悬臂梁ansys有限元分析求最大挠度

合集下载

悬臂梁分析报告

悬臂梁分析报告

悬臂梁受力分析报告高一博2016.11.13西安理工大学机械与精密仪器工程学院摘要利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。

从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。

关键词:悬臂梁,变形分析,应力分析目录一.问题描述: (4)二.分析的目的和内容: (4)三.分析方案和有限元建模方法: (4)四.几何模型 (4)五.有限元模型 (4)六.计算结果: (5)七.结果合理性的讨论、分析 (8)八.结论 (8)参考文献 (8)一.问题描述:现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。

其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。

二.分析的目的和内容:1.观察悬臂梁的变形情况;2.观察分析悬臂梁的应力变化;3.找出其最大变形和最大应力点,分析形成原因;三.分析方案和有限元建模方法:1.使用ANSYS-modeling-create-volumes-block建模,2.对梁进行材料定义,网格划分。

3.一端固定,另外一端施加一个向下的200N的力。

4.后处理中查看梁的应力和变形情况。

四.几何模型500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。

五.有限元模型单元类型:solid brick8node45材料参数:弹性模量2e+11pa,泊松比0.3边界条件:一端固定,一端施加载荷载荷:F=200N划分网格后的悬臂梁模型六.计算结果:变形位移图等效应力图局部应力图七.结果合理性的讨论、分析1.位移分析:在变形位移图上,在约束端位移最小为零,受压端位移最大。

与实际结果一致。

2.应力分析:在应力图上,应力最大处在约束端,而最小的位于受压端,与变形图相对应。

通过材料力学计算可知约束端的所受弯矩最大。

两个结果印证无误。

3.局部应力分析:在局部应力图上,可以看出在固定端上表面存有较大的应力,且为拉应力,受压端直角尖处有最大应力,从形成原因上分析属于尖角处应力集中。

ansys-二维悬臂梁有限元分析

ansys-二维悬臂梁有限元分析

1 研究目的与问题阐述1.1 基本研究目的(1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。

(2) 熟悉有限元建模、求解及结果分析步骤和方法。

(3) 利用ANSYS软件对梁结构进行有限元计算。

(4) 研究不同泊松比对同一位置应力的影响。

1.2 基本问题提出图1.1 模型示意图如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。

当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。

采用二维模型,3*0.09m。

2 软件知识学习2.1 软件的使用与介绍软件介绍:ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。

由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。

ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。

因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。

软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。

前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。

基于ANSYS和SolidWorks的有限元仿真对比研究

基于ANSYS和SolidWorks的有限元仿真对比研究

基于ANSYS和SolidWorks的有限元仿真对比研究作者:耿贺松覃天意李明伟来源:《科学与信息化》2019年第12期摘要结合ANSYS和SolidWorks有限元分析过程,以工字形悬臂梁为优化对象,进行了ANSYS与SolidWorks有限元模拟的对比研究。

首先,利用材料力学知识计算出经典工字悬臂梁的最大应力及挠度理论值。

然后,分别利用ANSYS和SolidWorks软件,对工字悬臂梁模型进行了有限元分析。

最后,将理论值与有限元分析结果进行了比较,总结出两种软件在分析过程中的优缺点,为ANSYS和SolidWorks在有限元模拟和优化中的应用提供参考。

关键词工字悬臂梁;ANSYS;SolidWorks;有限元分析Abstract Combined with the finite element analysis process of ANSYS and SolidWorks, an I-shaped cantilever beam is optimized using ANSYS and SolidWorks for comparative study. First, the theoretical values of the maximum stress and deflection of a classical I-shaped cantilever beam are calculated by material mechanics knowledge. Then, ANSYS and SolidWorks are respectively used to carry out finite element analysis on the I-shaped cantilever beam model. Finally, the theoretical values are compared with the results of finite element analysis. The advantages and disadvantages of the two kinds of software in the analysis process are summarized, so as to provide reference for the application of ANSYS and SolidWorks in the finite element simulation optimization.Key words I-shaped cantilever beam; ANSYS; SolidWorks; Finite element analysis引言结构是工程应用中的一个重要环节,如果结构不合理,可能导致构件的承载力不够或者由于结构过于复杂造成原材料大量浪费[1],因此需要进行结构优化。

