人教版七年级下册平方根精品课件

合集下载

人教版七年级数学下册《平方根》课件ppt

人教版七年级数学下册《平方根》课件ppt

因此1.21的平方根是1.1与-1.1.
即± 1.21=± 1.1 .
三、平方根的数学符号表示 一个非负数的平方根的表示方法:
a 表示a的正的平方根(算术平方根)
a 表示a的负的平方根
记作 a
a﹙a≥0﹚的平方根表示为 a
说一说
7
7
7 各表示什么意义?
表示7的正 的平方根 (即算术平 方根)
121
3. 填空
(1)32= 9 ,(-3)2= 9 ;
(2)
2 3
2
4 9

2
2
3
4 9

(3)0.82= 0.64 ,(-0.8)2= 0.64 .
思考:反过来,如果已知一个数的平方,怎样求这个数?
问题 如果一个数的平方等于9,这个数是多少?
由于 3 2 =9 ,
所以这个数是3或-3.
判断下列说法是否正确,并说明理由. (1)49的平方根是7; (2)2是4的平方根; (3)-5是25的平方根; (4)64的平方根是±8; (5)-16的平方根是-4.
例1 一个正数的两个平方根分别是2a+1和a-4,求这个数.
解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0, 解得a=1. 所以这个数为(2a+1)2=(2+1)2=9.
不正确,是 4. 不正确,是 ±4.
4. 分别求 64,4891 ,6.25的平方根.
解: 64的平方根是8与-8,4891
的平方根是
7 9

-
7 9
,6.25的平方根是2.5与-
2.5.
5.求下列各式的值:
(1) 144 (2) 0.81

人教版七级下册数学《平方根》参考课件(共19张PPT)

人教版七级下册数学《平方根》参考课件(共19张PPT)
第16页,共19页。
思考:
下列各式哪些有意义,哪些没有意义?
(1)- 4
(3) 32
(2) 4
(4)
2
3
第17页,共19页。
课堂小结
1.正数的算术平方根及表示
2.如何用逼近法求一个无理数的近似值
第18页,共19页。
作业: 习题6.1 第1题
课后思考题: 试用“逼近法”确定
的3 大小?
第19页,共19页。
6.1 平方根(1)
第1页,共19页。
情景问题:
学校要举行美术作品比赛,小鸥很高 兴,他想裁出一块面积为25dm2的正方
形画布,画上自己的得意之作参加比赛, 这块正方形画布的边长应取多少?
因为 5 =2 25,所以这个正方形画框的边长应取5dm.
第2页,共19页。
填写下表:
正方形的
4
面积/dm2 1 9 16 36
4
第12页,共19页。
探究
怎样用两个面积为1dm2的小正方形拼成一个面积为2dm2 的大正方形?
如图,把两个小正方形沿对角线剪开,将所得的4个直
角三角形拼在一起,就得到一个面积为2dm2的大正方 形。你知道这个大正方形的边长是多少吗?
第13页,共19页。
解:设大正方形的边长为xdm,则
x 2=2
即:x =a(x>0), 2 下列式子表示什么意思?你能求出它们的值吗?
=a,那么这个正数x叫做a的算术平方根。 下列各式哪些有意义,哪些没有意义?
01,即 =0.
(1)-
(2)
(2)-6是36的算术平方根;
x叫做a的算术平方根,
如何用逼近法求一个无理数的近似值
记作:x= a 学校要举行美术作品比赛,小鸥很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多

