中考数学压轴题专题反比例函数的经典综合题附答案

中考数学压轴题专题反比例函数的经典综合题附答案
中考数学压轴题专题反比例函数的经典综合题附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).

(1)求k的值;

(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.

【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,

∵点D的坐标为(,2),

∴DO=AD=3,

∴A点坐标为:(,5),

∴k=5 ;

(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,

∴D′点的纵坐标为2,设点D′(x,2)

∴2= ,解得x= ,

∴FF′=OF′﹣OF= ﹣ = ,

∴菱形ABCD平移的距离为,

同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,

菱形ABCD平移的距离为,

综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.

2.已知反比例函数y= 的图象经过点A(﹣,1).

(1)试确定此反比例函数的解析式;

(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;

(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴

的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.

【答案】(1)解:由题意得1= ,解得k=﹣,

∴反比例函数的解析式为y=﹣

(2)解:过点A作x轴的垂线交x轴于点C.

在Rt△AOC中,OC= ,AC=1,

∴OA= =2,∠AOC=30°,

∵将线段OA绕O点顺时针旋转30°得到线段OB,

∴∠AOB=30°,OB=OA=2,

∴∠BOC=60°.

过点B作x轴的垂线交x轴于点D.

在Rt△BOD中,BD=OB?sin∠BOD= ,OD= OB=1,

∴B点坐标为(﹣1,),

将x=﹣1代入y=﹣中,得y= ,

∴点B(﹣1,)在反比例函数y=﹣的图象上

(3)解:由y=﹣得xy=﹣,

∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,

∴m( m+6)=﹣,

∴m2+2 m+1=0,

∵PQ⊥x轴,∴Q点的坐标为(m,n).

∵△OQM的面积是,

∴OM?QM= ,

∵m<0,∴mn=﹣1,

∴m2n2+2 mn2+n2=0,

∴n2﹣2 n=﹣1,

∴n2﹣2 n+9=8.

【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由

△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.

3.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反

比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).

(1)求一次函数和反比例函数的解析式;

(2)根据图象,直接写出y1>y2时x的取值范围;

(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.

【答案】(1)解:把B(3,2)代入得:k=6

∴反比例函数解析式为:

把C(﹣1,n)代入,得:

n=﹣6

∴C(﹣1,﹣6)

把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:

所以一次函数解析式为y1=2x﹣4

(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.

(3)解:y轴上存在点P,使△PAB为直角三角形

如图,

过B作BP1⊥y轴于P1,

∠B P1 A=0,△P1AB为直角三角形

此时,P1(0,2)

过B作BP2⊥AB交y轴于P2

∠P2BA=90,△P2AB为直角三角形

在Rt△P1AB中,

在Rt△P1 AB和Rt△P2 AB

∴P2(0,)

综上所述,P1(0,2)、P2(0,).

【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.

4.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为

s,且s=1+ .

(1)当n=1时,求点A的坐标;

(2)若OP=AP,求k的值;

(3)设n是小于20的整数,且k≠ ,求OP2的最小值.

【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,

当n=1时,s= ,

∴a= = .

(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.

∴m=n= .

∴1+ = ?an.

即n4﹣4n2+4=0,

∴k2﹣4k+4=0,

∴k=2.

解法二:∵OP=AP,PA⊥OP,

∴△OPA是等腰直角三角形.

∴m=n.

设△OPQ的面积为s1

则:s1= ∴?mn= (1+ ),

即:n4﹣4n2+4=0,

∴k2﹣4k+4=0,

∴k=2.

(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.

设:△OPQ的面积为s1,则 =

即: = 化简得:

化简得:

2n4+2k2﹣kn4﹣4k=0

(k﹣2)(2k﹣n4)=0,

∴k=2或k= (舍去),

∴当n是小于20的整数时,k=2.

∵OP2=n2+m2=n2+ 又m>0,k=2,

∴n是大于0且小于20的整数.

当n=1时,OP2=5,

当n=2时,OP2=5,

当n=3时,OP2=32+ =9+ = ,

当n是大于3且小于20的整数时,

即当n=4、5、6…19时,OP2的值分别是:

42+ 、52+ 、62+ …192+ ,

∵192+ >182+ >32+ >5,

∴OP2的最小值是5.

【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.

5.如图,在平面直角坐标系中,直线与双曲线相交于点A(,6)和点B(-3,),直线AB与轴交于点C.