基于有限元软件ANSYS分析简单悬臂梁的模型

基于有限元软件ANSYS分析简单悬臂梁的模型

2.2有 限元 网格 处理 速度 的提升
Cntrls—}ManualSize_ Lines—}AU Lines
有 限元分 析 过程 主要 包含 了三 个 步骤 :对 分 析对 象进 行 离 ANSYS Ma in Menu: Preprocessor _+ Meshing-+MeshrI l
2018.26科 学技 术创新 一123一
基 于有 限元软 件 ANSYS分析 简单悬臂 梁 的模 型
郭安 江 (安徽理工大学 土木建筑学院,安徽 淮南 232001)
摘 要:作为 目前世界上发展最快的计算机辅助工程(cAE)工具 ,NSYS软件的接 口可 以与大多数计算机辅助 工程(cAE)工具
关键 词 :ANSYS软件 ;有 限元 ;线 性 ;悬臂 梁
中 图 分 类 号 :TU375.1
文 献 标 识 码 :A
文章 编号 :2096-4390(2018)26-0123—02
1 ANSYS软 件简 介
于应用线性理论来解决破坏 、裂纹扩展等问题 ,还需要解决材料
为了验证某机械结构系统是否满足安全性等设计需求 ,我 的塑形和蠕变效应 ,此时必须求解材料的非线性问题 ,例如对塑
连接。计算机辅助设计软件相对应 ,为数据的共享和交流提供 了便利 ,例如 Creo,NASTRAN,I-DEAS,AutoCAD等软件 。ANSYS
软件 。包含 了多种有限元分析软件的功能 ,从 简单的线性静 力分析到非常复杂的非线性动 力分析 ,再到电磁 分析、流体分析 、热分
析等。在每一个不同的工程领域 ,ANSYS软件分析方法有所差别 ,步骤也不一样。本文主要分析简单悬臂梁的有限元模型。
散化 处理 、有 限元求 解 、对计 算 结果 进行 后处 理 。过 去 由于计 算 Mesh:lines

有限元分析及应用报告-利用ANSYS软件分析带孔悬臂梁

有限元分析及应用报告-利用ANSYS软件分析带孔悬臂梁

有限元分析及应用报告题目:利用ANSY软件分析带孔悬臂梁姓名:xxx学号:xxx班级:机械xxx学院: 机械学院指导老师:xxx二零一五年一月问题概述图示为一隧道断面,其内受均布水压力q,外受土壤均布压力p;试采用不同单元计算断面内的位移及应力,并分别分析q=0或p=0时的位移和应力分布情况。

(材料为钢,隧道几何尺寸和压力大小自行确定)本例假定内圆半径为1m,外圆半径为2m,外受均布压力p=10000pa ,内受均布压力为q=20000pa 。

问题分析由题目可知,隧道的的长度尺寸远远大于截面尺寸,并且压力在长度方向上均匀分布,因此本问题可以看作为平面应变问题。

由于在一个截面内,压力沿截面四周均匀分布,且截面是对称的圆环,所以可以只取截面1/4进行有限元建模分析,这样不仅简化了建模分析过程,也能保证得到精确的结果。

由以上分析,可以选取单元类型plane42进行有限元分析,在option中选择K3 为plane strain。

三.有限元建模1.设置计算类型由问题分析可知本问题属于平面静应力问题,所以选择preferences 为structure 。

2.单元类型选定选取平面四节点常应变单元plane42,来计算分析隧道截面的位移和应力。

由于此问题为平面应变问题,在设置element type的K3时将其设置为plane strain。

3.材料参数隧道的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比(T =0.34.几何建模按照题目所给尺寸利用ansys的modeling依次建立keypoint :1(0,0),2(1,0),3(2,0),4(0,2),5(0,1) , create LINES 依次连接keypoint 2、3和4、5即可创建两条直线,使用create article 的By cent & radius 创建两条圆弧。