人教版七年级下册数学《平方根》实数PPT教学课件

人教版七年级下册数学《平方根》实数PPT教学课件

想一想
1. 121的平方根是什么? 11
2. 0的平方根是什么?
0
3.
16 49
的平方根是什么?
4 7
4. -9有没有平方根?为什么?
问题:(1)正数有几个平方根? (2)0有几个平方根? (3)负数呢?
没有,因为一个数的平方不可能是负数.
归纳总结
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
方根是平方根的一种. 2.只有非负数才有平方根和算术平方根. 3. 0的平方根是0,算术平方根也是0. 区别:1.个数不同:一个正数有两个平方根,但只有
一个算术平方根.
2.表示法不同:平方根表示为 a ,而算术平
方根表示为 a .
随堂练习
1.“± a ”的意义是( C ) A.a的平方根 B.a的算术平方根 C.当a≥0时,± a 是a的平方根 D.以上均不正确
开平方及相关运算
例 a的一个平方根是3,则另一个平方根是 -3 , a= 9 。
练一练
1.分别求下列各数的平方根:
(1)36 ; (2)295 ;
(3)1.21 .
2. 若一个数的平方等于5,则这个数等于 ___5___.
3.下列说法正确的是__①__④__⑤___ ① -3是9的平方根; ②25的平方根是5; ③ -36的平方根是-6; ④平方根等于0的数是0; ⑤64的算术平方根是8.
4.下列说法不正确的是___B___ A.0的平方根是0 B. 22 的平方根是2 C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
1.a的一个平方根是3,则另一个平方根是 -3 ,a= 9 . 2.81的平方根是___9_, 81 的算术平方根是__3__ . 3.3a-2和2a-3是一个正数的两个平方根,则这两个平方根 是__1_和_-_1_,这个数是_1__.

《算数平方根》人教版七年级数学下册PPT精品课件

《算数平方根》人教版七年级数学下册PPT精品课件

根号
被开方数
算术平方根
a
算术平方根性质
1)正数只有一个算术平方根,且恒为正;2)0的算术平方根为0(规定);3)负数没有算术平方根。
的意义是什么?
练一练
求下列各数的算术平方根:1)1002)0.00013)814)5)
解:(1)因为102=100, 所以100的算术平方根是10. 即.
【详解】解:∵,∴,∴,故答案为:.
随堂测试
2.若,则_____。
【详解】解:∵,
∴x+1=4,即x=3.
故答案为:3
随堂测试
3.已知a是最小正整数,b是的算术平方根,则a+b的值是_____。
【详解】∵a是最小正整数,∴a=1,∵=9,b是的算术平方根,∴b==3,∴a+b=1+3=4.故答案为:4
(2)因为0.012=0.0001, 所以0.0001的算术平方根是0.01. 即.01.
练一练
求下列各数的算术平方根:1)1002)0.00013)814)5)
解:(3)因为92=81, 所以81的算术平方根是9. 即.
(4)因为72=49, 所以72的算术平方根是7. 即.
随堂测试
4.计算若,那么a2019 b2020=____________。
【详解】∵,∴(a+1)2=0,b-1=0,解得:a=-1,b=1,∴a2019+b2020=-1+1=0,故答案为:0
课堂互动
课后回顾
理解算术平方根的概念
01
理解算术平方根的性质
02
利用算术平方根的概念进行简单计算
03
1
3
4
6
小游戏:对于正方形的面积,你可以举出其它数据并求出它的边长吗?

精品人教版数学七年级下册平方根课件可编辑

精品人教版数学七年级下册平方根课件可编辑
§6.1 平方根
身边小事
为了趣味接力比赛,要在运动 场上圈出一个面积为100平 方米的正方形场地,这个正方
形场地的边长为多少? 10米
因为 10 2=100
§6.1 平方根
身边小事
学校要举行美术作品比赛,小欧很 高兴,他想裁出一块面积为25dm2 的正 方形画布,画上自己的得意之作参比 赛,这块正方形画布的边长应取多少?

10.2 100
100=10
3.例题解析 例1 求下列各数的算术平方根:
(1)1 0 0 ;(2)4 9 ;(3)0.0001.
64
解:(2)因为
7 8
2
49 64

所以 4 9 的算术平方根是 7 .
64
8
即 49 7 .
64 8
3.例题解析 例1 求下列各数的算术平方根:
(解1:)(1 0 30 );因(为2)4 9 ;(3)0,.0001. (4) -4 所以0.00016的4 算术平方根是0.01 .
3
是(B )
A. x 2 B. x 2 C. x 2 D. x 2
5.求下列各数的算术平方根.
49
① 25 ② 81 ③ 0.36 ④ 0 ⑤
7
5
9
0.6 0
16 =4
2
活动4
巩固练习 反馈检测
综合应用:
6.已知a、b满足等式 a 2 + b 3=0, 求ab的值.
活动5
归纳小结 深化新知
(5)-3是-9的算术平方根. × 39
2.算术平方根等于本身的数有_0和_1_.
5.提出问题
被开方数的大小与对应的算术平 方根的大小之间有什么关系呢?