(1)求直线AB的表达式;

(2)求的值.

【答案】(1)解:∵点A(,6)和点B(-3,)在双曲线,∴m=1,n=-2,

∴点A(1,6),点B(-3,-2),

将点A、B代入直线,得,解得,

∴直线AB的表达式为:

(2)解:分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N,

则∠AMO=∠BNO=90°,AM=1,BN=3,

∴AM//BN,∴△ACM∽△BCN,

【解析】【分析】根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.

6.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)

(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;

(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.

①试求△PAD的面积的最大值;

②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.

【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.

由题意得,点A的坐标为(-3,0),分两种情况:

①当x-3时,y=x+3;

②当x<-3时,设函数解析式为y=kx+b,

在直线y=x+3中,当x=-4时,y=-1,

则点(-4,-1)关于x轴的对称点为(-4,1),

把点(-4,1),(-3,0),代入y=kx+b中,

得:,

解得:,

∴y=-x-3.

综上,新函数的解析式为y=.

(2)解:如图2,

①∵点C(1,a)在直线y=x+3上,

∴a=4,

∵点C(1,4)在反比例函数y=上,

∴k=4,

∴反比例函数的解析式为y=.

∵点D是线段AC上一动点,

∴设点D的坐标为(m,m+3),且-3

∵DP∥x轴,且点P在双曲线上,

∴点P的坐标为(,m+3),

∴PD=-m,

∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,

∵a=<0,

∴当m=时,S有最大值,最大值为,

又∵-3<<1,

∴△PAD的面积的最大值为.

②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:

当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),

∵DP=3,DE=4,

∴EP与AC不能互相平分,

∴四边形PAEC不能为平行四边形.

【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.

7.如图,在矩形OABC中,OA=6,OC=4,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数的图象与BC边交于点E.

(1)当F为AB的中点时,求该函数的解析式;

(2)当k为何值时,△EFA的面积最大,最大面积是多少?

【答案】(1)解:∵在矩形OABC中,OA=6,OC=4,∴B(6,4),

∵F为AB的中点,∴F(6,2),

又∵点F在反比例函数(k>0)的图象上,∴k=12,

∴该函数的解析式为y= (x>0)

(2)解:由题意知E,F两点坐标分别为E(,4),F(6,),

∴,

=

=

=

= ,

∴当k=12时,S有最大值.S最大=3

【解析】【分析】)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.

8.在平面直角坐标系中,我们定义点P(a,b)的“变换点”为Q.且规定:当a≥b时,Q 为(b,﹣a);当a<b时,Q为(a,﹣b).

(1)点(2,1)的变换点坐标为________;

(2)若点A(a,﹣2)的变换点在函数y= 的图象上,求a的值;

(3)已知直线l与坐标轴交于(6,0),(0,3)两点.将直线l上所有点的变换点组成一个新的图形记作M.判断抛物线y=x2+c与图形M的交点个数,以及相应的c的取值范围,请直接写出结论.

【答案】(1)(1,﹣2)

(2)解:当a≥﹣2时,则A(a,﹣2)的变换点坐标为(﹣2,﹣a),

代入y= 可得﹣a= ,解得a= ;

当a<﹣2时,则A(a,﹣2)的变换点坐标为(a,2),

代入y= 可得2= ,解得a= ,不符合题意;

综上可知a的值为;

(3)解:设直线l的解析式为y=kx+b (k≠0 ),将点(6,0)、(0,3)代入y=kx+b

得:,解得,

∴直线l的解析式为y=﹣ x+3.

当x=y时,x=﹣ x+3,解得x=2.

点C的坐标为(2,﹣2),点C的变换点的坐标为C′( 2,﹣2 ),

点(6,0)的变换点的坐标为(0,﹣6),点(0,3)的变换点的坐标为(0,﹣3),

当x≥2时,所有变换点组成的图形是以C′( 2,﹣2)为端点,过(0,﹣6 )的一条射线;即:y=2x﹣6,其中x≥2,

当x<2时,所有变换点组成的图形是以C′(2,﹣2)为端点,过(0,﹣3)的一条射线,

即y= x﹣3,其中,x<2.

所以新的图形M是以C′(2,﹣2)为端点的两条射线组成的图形.