create AREAS依次选择四条线即建立了所需的1/4截面。

ansys工字悬臂梁受力分析

ansys工字悬臂梁受力分析

命令流:MPDATA,EX,1,,2.11e11
MPDAA,PRXY,1,,0.3

• 3) 在Define Material Model Behavior对话框中选择Material→Exit命令, 关闭对话框。
• 4) 选择MainMenu→Preprocessor→Sections→Beam→CmmonSectns 命令,出现BeamTool对话框,在Sub-Type下拉菜单中选择工字梁标记,在 W1、W2、W3、t1、t2、t3输入栏中分别输入32a型工字梁的特征参数,如 图所示。单击【Preview】按钮,ANSYS显示窗口将显示工字梁的相关信息
• 2) 在NPT Keypoint number输入栏中输入1,在X、Y、Z Location in active CS输入栏中分别 输入0,0,0,如图所示。 命令流:K,1,0,0,0,
• 3)单击【Apply】按钮,在NPT Keypoint number输入栏中输入2,在X,Y,Z Location in active CS输入栏中分别输入1,0,0,单击【OK】按钮关闭该对话框 命令流:K,2,1,0,0,
命令流:/TITLE,eometric model
• 8)选择Utility Menu→Plot→Lines命令,ANSYS显示窗口将显示如图所示的几何模型。
• 9)选择MainMenu→Preprocessor→Meshing→Size Cntrls→ManulSize→Lines →PickedLines命令, 出现Element Size on Picked Lines 拾取菜单,如图所示,用鼠标在ANSYS 显示窗口选取编号为L1的线段,单击【OK】按钮,出现Element Size on Picked Lines对话框, 在NDIV No.of element divisions 输入栏中输入10,其余选项采用默认设置,如图所示,单击【 OK】按钮关闭该对话框。

高耀东编著《ANSYS 18.2有限元分析与应用实例 》用SOLID185单元分析悬臂梁的剪切闭锁

高耀东编著《ANSYS 18.2有限元分析与应用实例 》用SOLID185单元分析悬臂梁的剪切闭锁

SOLVE
!求解
FINISH
/POST1 PLNSOL, U,Y
!显示变形云图
FINISH
50
4
4
92

2
50
50
4
4
25
缩减积分
0.2
0.217

3
10
50
4
4
25
全积分
25
9.782

4
10
50
4
20
200
全积分
25
24.658

5
10
50
4
4
25
缩减积分
25
26.402

分析结果表明,梁最大挠度的有限元全积分解小于理论解,全积分解小于缩减积分解, 梁高度较小时,采用全积分和较大的单元尺寸时会发生剪切闭锁,计算误差较大。
!定义材料模型
BLOCK,0,L,0,H,0,B
!创建六面体
LESIZE, 1,,,4 $ LESIZE, 9,,,4 $ LESIZE, 2,,,25
!指定直线划分单元段数
VMESH, 1
!对体划分单元
FINISH
/SOLU DA,5,ALL
!在面上施加全约束,模拟固定端
KSEL,S,LOC,X,L $ FK,ALL,FY,-P/4 $ ALLS !在关键点上加集中力
实例 E6-1 用 SOLID185 单元分析悬臂梁的剪切闭锁
已知如图 6-9 所示的悬臂梁的长度 L=0.5m,矩形截面,材料为钢,作用在梁上的集中 力 P=500N。下面用 ANSYS 对梁的变形进行研究,分析剪切闭锁的影响。分析使用的单元 类型为 SOLID185,采用的参数和分析结果见表 6-3。其中,梁最大挠度的理论解采用以下 公式

