%10;temp2=rand()% 10;pomt=group[i]・ city[temp 1 ]; group [i]. city [temp1 ]=gioup [1]. city [temp2 ]; group[i] .city[temp2]=pomt;o e :a【n d(XXVINV£3n¥fo C T bB U T doQonpo】ddno・bb O -S Hg o q o ・Teqo「(£2】o o y )U S S A S()UTCU 二UTo lunp 」f (A R §o q o )2wl^20q o ^.・o %w uc o sXUTPsqsns^******** ***************^f l 】0 A)近士定—障尉QTry f ******************5-:************* **********⑧ 琛c>^建翠 唳********************=)七.s】d宀(dcl.mdno乩z'uxpt%-®^^・・)七宀「(曰目。
遗传算法的C#实现及应用

,………………………………………………“………“实用第一/智慧密集。
.....。
,。
.。
.。
.。
.。
.。
..。
..。
,。
√,≯||j—A疆蕊嗡嗡镧鹣潲瞒虢滁酗确斓蛹鹳曩jii11||||璐彀豫澡毽畿瓷罐甍谶羲|遵麓囊鬻谶赢薏篱瀑每||?i。
|?≯,鬣壤鋈国潆巢镶倦奄誊缝绥舔蔑善嚣≤譬Ijl。
j0j。
j瓷蚤尊嶙≮啪獬i毽赫馘每蛹戳j蠢。
‰酶鸯峨誓曩薯|≥iljij。
一iI|薯0I奄§畦姻镦添。
每孳舔溺警jlj;|0一『j_l甍遴!l邀纛纛瓣|鬣瓣◇|lii|Il||I弩酶冁醚嗡婚穆穗姆t◇9鬟湖瀵哮咚◇i谚峰岭譬ij¨¨|:鬻攀谶一≥。
|?|“ji?l疆黼誊眷懿t诵蕊囊酿褥酶姆螭t豳j酶I≮媾龋穗电鹱穰誊j|。
j|。
麓国隧嫱毒撼媳誊『:i-jl||i溪誉攀lj豢篱鬣蔷淄鬻|l|一ij鼍≥l篱鬻il豢≤奠do≯Z处理其余的基因l城市点卜鼍_i『瓢j树蛹嗽N哟hbor={G_e制ea淑Nejghbor誊l|ll}ig髓瞄蝴a}弼鼯礁u确瞅e脚S攀j。
一毫·。
/|l,,熊到与翦学纂蜀溉避的一个基因,并加入新染色体曩o、。
潮黼溉憾rf_{la鳓m鸯,A酬Gene椭ewGAGenej删删N磅i鳓£躜r|I;¨警自赋£lI:_l§¨'|):、。
-。
:,薯£酒ftP舀黼黯一一:。
ij-ji。
昭铀柏舔嚣i蜩酚鳓N∞rs悄ejghboB+寥__l蝴Ⅺ蠢lm白赠鳓f¥缓警iO戳『;ji毒j碜净磅囊i÷i;i喹哆?簿簪两ohr9哆j舀锣me{n。
wchr|。
而osome}:j雾雾鬻雾耩韵秘穆然取代原染色体i.准备好以上的方法后,还要注意四个参数的设定。
交叉率一般为O.8左右,变异率一般为O.05左右,群体大小、繁殖次数要根据城市数目有所变化。
调试程序时,可以修改这些参数来观察优化过程的收敛快慢、最优解的跳变等。
三、程序调试在Vs2005中建立windows组件解决方案,添加现有项:基因类(GAGene)、染色体类(GAChfomosome)、染色体比较类(chromosomecomparer.cs)、遗传算法类(GA),调试生成(ga.衄)组件。
遗传算法的C语言实现(二)-----以求解TSP问题为例

遗传算法的C语⾔实现(⼆)-----以求解TSP问题为例上⼀次我们使⽤遗传算法求解了⼀个较为复杂的多元⾮线性函数的极值问题,也基本了解了遗传算法的实现基本步骤。
这⼀次,我再以经典的TSP问题为例,更加深⼊地说明遗传算法中选择、交叉、变异等核⼼步骤的实现。
⽽且这⼀次解决的是离散型问题,上⼀次解决的是连续型问题,刚好形成对照。
⾸先介绍⼀下TSP问题。
TSP(traveling salesman problem,旅⾏商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增⼤按指数⽅式增长,到⽬前为⽌还没有找到⼀个多项式时间的有效算法。
TSP问题可以描述为:已知n个城市之间的相互距离,某⼀旅⾏商从某⼀个城市出发,访问每个城市⼀次且仅⼀次,最后回到出发的城市,如何安排才能使其所⾛的路线最短。
换⾔之,就是寻找⼀条遍历n个城市的路径,或者说搜索⾃然⼦集X={1,2,...,n}(X的元素表⽰对n个城市的编号)的⼀个排列P(X)={V1,V2,....,Vn},使得Td=∑d(V i,V i+1)+d(V n,V1)取最⼩值,其中,d(V i,V i+1)表⽰城市V i到V i+1的距离。
TSP问题不仅仅是旅⾏商问题,其他许多NP完全问题也可以归结为TSP问题,如邮路问题,装配线上的螺母问题和产品的⽣产安排问题等等,也使得TSP问题的求解具有更加⼴泛的实际意义。
再来说针对TSP问题使⽤遗传算法的步骤。
(1)编码问题:由于这是⼀个离散型的问题,我们采⽤整数编码的⽅式,⽤1~n来表⽰n个城市,1~n的任意⼀个排列就构成了问题的⼀个解。
可以知道,对于n个城市的TSP问题,⼀共有n!种不同的路线。
(2)种群初始化:对于N个个体的种群,随机给出N个问题的解(相当于是染⾊体)作为初始种群。
这⾥具体采⽤的⽅法是:1,2,...,n作为第⼀个个体,然后2,3,..n分别与1交换位置得到n-1个解,从2开始,3,4,...,n分别与2交换位置得到n-2个解,依次类推。
《遗传算法》实验指导书

JC(b,as,c,N,p);
cout<<"交叉结果如下:"<<endl;
for(i=0;i<N;i++)
{
for(j=7;j>=0;j--)
cout<<b[i][j];
cout<<endl;