如图所示:

由和得:x2﹣x+c+3=0①和x2﹣2x+c+6=0②

讨论一元二次方程根的判别式及抛物线与点C′的位置关系可得:

①当方程①无实数根时,即:当c>﹣时,抛物线y=x2+c与图形M没有交点;

②当方程①有两个相等实数根时,即:当c=﹣时,抛物线y=x2+c与图形M有一个交点;

③当方程②无实数根,且方程①有两个不相等的实数根时,即:当﹣5<c<﹣时,抛物线y=x2+c与图形M有两个交点;

④当方程②有两个相等实数根或y=x2+c恰好经过经过点C′时,即:当c=﹣5或c=﹣6时,抛物线y=x2+c与图形M有三个交点;

⑤当方程②方程①均有两个不相等的实数根时,且两根均小于2,即:当﹣6<c<﹣5时,抛物线y=x2+c与图形M有四个交点;

⑥当c<﹣6时,抛物线y=x2+c与图形M有两个交点.

【解析】【解答】解:(1)∵2≥﹣1,

∴点(2,1)的变换点坐标为(1,﹣2),

故答案为:(1,﹣2);

【分析】(1)由变换点的定义可求得答案;(2)由变换点的定义可求得A的变换点,代入函数解析式可求得a的值;(3)先求得直线y=x与直线l的交点坐标,然后分为当x≥2和x<2两种情况,求得M的关系式,然后在画出M的大致图象,然后将抛物线y=x2+c与M的函数关系式组成方程组,然后依据一元二次方程根的判别式进行判断即可.

9.如图,已知二次函数的图象与y轴交于点A(0,4),与x 轴交于点B,C,点C坐标为(8,0),连接AB,AC.

(1)请直接写出二次函数的解析式.

(2)判断△ABC的形状,并说明理由.

(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.

【答案】(1)解:∵二次函数的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标(8,0),

解得

∴抛物线表达式:

(2)解:△ABC是直角三角形.

令y=0,则

解得x1=8,x2=-2,

∴点B的坐标为(-2,0),

由已知可得,

在Rt△ABO中

AB2=BO2+AO2=22+42=20,

在Rt△AOC中

AC2=AO2+CO2=42+82=80,

又∴BC=OB+OC=2+8=10,

∴在△ABC中

AB2+AC2=20+80=102=BC2

∴△ABC是直角三角形

(3)解:∵A(0,4),C(8,0),

AC= =4 ,

①以A为圆心,以AC长为半径作圆,交轴于N,此时N的坐标为(-8,0),

②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为( ,0)或( ,0)

③作AC的垂直平分线,交g轴于N,此时N的坐标为(3,0),

综上,若点N在轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(-8,0)、( ,0)、(3,0)、 ,0)

【解析】【分析】(1)根据待定系数法即可求得;(2)根据拋物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC=10然后根据勾股定理的逆定理即可证得△ABC是直角三角形(3)分别以A.C两点为圆心,AC长为半径画弧,与m轴交于三个点,由AC的垂直平分线与c轴交于一个点,即可求得点N的坐标

10.已知,抛物线的图象经过点,.

(1)求这个抛物线的解析式;

(2)如图1,是抛物线对称轴上一点,连接,,试求出当的值最小时点的坐标;

(3)如图2,是线段上的一点,过点作轴,与抛物线交于点,若直线把分成面积之比为的两部分,请求出点的坐标.

【答案】(1)解:将,的坐标分别代入.

解这个方程组,得,

所以,抛物线的解析式为

(2)解:如图1,由于点、关于轴对称,所以连接,直线与轴的交点即为所求的点,

由,令,得,

解得,,

点的坐标为,

又,

易得直线的解析式为:.

当时,,

点坐标

(3)解:设点的坐标为,

所以所在的直线方程为.那么,与直线的交点坐标为,与抛物线的交点坐标为.

由题意,得

① ,即,

解这个方程,得或(舍去).

② ,即,

解这个方程,得或(舍去),

综上所述,点的坐标为,或,.

【解析】【分析】(1)将点、的坐标代入可得出、的值,继而得出这个抛物线的解析式;(2)由于点、关于轴对称,所以连接,直线与轴的交点即为所求的点,利用待定系数法确定直线的解析式,然后求得该直线与轴的交点坐标即可;(3)如图2,交于,设,根据一次函数和二次函数图象上点的坐标特征,设点的坐标为,,.

然后分类讨论:分别利用或,列关于的方程,然后分别解关于的方程,从而得到点坐标

11.如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4).点D为抛物线上一点

(1)求抛物线的解析式及A点坐标;

(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;

(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围________.