基于ANSYS不同截面悬臂梁性能的有限元分析

基于ANSYS不同截面悬臂梁性能的有限元分析
F in ite elem en t ana lysis on a var iable section can tilever beaed on ANSY S
SHEN Ha i - n ing1 , YANG Ya - p ing2 (11M echanical Engineering Departm ent of Q inghai University, Xining 810016, China;
摘要 :通过 ANSYS有限元软件 ,分析了等截面 、变截面各向同性悬臂梁的强度和刚度 ,通过应 力云图显示了悬臂梁不同截面位置的应力分布情况 ,且与理论值吻合 ,为工程中设计变截面梁 和解决强度等问题提供了参考 。 关键词 : ANSYS软件 ;悬臂梁 ;有限元分析 ;应力云图 ;强度 ;刚度 中图分类号 : O34 文献标识码 : A 文章编号 : 1006 - 8996 (2009) 03 - 0006 - 05
工程中经常用到悬臂梁结构 ,在保证悬臂梁结构所需的强度 、刚度 、稳定性前提下 ,考虑选材和节省 材料是非常重要的 。本文就同种材料 、相同体积用料 ,不同截面的各向同性悬臂梁 ,从变形和应力及其 分布方面进行分析 ,并加以对比 ,以便在工程运用当中借鉴参考 。
1 初始条件
作悬臂梁有限元分析时 ,为能更清楚的说明问题 ,给出梁的实际数据进行分析 。第一种梁为等截面 矩形悬臂梁 , l = 1 270 mm ,厚度 t = 50 mm ,高度 h1 = 2h2 = 152 mm , (图 1,以下称梁 1) 。第二种梁为变 截面矩形悬臂梁 , l = 1 270 mm ,厚度 t = 50 mm ,截面高度从 h2 到 3h2 成线性变化 h2 = 76 mm , (图 2,以
由拉应力分布图 13、图 14,显示最大拉应力分别为 1171414 M Pa和 591013 M Pa,梁 1出现在固定端 截面的上边缘 ,梁 2出现在中部截面的上边缘 。梁 1、梁 2的最大拉应力和各自的最大水平应力位置基 本相同 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一) 悬臂梁ansys 有限元分析求最大挠度
问题:悬臂梁长1000mm ,宽50mm ,高10mm ,左端固定,求其在自重作用下的最大挠度?
解:弯矩方程:
2
21)()(x l q x M --=
微分方程:
2
21'')(x l q y EI z -=
积分求解:D
Cx qx qlx x ql y EI C
qx qlx x ql y EI z z +++-=++-=4322322'24
1
6125.06
1
5.05.0
由边界条件:0;
0,
0'
'
====A A A y y x θ 得:C=0,D=0
I=1/12*h^3*b,h 为梁截面的高,b 为梁截面的宽。

q=ρ*g*a*h*l
材料力学公式求:Y=EI
85
gahl^ρ=5.733mm
q EI
L
ANSYS 模拟求:Y=5.5392mm,详细见下步骤
ANSYS 软件设置及其具体过程如下:
步骤1:建立一个模型,在model下creat一个长1,宽0.05,高0.01的长方体实体。

(单位默认为m)
步骤2:材料属性设置。

密度:7800,杨氏模量:2E11,泊松比0.3。

步骤3:划分网格。

设置网格单元为structure solid brick 8node 185,mesh tool中设置网格大小为0.002,HEX下点击mesh。

步骤4:施加载荷;在preprocessor中inertia中设置重力加速度Y方向为9.8。

在左面施加固定约束(三个方向固定)
步骤5::求解。

在solve下solve current LS。

步骤6:后处理查看。

在result中plot result,查看nodes displacement。

List查看文本,观察nodes的最大位移点。

相关文档
最新文档