}
return 0;
}
实 验 六
辽宁鞍山科技大学理学院(系) 2010年 月 日
scanf("%d",&m);
sje(n,m);
printf("\n");
printf("请输入转换的二进制数长度:\n");
scanf("%d",&x);
printf("请输入转换的二进制数:\n");
for(i=x-1;i>=0;i--)
scanf("%d",&a[i]);
ejs(a,x);
}
实 验 三
{
b[i][j]=a[j];
a[j]=0;
}
}
cout<<endl<<"初始种群如下:"<<endl;
for(i=0;i<N;i++)
{
for(j=7;j>=0;j--)
cout<<b[i][j];
cout<<endl;
}
cout<<endl;
int *as=new int[N];
f(N,as);
C语言人工智能算法实现神经网络和遗传算法
C语言人工智能算法实现神经网络和遗传算法人工智能(Artificial Intelligence)是当今科技领域中备受关注的热门话题,而C语言作为一种广泛应用的编程语言,也可以用于实现人工智能算法。
本文将详细介绍如何用C语言来实现神经网络和遗传算法,以展示其在人工智能领域的应用。
1. 神经网络神经网络是一种模仿人脑的学习和决策过程的计算模型。
它由多个神经元组成的层级结构构成,每个神经元接收来自上一层神经元输出的信号,并根据一定的权重和激活函数来计算输出。
下图展示了一个简单的神经网络结构:[图1:神经网络结构图]为了实现一个神经网络,我们需要在C语言中定义神经网络的结构体,并实现前馈传播和反向传播算法。
首先,我们需要定义神经网络的层级结构,可以使用数组或链表来表达。
每个神经元需要存储权重、偏差和激活函数等信息。
我们可以使用结构体来表示神经元的属性,例如:```Ctypedef struct Neuron {double* weights; // 权重数组double bias; // 偏差double output; // 输出} Neuron;```然后,定义神经网络的结构体:```Ctypedef struct NeuralNetwork {int numLayers; // 层数int* layerSizes; // 每层神经元数量的数组Neuron** layers; // 神经元层级的数组} NeuralNetwork;```接下来,我们需要实现神经网络的前馈传播算法。
前馈传播算法用于将输入数据从输入层传递到输出层,并计算网络的输出。
算法的伪代码如下所示:```Cfor each layer in network {for each neuron in layer {calculate neuron's weighted sum of inputs;apply activation function to obtain neuron's output;}}```最后,需要实现神经网络的反向传播算法,用于根据期望输出来调整网络的权重和偏差。
用遗传算法求解多目标函数优化c++程序
遗传算法是一种优化搜索方法,它模拟了自然选择和遗传学中的一些概念,如基因突变、交叉和选择。
这种方法可以用于解决多目标优化问题,其中多个目标之间可能存在冲突。
以下是一个使用C++和OpenCV库实现遗传算法的基本示例。
这个例子解决的是一个简单的多目标优化问题,目标是找到一个最优的图像分割方案,使得两个目标(分割的精度和计算的效率)同时最大化。
注意:这个示例是为了演示遗传算法的基本概念,并不一定适用于所有问题。
你可能需要根据你的具体需求来调整遗传算法的参数和约束条件。
```cpp#include <iostream>#include <vector>#include <algorithm>#include <opencv2/opencv.hpp>// 多目标函数优化struct ObjectiveFunction {std::vector<double> values;void operator()(const std::vector<double>& x) const {// 这里应该根据你的具体问题来定义函数的具体形式// 这里只是一个简单的示例,只考虑了分割精度和计算效率两个目标values.resize(x.size(), 0); // 初始化所有目标值为0values[0] = 1.0; // 精度目标values[1] = 1.0; // 效率目标}};class GeneticAlgorithm {public:GeneticAlgorithm(int populationSize, int generations, double crossoverRate, double mutationRate) : populationSize(populationSize), generations(generations), crossoverRate(crossoverRate), mutationRate(mutationRate) {} std::vector<std::vector<double>> optimize(const std::vector<std::vector<double>>& inputs) {std::vector<std::vector<double>>bestSolution(inputs.size(),std::vector<double>(populationSize, 0)); // 初始化最优解double bestScore = -1; // 