【答案】(1)解:将B(4,0),C(0,4)代入y=x2+bx+c得,

,解得,

所以抛物线的解析式为,

令y=0,得,解得,,

∴A点的坐标为(1,0)

(2)解:设D点横坐标为,则纵坐标为,

①当∠BCD=90°时,如下图所示,连接BC,过C点作CD⊥BC与抛物线交于点D,过D作DE⊥y轴与点E,

由B、C坐标可知,OB=OC=4,

∴△OBC为等腰直角三角形,

∴∠OCB=∠OBC=45°,

又∵∠BCD=90°,

∴∠ECD+∠OCB=90°

∴∠ECD=45°,

∴△CDE为等腰直角三角形,

∴DE=CE=a

∴OE=OC+CE=a+4

由D、E纵坐标相等,可得,

解得,,

当时,D点坐标为(0,4),与C重合,不符合题意,舍去.

当时,D点坐标为(6,10);

②当∠CBD=90°时,如下图所示,连接BC,过B点作BD⊥BC与抛物线交于点D,过B作FG⊥x轴,再过C作CF⊥FG于F,过D作DG⊥FG于G,

∵∠COB=∠OBF=∠BFC=90°,

∴四边形OBFC为矩形,

又∵OC=OB,

∴四边形OBFC为正方形,

∴∠CBF=45°

∵∠CBD=90°,

∴∠CBF+∠DBG=90°,

∴∠DBG=45°,

∴△DBG为等腰直角三角形,

∴DG=BG

∵D点横坐标为a,

∴DG=4-a,

而BG=

解得,,

当时,D点坐标为(4,0),与B重合,不符合题意,舍去.

当时,D点坐标为(2,-2);

综上所述,D点坐标为(6,10)或(2,-2).

(3)3+ <m <6或 3- <m <2

【解析】【解答】解:(3)当BC为斜边构成Rt△BCD时,如下图所示,以BC中点O'为圆心,以BC为直径画圆,与抛物线交于D和D',

∵BC为圆O'的直径,

∴∠BDC=∠BD'C=90°,

∵,

∴D到O'的距离为圆O'的半径,

∵D点横坐标为m,纵坐标为,O'点坐标为(2,2),

化简得:

由图像易得m=0或4为方程的解,则方程左边必有因式,

∴采用因式分解法进行降次解方程

或或,

解得,,,

当时,D点坐标为(0,4),与C点重合,舍去;

当时,D点坐标为(4,0),与B点重合,舍去;

当时,D点横坐标;

当时,D点横坐标为;

结合(2)中△BCD形成直角三角形的情况,

可得△BCD为锐角三角形时,D点横坐标m的取值范围为3+ <m <6或 3- <m <2.【分析】(1)利用待定系数法求抛物线的解析式,再令y=0,求A的坐标;(2)设D点横坐标为a,代入函数解析式可得纵坐标,分别讨论∠BCD=90°和∠CBD=90°的情况,作出图形进行求解;(3)当BC为斜边构成Rt△BCD时,以BC中点O'为圆心,以BC为直径画圆,与抛物线交于D和D',此时△BCD和△BCD'就是以BC为斜边的直角三角形,利用两点间距离公式列出方程求解,然后结合(2)找到m的取值范围.

12.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG 与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE

(1)求证:直线CG为⊙O的切线;

(2)若点H为线段OB上一点,连接CH,满足CB=CH;

①求证:△CBH∽△OBC;

②求OH+HC的最大值.

【答案】(1)证明:由题意可知:∠CAB=∠GAF,

∵AB是⊙O的直径,

∴∠ACB=90°

∵OA=OC,

∴∠CAB=∠OCA,

∴∠OCA+∠OCB=90°,

∵∠GAF=∠GCE,

∴∠GCE+∠OCB=∠OCA+∠OCB=90°,

∵OC是⊙O的半径,

∴直线CG是⊙O的切线;

(2)证明:①∵CB=CH,

∴∠CBH=∠CHB,

∵OB=OC,

∴∠CBH=∠OCB,

∴△CBH∽△OBC

解:②由△CBH∽△OBC可知:

∵AB=8,

∴BC2=HB?OC=4HB,

∴HB= ,

∴OH=OB-HB=

∵CB=CH,

∴OH+HC=

当∠BOC=90°,

此时BC=

∵∠BOC<90°,

∴0<BC<

令BC=x

∴OH+HC= = =

当x=2时,

∴OH+HC可取得最大值,最大值为5

【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,

从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

中考数学中二次函数压轴题分类总结

中考数学中二次函数压 轴题分类总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

二次函数的压轴题分类复习 一、抛物线关于三角形面积问题 例题 二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,4-). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ??=4 5 ,若存在,求出P 点的坐标;若不存在,请说明理由; (3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围. 练习: 1. 如图.平面直角坐标系xOy 中,点A 的坐标为(-2,2),点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标; (2)求抛物线的函数解析式; (3)点F 为线段OB 上的一个动点(不与O 、B 重合),直线EF 与抛物线交与M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求?BON 的面积的最大值,并求 出此时点N 的坐标; 2. 如图,已知抛物线42 12++-=x x y 交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式; (2)设),(y x P (0>x )是直线x y =上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作 正方形PEQF .若正方形PEQF 与直线AB 有公共点,求x 的取值范围; (3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值. y x O B N A M E F B y

最新中考之反比例函数填空选择压轴题

精品文档
中考之反比例函数填空选择压轴题
1、(2011?宁波)正方形的 A1B1P1P2 顶点 P1、P2 在反比例函数 y= 2 (x>0)的图象上,顶 x
点 A1、B1 分别在 x 轴、y 轴的正半轴上,再在其右侧作正方形 P2P3A2B2,顶点 P3 在反比例函
数 y= 2 (x>0)的图象上,顶点 A2 在 x 轴的正半轴上,则 P2 点的坐标为___________,则 x
点 P3 的坐标为__________。 2、已知关于 x 的方程 x2+3x+a=0 的两个实数根的倒数和等于 3,且关于 x 的方程(k-1)
x2+3x-2a=0
有实根,且
k
为正整数,正方形
ABP1P2
的顶点
P1、P2
在反比例函数
y=
k
? 1(x x
>0)图象上,顶点 A、B 分别在 x 轴和 y 轴的正半轴上,求点 P2 的坐标.
3、如图,正方形 OABC 和正方形 AEDF 各有一个顶点在一反比例函数图象上,且正方形
OABC 的边长为 2.(1)求反比例函数的解析式;(2)求点 D 的坐标.
4、两个反比例函数
y=
3 x
,y=
6 x
在第一象限内的图象如图所示,点
P1、P2
在反比例函数图象
上,过点 P1 作 x 轴的平行线与过点 P2 作 y 轴的平行线相交于点 N,若点 N(m,n)恰好在
y=
3 x
的图象上,则
NP1

NP2
的乘积是______。
4、两个反比例函数
y=
3 x
,y=
6 x
在第一象限内的图象如图所示,点
P1、P2
在反比例函数图
象上,过点 P1 作 x 轴的平行线与过点 P2 作 y 轴的平行线相交于点 N,若点 N(m,n)恰好

y=
3 x
的图象上,则
NP1

NP2
的乘积是______。
5、2007?泰安)已知三点
P1(x1,y1),P2(x2,y2),P3(1,-2)都在反比例函数
y=
k x

图象上,若 x1<0,x2>0,则下列式子正确的是( )
A.y1<y2<0
B.y1<0<y2
C.y1>y2>0
D.y1>0>y2
精品文档

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

中考数学压轴题专集二一次函数

中考数学压轴题专集二:一次函数 1、如图,在平面直角坐标中,点A 的坐标为(4,0),直线AB ⊥x 轴,直线y =- 1 4 x +3经过点B ,与y 轴交于点C . (1)求点B 的坐标; (2)直线l 经过点C ,与直线AB 交于点D ,E 是直线AB 上一点,且∠ECD =∠OCD ,CE =5,求直线l 的解析式. 解:(1)∵A (4,0),AB ⊥x 轴,∴点B 的横坐标为4 把x =4代入y =- 1 4 x +3,得y =2 ∴B (4,2) (2)∵AB ⊥x 轴,∴∠EDC =∠OCD ∵∠ECD =∠OCD ,∴∠EDC =∠ECD ∴ED =EC =5 在y =- 1 4 x +3中,当x =0时,y =3 ∴C (0,3),OC =3 过C 作CF ⊥AB 于F ,则CF =OA =4 ∴EF = EC 2 -CF 2 = 5 2 -4 2 =3 ∴FD =5-3=2,∴DA =1 ∴D (4,1) 设直线l 的解析式y =kx +b ,把C (0,3),D (4,1)代入 得:?????b =3 4k +b =1 解得 ?????k =- 1 2 b =3 ∴直线l 的解析式为y =- 1 2 x +3