人教版七年级数学下册《平方根》PPT课件

人教版七年级数学下册《平方根》PPT课件
2. 表示法不同:平方根表示为 a ,而算术 平方根表示为 a .
典Байду номын сангаас精析
例2 求下列各式的值: (1) 36 ; (2) 0.81; (3)
解:(1) 36 6.
49 . 9
(2) 0.81 0.9.
(3) 49 7 . 93
平方
互逆 为运

开方
平方根
如果一个数的平方等于 a, 定义 那么这个数叫做 a 的
(2) 25 ;
9
解:由于
5 2 3
25 9

因此
25 9
的平方根是
5 3

5 3
.
(3) 1.21.
解:由于 ( ±1.1)2 = 1.21,
因此 1.21 的平方根是 1.1 与 -1.1.
练一练
1. 144 的平方根是什么?
12
2. 0 的平方根是什么?
0
3.
4 25
的平方根是什么?
2 5
4. -4 有没有平方根?为什么?
没有,因为一个数的平方不可能是负数.
典例精析
例2 一个正数的两个平方根分别是 2a+1 和 a-4, 求这个数.
解:由于一个正数的两个平方根是 2a+1 和 a-4, 则有 2a+1+a-4=0,即 3a-3=0, 解得 a=1. 所以这个数为 (2a+1)2=(2+1)2=9.
方法归纳:一个正数有两个平方根,它们互为相反数.
开平方根的数学符号表示
一个非负数的平方根的表示方法:
a 表示 a 的正的平方根 (算术平方根)
a 表示 a 的负的平方根
记作 a
a﹙a≥0﹚的平方根表示为 a.

初中数学人教版七年级下册《平方根》PPT课件


知识拓展
三、一个正数x的平方根是2a-3与5-a
求 2x a 的平方根
解:依题意:2a-3+5-a=0, a=-2,
x=(2a-3)2=49. 2x a =10 2x a 的平方根为 10
知识拓展
四、计算
2 3 64 1 3
五、已知 5x y 9 互为相反数
则x+y= 答案3
3x y 1
知识拓展
开平方与平方
指数
根号 开

平 方 运
x2 底a

x 互为
逆运算
a方




a的平方根 被开方数
知识拓展
平方根的概念
平方根
平方根的性质
开平方及相关运算
4 家庭作业
家庭作业 请完成课后相关练习。
人教版七年级数学下册
课程结束
授课老师:XXX
到目前为止,表示非负数的式子有:a≥0, |a|≥0, a2 ≥0, a ≥0,
算术平方根
例3 计算:
(1) 49 2 7 1 ; (2) 4 9 +3-4=1
算术平方根
例4.用大小完全相同的240块正方形地板砖,铺一间面积 为60 m2的会议室的地面,每块地板砖的边长是多少? 解:设每块地板砖的边长为x m.由题意得
算术平方根的双重非负性
非负数 a 0
a的算术平方根 a
非负数 a 0
算术平方根具有双重非负性
算术平方根
下列各式中哪些有意义?哪些无意义?为什么?
5, 3, 3, 32
解: 3 无意义,因为被开方数不是非负数.
被开方数为非负数.
算术平方根
例2 若|m-1| + n 3 =0,求m+n的值. 解: 因为|m-1| ≥0, n 3 ≥0,又|m-1| + n 3 =0,

人教版七年级下册平方根精品课件PPT

正数a的算术平方根可以表示用_____表示; 正数a的负的平方根,可以用符号______表示, 正数a的平方根用符号________表示. 读作“正、负根号a”.
例如,
平方根的表示 符号 有意义的条件是什么?
表示 a 的算术平方根.
任何数的平方都不可能是负数,所以负数没有算术平方根, 所以当a≥0时有意义,a<0时无意义.
由于