初始最佳分数为-1,通常需要先运行一次算法以找到初始最佳分数for (int generation = 0; generation <generations; ++generation) {std::vector<std::vector<double>>population(populationSize,std::vector<double>(populationSize, 0)); // 初始化种群for (int i = 0; i < populationSize; ++i) { std::vector<double>randomSolution(inputs.size(), 0); // 随机生成解for (int j = 0; j < inputs.size(); ++j) {randomSolution[j] = inputs[j][rand() % inputs[j].size()]; // 在输入范围内随机选择一个数作为解}population[i] = randomSolution; // 将随机解加入种群}while (!population.empty()) { // 当种群不为空时继续迭代std::sort(population.begin(), population.end(), [](const std::vector<double>& a, const std::vector<double>& b) { // 对种群进行排序,根据适应度进行排序(这里适应度是解的分数)return ObjectiveFunction()(a) > ObjectiveFunction()(b); // 如果分数更高,则适应度更好,优先选择这个解作为下一代解的一部分});std::vector<double>nextGeneration(population[0]); // 选择当前种群中的第一个解作为下一代解的一部分for (int j = 1; j < populationSize; ++j) { // 对剩余的解进行交叉和变异操作,生成下一代解if (rand() / double(RAND_MAX) < crossoverRate) { // 如果满足交叉条件,则进行交叉操作for (int k = 0; k < inputs.size(); ++k) { // 将两个解的部分基因进行交叉操作,生成新的基因序列nextGeneration[k] = population[j][k]; // 将两个解的部分基因复制到下一代解中if (rand() / double(RAND_MAX) < mutationRate) { // 如果满足变异条件,则对部分基因进行变异操作,增加种群的多样性nextGeneration[k] = nextGeneration[k] * (1 - mutationRate) + population[j][k] * mutationRate; // 对部分基因进行变异操作,增加种群的多样性}}} else { // 如果不满足交叉条件,则直接复制当前解作为下一代解的一部分for (int k = 0; k < inputs.size(); ++k) { // 将当前解的部分基因复制到下一代解中 nextGeneration[k] = population[。
遗传算法求解函数极值C语言代码
#include "stdio.h"#include "stdlib.h"#include "conio.h"#include "math.h"#include "time.h"#define num_C 12 //个体的个数,前6位表示x1,后6位表示x2 #define N 100 //群体规模为100#define pc 0.9 //交叉概率为0.9#define pm 0.1 //变异概率为10%#define ps 0.6 //进行选择时保留的比例#define genmax 2000 //最大代数200int RandomInteger(int low,int high);void Initial_gen(struct unit group[N]);void Sort(struct unit group[N]);void Copy_unit(struct unit *p1,struct unit *p2);void Cross(struct unit *p3,struct unit *p4);void Varation(struct unit group[N],int i);void Evolution(struct unit group[N]);float Calculate_cost(struct unit *p);void Print_optimum(struct unit group[N],int k);/* 定义个体信息*/typedef struct unit{int path[num_C]; //每个个体的信息double cost; //个体代价值};struct unit group[N]; //种群变量groupint num_gen=0; //记录当前达到第几代int main(){int i,j;srand((int)time(NULL)); //初始化随机数发生器Initial_gen(group); //初始化种群Evolution(group); //进化:选择、交叉、变异getch();return 0;}/* 初始化种群*/void Initial_gen(struct unit group[N]){int