2、如图,直线y=2x+4交坐标轴于A、B两点,点C为直线y=kx(k>0)上一点,且△ABC是以C为直角顶点的等腰直角三角形. (1)求点C的坐标和k的值; (2)若在直线y=kx(k>0)上存在点P,使得S△PBC=1 2S△ABC,求点P的坐标. (1)过点C分别作坐标轴的垂线,垂足为G、H 则∠HCG=90° ∵∠ACB=90°,∴∠ACG=∠BCH 又∠AGC=∠BHC=90°,AC=BC ∴△ACG≌△BCH,∴CG=CH 在y=2x+4中,令y=0,得x=-2;令x=0,得y=4 ∴A(-2,0),B(0,4),OA=2,OB=4 设CG=CH=x,则2+x=4-x 解得x=1,∴C(1,1) ∴k=1 (2)由(1)知,CG=1,AG=3 ∴AC2=BC2=12+32=10 ∴S△ABC=1 2AC 2=5,S △PBC = 1 2S△ABC= 5 2 当点P在点G左侧时 S△PBC=S△PBO+S△BOC-S△PCO ∴1 2OP×4+ 1 2×4×1- 1 2OP×1= 5 2 解得OP=1 3,∴P1(- 1 3,0) 当点P在点G右侧时 S△PBC=S△PBO-S△BOC-S△PCO ∴1 2OP×4- 1 2×4×1- 1 2OP×1= 5 2 解得OP=3,∴P2(3,0)

反比例函数压轴题

反比例函数 经典结论: 如图,反比例函数k 的几何意义: (I ) 1 2 AOB AOC S S k ??== ; (II ) OBAC S k =矩形。 下面两个结论是上述结论的拓展. (1) 如图①, OPA OCD S S ??=,OPC PADC S S ?=梯形。 (2)如图②, O A P B O B C S S =梯形梯形,BPE ACE S S ??=。 1.如图,已知双曲线(0)k y x x = >经过矩形OABC 边AB 的中点F 且交BC 于点E ,四边形OEBF 的面积为2,则k = ; 2.如图,点A B 、为直线y x =上的两点,过A B 、两点分别作y 轴的平行线交双曲线 1 (0)y x x =>于C D 、两点,若2BD AC =,则224OC OD -= . 3.如果一个正比例函数的图象与一个反比例函数x y 6 =的图象交),(),,(2211y x B y x A ,那么 ))((1212y y x x --值为 .

4. 如图,一次函数b kx y +=的图象与反比例函数x m y =的图象交于点A ﹙-2,-5﹚,C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D . (1) 求反比例函数x m y = 和一次函数b kx y +=的表达式; (2) 连接OA ,OC .求△AOC 的面积. 5.如图,已知直线12y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)k y k x = >上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)k y k x =>于P Q ,两点(P 点在第一象限), 若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.

2018年度中考数学压轴题

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,

∵AP=x ,∴BP=10﹣x ,BQ=2x ,∵△QHB ∽△ACB , ∴ QH QB AC AB = ,∴QH=错误!未找到引用源。x ,y=错误!未找到引用源。BP ?QH=1 2 (10﹣x )?错误!未找到引用源。x=﹣4 5 x 2+8x (0<x ≤3), ②当点Q 在边CA 上运动时,过点Q 作QH ′⊥AB 于H ′, ∵AP=x , ∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH ′∽△ABC , ∴'AQ QH AB BC =,即:' 14106 x QH -=错误!未找到引用源。,解得:QH ′=错误!未找到引用源。(14﹣x ), ∴y= 12PB ?QH ′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