所以这个数是3或-3. 这里的3是前面学过的 9 的__算__术__平__方___根__.
-3与 9 的算术平方根有什么关系?
-3与 9 的算术平方根互为相反数.
思考 根据上面的研究过程填表:
1
16
36
49
如果我们把
分别叫做 1、16、36、49、 的平
方根,你能类比算术平方根的概念,给出平方根的概念吗?
2.平方根的性质:
正数的平方根有两个,它们互为相反数. 0的平方根是0; 负数没有平方根.
人教版七年级下册6.1平方根课件
人教版七年级下册6.1平方根课件
总结
这节课我们学会了什么?
3.平方根与算术平方根的区别: 表示 a 的__算__术___平__方__根___. 表示 a 的__平__方___根___.
人教版七年级下册6.1平方根课件
复习巩固 5.用计算器计算下列各式的值(精确到0.01):
人教版七年级下册6.1平方根课件
人教版七年级下册6.1平方根课件
复习巩固
6.估计与
最接近的两个整数是多少?
人教版七年级下册6.1平方根课件
人教版七年级下册6.1平方根课件
综合运用 8.求下列各式中 x 的值:
拓广探索 12.任意找一个正数,比如1234,利用计算器对它进行开平方, 再对得到的算术平方根进行开平方.......如此进行下去,你有什么 发现?

人教版七年级下册数学公开课平方根PPT课件


03
平方根在实际问题中应用
面积与平方根关系
正方形面积与边长关系
圆的面积与半径关系
通过正方形面积公式,引入平方根概 念,理解边长与面积之间的平方根关 系。
通过圆的面积公式,探讨半径与面积 之间的平方根关系,加深对平方根概 念的理解。
矩形面积与长宽关系
分析矩形面积与长宽之间的数学关系 ,进一步理解平方根在面积计算中的 应用。
作业提交和批改要求
说明了作业的提交方式、批改标准以及反馈方式,以便学生及时 了解自己的学习情况。
预习下节课内容提示
下节课内容概述
简要介绍了下节课将要学习的内 容,包括立方根的概念、性质以
及运算等。
预习重点与难点
提示了学生在预习过程中需要重点 关注的内容以及可能出现的难点, 以便学生有针对性地进行预习。
示例
估算√20的大小,可以先找到两个最接近20的完全平方数16和25,然后取它们 的平方根4和5,得出√20≈4.5。
笔算方法讲解与练习
笔算方法
采用竖式计算,从最高位开始逐位求 解,得到精确值。
练习
计算√12345,首先确定最高位,然后 逐步计算后续位数,得到最终结果。
计算器使用技巧
计算器使用
利用计算器进行平方根计算,注意输入方式和按键操作。
处理建议
在引入平方根概念时,可以通过实例或情境导入,激发学生的学 习兴趣;在讲解平方根性质时,可以通过比较、归纳等方式帮助 学生加深对性质的理解;在求平方根时,可以通过练习、讨论等 方式提高学生的计算能力和思维水平。同时,可以结合学生的实 际情况和认知水平,适当调整教学内容和难度,确保学生能够掌 握本节课的知识和技能。
引导学生思考
通过提问,引导学生深入思考平方根的概念、性质和应用,培养学生的数学思维能力。

人教版七年级下册课件 6.1平方根(共35张PPT)


小正方形 的对角线 的长是多 少呢?
你知道 2有多大吗?
1 2 2
2 2
2 1 . 41421
无限不循环小数 逼 近 法
1 2 2
1 . 4 2 1 . 5
2 2
1 . 4 2 1 . 5
1 . 41 2 1 . 42
2 2
1 . 41 2 1 . 42
9
16
36
4 25
2
1
1.4
1.5
3
4
6
2 5
?
上面的问题,实际上是已知一个正数 的平方,求这个正数的问题.
一般地,如果一个正数x的平方等于 a,即 x =a,那么这个正数x叫做a的 算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
2
即:x a(x 0 ),
2
x叫做a的算术平方根, 记作: x a
1 ( 4) 2 4
解:(1)∵ (±0.7)2=0.49
∴0.49的平方根是±0.7
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。 问题:6的平方根是多少?
非正数a的平方根,用符号±
如6的平方根表示成 6 36的平方根为 36 6
表示
例 1: 求 下 列 各 数 的 平 方 根 , 9 2 () 1100 () 2 () 3 ( 7 ) 16
2 2 1 . 414 2 1 . 415
1 . 414 2 1 . 415
利用计算器计算: 0 .0625 0.25
0 .625 0.791
6.25 2.5
625
25
62 .5 7.91 6250 79.1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档