i,j;struct unit *p;for(i=0;i<=N-1;i++) //初始化种群里的100个个体{p=&group[i]; //p指向种群的第i个个体for(j=0;j<12;j++){p->path[j]=RandomInteger(0,9); //end }Calculate_cost(p); //计算该种群的函数值}//end 初始化种群}/* 种群进化,进化代数由genmax决定*/void Evolution(struct unit group[N]){int i,j;int temp1,temp2,temp3,temp4,temp5;temp1=N*pc/2;temp2=N*(1-pc);temp3=N*(1-pc/2);temp4=N*(1-ps);temp5=N*ps;for(i=1;i<=genmax;i++){//选择for(j=0;j<=temp4-1;j++){ Copy_unit(&group[j],&group[j+temp5]); }//交叉for(j=0;j<=temp1-1;){Cross(&group[temp2+j],&group[temp3+j]);j+=2;}//变异Varation(group,i);}Sort(group);Print_optimum(group,i-1); //输出当代(第i-1代)种群}/* 交叉*/void Cross(struct unit *p3,struct unit *p4){int i,j,cross_point;int son1[num_C],son2[num_C];for(i=0;i<=num_C-1;i++) //初始化son1、son2{son1[i]=-1;son2[i]=-1;}cross_point=RandomInteger(1,num_C-1); //交叉位随机生成//交叉,生成子代//子代1//子代1前半部分直接从父代复制for(i=0;i<=cross_point-1;i++) son1[i]=p3->path[i];for(i=cross_point;i<=num_C-1;i++)for(j=0;j<=num_C-1;j++) //补全p1{son1[i]=p4->path[j];}//end 子代1//子代2//子代1后半部分直接从父代复制for(i=cross_point;i<=num_C-1;i++) son2[i]=p4->path[i];for(i=0;i<=cross_point-1;i++){for(j=0;j<=num_C-1;j++) //补全p1{son2[i]=p3->path[j];}}//end 子代2//end 交叉for(i=0;i<=num_C-1;i++){p3->path[i]=son1[i];p4->path[i]=son2[i];}Calculate_cost(p3); //计算子代p1的函数值Calculate_cost(p4); //计算子代p2的函数值}/* 变异*/void Varation(struct unit group[N],int flag_v){int flag,i,j,k,temp;struct unit *p;flag=RandomInteger(1,100);//在进化后期,增大变异概率if((!flag>(flag_v>100))?(5*100*pm):(100*pm)){i=RandomInteger(0,N-1); //确定发生变异的个体j=RandomInteger(0,num_C-1); //确定发生变异的位k=RandomInteger(0,num_C-1);p=&group[i]; //变异temp=p->path[j];p->path[j]=p->path[k];p->path[k]=temp;Calculate_cost(p); //重新计算变异后的函数值}}/* 将种群中个体按函数值从小到大排序*/void Sort(struct unit group[N]){int i,j;struct unit temp,*p1,*p2;for(j=1;j<=N-1;j++) //排序总共需进行N-1轮{for(i=1;i<=N-1;i++){p1=&group[i-1];p2=&group[i];if(p1->cost>p2->cost) //值大的往后排{Copy_unit(p1,&temp);Copy_unit(p2,p1);Copy_unit(&temp,p2);}}//end 一轮排序}//end 排序}/* 计算某个个体的函数值*/float Calculate_cost(struct unit *p){double x1,x2;x1=0;if(p->path[0]>5){x1=p->path[1]+p->path[2]*0.1+p->path[3]*0.01+p->path[4]*0.001+p->path[5]*0.0001;}else if(p->path[0]<6){x1=0-(p->path[1]+p->path[2]*0.1+p->path[3]*0.01+p->path[4]*0.001+p->path[5]*0.0001);}x2=0;if(p->path[6]>5){}else if(p->path[6]<6){x2=0-(p->path[7]+p->path[8]*0.1+p->path[9]*0.01+p->path[10]*0.001+p->path[11]*0.0001);}p->cost=20+x1*x1+x2*x2-10*(cos(2*3.14*x1)+cos(2*3.14*x2));return(p->cost);}/* 复制种群中的p1到p2中*/void Copy_unit(struct unit *p1,struct unit *p2){int i;for(i=0;i<=num_C-1;i++)p2->path[i]=p1->path[i];p2->cost=p1->cost;}/* 生成一个介于两整型数之间的随机整数*/int RandomInteger(int low,int high){int k;double d;k=rand();k=(k!