中考数学函数之一次函数和反比例函数综合问题压轴题专题

中考数学函数之一次函数和反比例函数综 合问题压轴题专题Revised on November 25, 2020

《中考压轴题全揭秘》三年经典中考压轴题 函数之一次函数和反比例函数综合问题 1.(2014年福建泉州14分)如图,直线y =﹣x +3与x ,y 轴分别交于点A ,B ,与反比例函数的图象交于点P (2,1). (1)求该反比例函数的关系式; (2)设PC ⊥y 轴于点C ,点A 关于y 轴的对称点为A ′; ①求△A ′BC 的周长和sin ∠BA ′C 的值; ②对大于1的常数m ,求x 轴上的点M 的坐标,使得sin ∠BMC = 1m . 2.(2014年黑龙江牡丹江10分)如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A ,B ,直线CD 与x 轴、y 轴分别交于点C ,D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程x 2﹣18x +72=0的两根(OA >OC ),BE =5,tan ∠ABO =4 3. (1)求点A ,C 的坐标; (2)若反比例函数y = k x 的图象经过点E ,求k 的值; (3)若点P 在坐标轴上,在平面内是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由. 3.(2014年江苏淮安12分)如图,点A (1,6)和点M (m ,n )都在反比例函数k y x =(x >0)的图象上, (1)k 的值为 ; (2)当m =3,求直线AM 的解析式; (3)当m >1时,过点M 作MP ⊥x 轴,垂足为P ,过点A 作AB ⊥y 轴,垂足为B ,试判断直线BP 与直线AM 的位置关系,并说明理由. 4.(2014年山东枣庄10分)如图,一次函数y =ax +b 与反比例函数k y x =的图象交于A 、B 两点,点A 坐标为(m ,2),点B 坐标为(﹣4,n ),OA 与x 轴正半轴夹角的正切值为1 3 ,直线AB 交y 轴于点C ,过C 作y 轴 的垂线,交反比例函数图象于点D ,连接OD 、B D . (1)求一次函数与反比例函数的解析式; (2)求四边形OCBD 的面积. 5. (2014年四川巴中10分)如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数1 k y x = (x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .设直线EF 的解析式为2y k x b =+.(1)求反比例函数和直线EF 的解析式; (2)求△OEF 的面积; (3)请结合图象直接写出不等式1 2k k x b >0x +- 的解集.

初中中考数学压轴题及答案-中考数学压轴题100题及答案

中考数学专题复习——压轴题 1. 已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式; (2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积; (3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2 +bx+c(a ≠0)的顶点坐标为??? ? ??--a b ac a b 44,22) 2. 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交 AC 于 R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长; (2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM A B C D E R P H Q

=x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少? 4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积 等于 4 3 ,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由 . 5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2. (1)求证:△BDE ≌△BCF ; (2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为S ,求S 的取值范围 . P 图 3 B D 图 2 B 图 1

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

中考数学反比例函数-经典压轴题附答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题) 1.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2. (1)求双曲线的解析式; (2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________; (3)点(6,n)为G1与G2的交点坐标,求a的值. (4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围. 【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得, 所以双曲线的解析式为y= ; (2)2 (3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2), 抛物线G2的解析式为y=﹣(x﹣a)2+9, 把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± , 即a的值为6± ; (4)抛物线G2的解析式为y=﹣(x﹣a)2+9, 把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ; 把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2 ; ∵G1与G2有两个交点, ∴3+ ≤a≤12﹣2 , 设直线DE的解析式为y=px+q,

把D(3,4),E(12,1)代入得,解得, ∴直线DE的解析式为y=﹣ x+5, ∵G2的对称轴分别交线段DE和G1于M、N两点, ∴M(a,﹣ a+5),N(a,), ∵MN<, ∴﹣ a+5﹣<, 整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0, ∴a<4或a>9, ∴a的取值范围为9<a≤12﹣2 . 【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4), 所以BE= =2 . 故答案为2 ; 【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的 解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围. 2.如图,已知一次函数y= x+b的图象与反比例函数y= (x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.

河北省中考数学压轴题汇总

2010/26.(本小题满分12分) 某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售 价格y (元/件)与月销量x (件)的函数关系式为y =100 1 - x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳 100 1x 2 元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费). (1)当x = 1000时,y = 元/件,w 内 = 元; (2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内 销售月利润的最大值相同,求a 的值; (4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还 是在国外销售才能使所获月利润较大? 参考公式:抛物线的顶点坐标是2 4(,)24b ac b a a --. 2011/26.(本小题满分12分) 如图15,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒1个单位长的速度运动t (t >0) 秒,抛物线y =x 2 +bx +c 经过点O 和点P .已知矩形ABCD 的三个顶点为A (1,0)、B (1,-5)、D (4,0). ⑴求c 、b (用含t 的代数式表示); ⑵当4<t <5时,设抛物线分别与线段AB 、CD 交于点M 、N . ①在点P 的运动过程中,你认为∠AMP 的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值; ②求△MPN 的面积S 与t 的函数关系式,并求t 为何值时,S= 21 8 ; ③在矩形ABCD 的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接.. 写出t 的取值范围. 2012/26.(12分)如图1和2,在△ABC 中,AB=13,BC=14,cos ∠ABC=. 探究:如图1,AH ⊥BC 于点H ,则AH= ,AC= ,△ABC 的面积S △ABC = ; 拓展:如图2,点D 在AC 上(可与点A ,C 重合),分别过点A 、C 作直线BD 的垂线,垂足为E ,F ,设BD=x ,AE=m ,CF=n (当点D 与点A 重合时,我们认为S △ABD =0)