=RAND_MAX)?k:(k-1); //RAND_MAX是VC中可表示的最大整型数d=(double)k/((double)(RAND_MAX));k=(int)(d*(high-low+1));return (low+k);}/* 输出当代种群中的最优个体*/void Print_optimum(struct unit group[N],int k){struct unit *p;double x1,x2;x1=x2=0;p=&group[0];if(p->path[0]>5){x1=p->path[1]+p->path[2]*0.1+p->path[3]*0.01+p->path[4]*0.001+p->path[5]*0.0001;}else if(p->path[0]<6){}x2=0;if(p->path[6]>5){x2=p->path[7]+p->path[8]*0.1+p->path[9]*0.01+p->path[10]*0.001+p->path[11]*0.0001;}else if(p->path[6]<6){x2=0-(p->path[7]+p->path[8]*0.1+p->path[9]*0.01+p->path[10]*0.001+p->path[11]*0.0001);}printf(" 当x1=%f x2=%f\n",x1,x2);printf(" 函数最小值为:%f \n",p->cost);}。
C++实现简单遗传算法
C++实现简单遗传算法本⽂实例讲述了C++实现简单遗传算法。
分享给⼤家供⼤家参考。
具体实现⽅法如下://遗传算法 GA#include<iostream>#include <cstdlib>#include<bitset>using namespace std;const int L=5; //定义编码的长度int f(int x) //定义测设函数f(x){int result;result=x*x*x-60*x*x+900*x+100;return result;}int main(int argc,char *argv[]){int a(0),b(32); //定义x的定义域范围const int pop_size=8; //定义种群⼤⼩// int L; //指定编码的长度const int NG=20; //指定种群最⼤的繁殖的代数int t=0; //当前繁殖的代数int p[pop_size]; //定义种群int q[pop_size]; //定义繁殖种群即种群的下⼀代srand(6553); //定义随机数⽣成的种⼦double sum; //适值总和double avl_sum; //适度平均值double p_probability[pop_size]; //适值概率double pp[pop_size];double pro; //定义随机⽣成的概率float pc=0.90; //定义交叉的概率float pm=0.05; //定义变异的概率cout<<"初始的种群 ";for(int i=0;i<pop_size;i++) //⽣成初始的第0代种群{p[i]=rand()%31;cout<<p[i]<<" ";}cout<<endl;cout<<endl;void Xover(int &,int &); //声明交叉函数//当停⽌准则不满⾜即繁殖代数没到最⼤代数 ,继续繁殖while(t<=NG){cout<<"繁殖的代数:t="<<t<<endl;sum=0.0;for(int i=0;i<pop_size;i++){q[i]=p[i];cout<<q[i]<<" ";}cout<<endl;for(int i=0;i<pop_size;i++) //计算sumsum +=f(p[i]);avl_sum=sum/pop_size;cout<<"sum="<<sum<<endl;cout<<"适度平均值="<<avl_sum<<endl;for(int i=0;i<pop_size;i++) //计算适值概率{p_probability[i]=f(p[i])/sum;if(i==0){pp[i]=p_probability[i];cout<<"pp"<<i<<"="<<pp[i]<<endl;}else{pp[i]=p_probability[i]+pp[i-1];cout<<"pp"<<i<<"="<<pp[i]<<endl;}//cout<<"p_probability"<<i<<"="<<p_probability[i]<<endl;}//选择双亲for(int i=0;i<pop_size;i++)pro=rand()%1000/1000.0;if(pro>=pp[0]&&pro<pp[1])p[i]=q[0];else if(pro>=pp[1]&&pro<pp[2])p[i]=q[1];else if(pro>=pp[2]&&pro<pp[3])p[i]=q[2];else if(pro>=pp[3]&&pro<pp[4])p[i]=q[3];else if(pro>=pp[4]&&pro<pp[5])p[i]=q[4];elsep[i]=q[5];}//杂交算⼦int r=0;int z=0;for(int j=0;j<pop_size;j++){pro=rand()%1000/1000.0;if(pro<pc){++z;if(z%2==0)Xover(p[r],p[j]);elser=j;}}//变异算⼦for(int i=1;i<=pop_size;i++)for(int j=0;j<L;j++){pro=rand()%1000/1000.0; //在【0,1】区间产⽣随机数if(pro<pm){bitset<L>v(p[i]);v.flip(j);p[i]=v.to_ulong();}}t++;cout<<endl; //种群繁殖⼀代}cout<<"最终结果:";for(int i(0);i<pop_size;i++) //算法结束,输出结果{cout<<p[i]<<" ";}cout<<endl;return 0;}//定义杂交操作void Xover(int &a,int &b){int pos; //随机⽣成杂交点即第⼏个分量进⾏相互交换pos=rand()%5+1; //在n个分量中,随机确定第pos个分量int j,k;j=pos;k=pos;bitset<L>e(a);bitset<L>f(b); //前pos个分量进⾏相互交换bitset<L>g;bitset<L>h;for(int i=0;i<pos;i++){if(e[i]==1)g.set(i);}for(int i=0;i<pos;i++){if(f[i]==1)h.set(i);}for(j;j<L;j++)if(f[j]==1)g.set(j);}for(k;k<L;k++){if(e[k]==1)h.set(k);}a=g.to_ulong();b=h.to_ulong();}希望本⽂所述对⼤家的C++程序设计有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{ //使该权值增加或者减少一个很小的随机数值 chromo[i] += ((random()-0.5) * maxPerturbation); //限定范围 if(chromo[i] < leftPoint) { chromo[i] = rightPoint; } else if(chromo[i] > rightPoint) { chromo[i] = leftPoint; } //以上代码非基因变异的一般性代码只是用来保证基因编码的可行性。
m_population.clear();
//种群容器装进经过随机初始化的种群
m_population = genAlg.vecPop;
vector <double> input; double output;
input.push_back(0);
for(int Generation = 0;Generation <= g_Generation;Generation++)
TheChosenOne = vecPop[i]; break; } } //返回转盘选出来的个体基因 return TheChosenOne; } void GenAlg::Mutate(vector<double> &chromo) { //遵循预定的突变概率,对基因进行突变 for (int i=0; i<chromo.size(); ++i) { //如果发生突变的话 if (random() < mutationRate)
void GenAlg::CalculateBestWorstAvTot() {
for (int i=0; i<popSize; ++i) {
//累计适应性分数. totalFitness+= vecPop[i].fitness; if(vecPop[i].fitness>=bestFitness) {
{
//产生随机数
srand( (unsigned)time( NULL ) );
//初始化遗传算法引擎
genAlg.init(g_popsize, g_numGen,g_LeftPoint,g_RightPoint);
g_dMutationRate,
g_dCrossoverRate,
//清空种群容器
vecPop = vecNewPop; //初始化相关变量 Reset(); //为相关变量赋值 CalculateBestWorstAvTot(); //清空装载新种群的容器 vecNewPop.clear(); //产生新一代的所有基因组 while (vecNewPop.size() < popSize) {
vecPop[i].vecGenome.push_back(random() * (rightPoint - leftPoint) + leftPoint);
} } } void GenAlg::Reset() { totalFitness=0; //bestFitness=0; //worstFitness=9999; averageFitness=0; }
{
//里面是对每一条染色体进行操作
for(int i=0;i<g_popsize;i++)
{ input = m_population[i].vecGenome;
//为每一个个体做适应性评价,如之前说的,评价分数就是函数值。其
//Function 函数的作用是输入自变量返回函数值,读者可以参考其代码。