2019年各省市中考数学压轴题合辑5(湖南专辑)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】 2019年各省市中考数学压轴题合辑(五) 1.(2019?长沙)如图,抛物线26(y ax ax a =+为常数,0)a >与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(30)t -<<,连接BD 并延长与过O ,A ,B 三点的P e 相交于点C . (1)求点A 的坐标; (2)过点C 作P e 的切线CE 交x 轴于点E . ①如图1,求证:CE DE =; ②如图2,连接AC ,BE ,BO ,当3a = ,CAE OBE ∠=∠时,求11OD OE -的值.

2.(2019?长沙)已知抛物线22(2)(2020)(y x b x c b =-+-+-,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值; (2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围; (3)在(1)的条件下,存在正实数m ,n (m <n ),当m ≤x ≤n 时,恰好≤≤, 求m ,n 的值.

3.(2019?长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比. (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”). ①四条边成比例的两个凸四边形相似;(命题) ②三个角分别相等的两个凸四边形相似;(命题) ③两个大小不同的正方形相似.(命题) (2)如图1,在四边形ABCD和四边形 1111 A B C D中, 111 ABC A B C ∠=∠, 111 BCD B C D ∠=∠,111111 AB BC CD A B B C C D ==.求证:四边形ABCD与四边形 1111 A B C D相似. (3)如图2,四边形ABCD中,// AB CD,AC与BD相交于点O,过点O作// EF AB分 别交AD,BC于点E,F.记四边形ABFE的面积为 1 S,四边形EFCD的面积为 2 S,若 四边形ABFE与四边形EFCD相似,求2 1 S S 的值.

2018年中考数学二次函数压轴题集锦(50道含解析)

1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC. (1)请直接写出二次函数y=ax2+x+c的表达式; (2)判断△ABC的形状,并说明理由; (3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标; (4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标. 2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N). 已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2). (1)求d(点O,△ABC); (2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围; (3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围. 3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1). (1)求线段AB的长; (2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点 H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;

(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由. 4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式; (2)过点A的直线交直线BC于点M. ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标; ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.

反比例函数压轴题精选(含标准答案)

中考反比例函数 经典结论: 如图,反比例函数k 的几何意义: (I ) 12 AOB AOC S S k ??==; (II ) OBAC S k =矩形。 下面两个结论是上述结论的拓展. (1) 如图①, OPA OCD S S ??=,OPC PADC S S ?=梯形 (2)如图②, OAPB OBCA S S =梯形梯形,BPE S S ??= 经典例题 例 1.(1)(兰州)如图,已知双曲线(0)k y x x => 经过矩形 OABC 边AB 的中点F 且交BC 于点E ,四边形OEBF 的面积 为2,则k = ; (2) 如图,点A B 、为直线y x =上的两点,过A B 、两点分别作y 轴的平行线交双曲线1 (0)y x x =>于C D 、两点,若2BD AC =,则224OC OD -= 例2.如果一个正比例函数的图象与一

个反比例函数x y 6 =的图象交),(),,(2211y x B y x A ,那么))((1212y y x x --值为 . 例3.如图,一次函数b kx y +=的图象与反比例函数x m y =的图象交于点A ﹙-2,-5﹚, C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点 D . (1) 求反比例函数x m y =和一次函数 kx y +=(2) 连接OA ,OC .求△AOC 的面积. 例4.

如图,已知直线1 2y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)k y k x =>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)k y k x =>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标. 例5.(山东淄博) 如图,正方形AOCB 的边长为4,反比例函数的图象过点E (3,4). (1)求反比例函数的解读式; 图2 图 4 y 图1

中考数学压轴题解题方法大全及技巧

中考数学压轴题解题技巧 竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定 义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。

相关文档
最新文档