Genome():fitness(0){}
Genome(vector <double> vec, double f): vecGenome(vec), fitness(f){} //类的带参数初 始化参数。 private:
vector <double> vecGenome; // dFitness 用于存储对该基因的适应性评估。
}
Genome GenAlg:: GetChromoRoulette() {
//产生一个 0 到人口总适应性评分总和之间的随机数. //中 m_dTotalFitness 记录了整个种群的适应性分数总和) double Slice = (random()) * totalFitness; //这个基因将承载转盘所选出来的那个个体. Genome TheChosenOne; //累计适应性分数的和.
此例程总共包含 3 个文件:main.c(主函数);GA.c(包含 3 个所用函数);GA.h(头文件), 3 个文件截图如下:
用 visual c++或者 visual stutio 创建工程,然后将上述 3 个文件包含进工程,编译运行即可。 亲测可行!!! 3 个文件代码分别如下: 1、main.c:
//return bestSearch;
}
3、GA.h:
#include<vector>
using namespace std;
const double pai=3.1415926;
class Genome { public:
friend class GenAlg; friend class GenEngine;
vecNewPop.push_back( Genome(baby1, 0) );
vecNewPop.push_back( Genome(baby2, 0) );
}//子代产生完毕
//如果你设置的人口总数非单数的话,就会出现报错
if(vecNewPop.size() != popSize)
{
//MessageBox("你的人口数目不是单数!!!"); cout<<"error"<<endl;
double FitnessSoFar = 0; //遍历总人口里面的每一条染色体。 for (int i=0; i<popSize; ++i) {
//累计适应性分数. FitnessSoFar += vecPop[i].fitness; //如果累计分数大于随机数,就选择此时的基因. if (FitnessSoFar >= Slice) {
double randNum; randNum=rand()*1.0/RAND_MAX; return randNum; } GenAlg::GenAlg() { }
void GenAlg::init(int popsize, double MutRate, double CrossRate, int GenLenght,double LeftPoint,double RightPoint) {
//转盘随机抽出两个基因 Genome mum = GetChromoRoulette(); Genome dad = GetChromoRoulette(); //创建两个子代基因组 vector<double> baby1, baby2; //先把他们分别设置成父方和母方的基因 baby1 = mum.vecGenome; baby2 = dad.vecGenome; //使子代基因发生基因突变 Mutate(baby1); Mutate(baby2); //把两个子代基因组放到新的基因组容器里面
output = (double)curve.function(input);
m_population[i].fitness = output; } //由父代种群进化出子代种群
genAlg.Epoch(m_population);
//if(genAlg.GetBestFitness().fitness>=bestFitness) bestSearch=genAlg.GetBestFitness().vecGenome[0]; bestFitness=genAlg.GetBestFitness().fitness; averageFitness=genAlg.GetAverageFitness(); //cout<<bestSearch<<endl; report(Generation+1); }
2、GA.c:
#include<vector>
#include<stdio.h> #include <stdlib.h> #include <time.h> #include<iostream> #include"GA.h"
using namespace std;
//srand((unsigned) time(NULL)); double random() {
**********************************************************************/
int main() {
GenEngine genEngine(50,0.8,0.8,1,100,0,4); genEngine.OnStartGenAlg(); getchar(); }
cout<<"第"<<genNum<<"代"<<endl; cout<<"最佳适应度:"<<bestFitness<<endl; cout<<"最佳适应度基因取值:"<<bestSearch<<endl; cout<<"平均适应度:"<<averageFitness<<endl<<endl; }