控制系统的时域分析
控制工程基础第二章控制系统的时域分析

2.2线性系统的时域性能指标
为了评价线性系统的时间响应的性能,需要研究其在典型输入信号 作用下的时间响应过程。在典型输入信号的作用下,控制系统的时间响 应分为动态过程和稳态过程两部分。
动态过程又称为过渡过程或瞬态过程,是指系统在典型输入信号作 用下,其输出量从初始状态到最终状态的响应过程。根据系统结构和参 数的选择情况,动态过程表现为衰减、发散或等幅振荡的形式。显然, 一个实际运行的系统其动态过程必须是衰减的,也就是说,系统必须是 稳定的。动态过程除提供系统稳定的信息外,还可以提供其相应速度和 阻尼情况等信息,这些特性用动态性能指标描述。
控制系统的单位阶跃响应常用h(t)表示,单位阶跃响应曲线及 时域性能指标如图2-2所示。
图2-2 单位阶跃响应曲线及时域性能指标
(1)延迟时间 td。响应曲线第一次达到稳态值的一半所需的时间 称为延迟时间。 (2)上升时间 tr。上升时间是响应曲线从稳态值的10%上升到90%所 需的时间;或从0上升到100%所需的时间。对于欠阻尼二阶系统,通 常采用0~100%的上升时间;对于过阻尼系统,通常采用10%~90%的 上升时间。上升时间越短,响应速度越快。 (3)峰值时间tp。响应曲线达到超调量的第一个峰值所需要的时间称 为峰值时间。 (4)调节时间ts。调节时间是在响应曲线的稳态线上,用稳态值的百 分数(通常Δ取5%或2%)做一个允许误差范围,响应曲线达到并永远 保持在这一允许误差范围内所需的时间。 (5)最大超调量Mp。最大超调量指响应的最大偏离量h(tp)与终值h(∞ )之差的百分比,用σ%表示:
所谓时域分析法,就是在时域内通过拉氏变换求解系统的微分方 程,得到系统的时间响应,根据相应表达式和相应曲线分析系统的稳 定性、稳态误差等指标。
本章主要介绍时域响应及典型的输入信号;一阶、二阶系统的时 间响应;高阶系统的时间响应及主导极点、偶极子及高阶系统的降阶 方法;稳态误差的概念和计算方法,以及提高系统稳态精度的方法。
控制系统的时域分析

12/7/2017
1
A s2 2
3
一、控制系统的时域分析
•1. 时域分析的一般方法 一个动态系统的性质常用典型输入下的响应来描述,响应是指 零初 始条件下某种典型的输入作用下对象的响应,控制系统 常用的输入为单位阶跃函数和脉冲激励函数。在MATLAB的控制 系统工具箱中提供了求取两种输入下系统典型响应的函数 step( )和impulse( )。
实验二 控制系统的时域分析
知识回顾:
Step Response
• (1)tf()函数 • Eg: G=tf([1],[1 1]); • (2) step()函数 • Eg: step(G); • (3)impulse()函数 • Eg: impulse (G);
1 0.9 0.8 0.7 0.6
Amplitude
• Matlab中没有斜坡响应命令,需利用阶跃响应命令来求斜坡。 • Den*s后做阶跃响应,相当于den没乘s做斜坡响应。
P190 例8.7
Step Response 2500
2000
1500
Amplitude
1000
500
0
0
20
40
60 Time (seconds)
80
100
120
(4)[r,p,k]=residue(num,den)
给出F(x)=A(x)/B(x)部分分式展开式中的留数、极点和余项:
二、Simulink 下时域分析
• 1.单位阶跃 1(t) • 2. 单位斜坡 t*1(t)
• 3. 周期单位脉冲 δ(t)
• 4.正弦 Asin(wt+φ)
三、系统的时域响应
1.分别用simulink和命令画出如下系统在单位阶跃、斜坡,以及 脉冲信号的时域响应曲线;(仿真时间50s)
控制系统时域分析法

(四)脉冲信号 单位脉冲信号旳体现式为: (3.4) 其图形如图3-4所示。是一宽度为e ,高度为1/e 旳矩形脉冲,当e 趋于零时就得理想旳单位脉冲信号(亦称d(t) 函数)。 (3.5)
3. 上升时间tr——它有几种定义: (1) 响应曲线从稳态值旳10%到90%所需时间; (2) 响应曲线从稳态值旳5%到95%所需时间; (3) 响应曲线从零开始至第一次到达稳态值所需旳时间。 一般对有振荡旳系统常用“(3)”,对无振荡旳系统常用“(1)”。4. 峰值时间tp——响应曲线到达第一种峰值所需旳时间,定义为峰值时间。 5. 调整时间ts——响应曲线从零开始到进入稳态值旳95%~105%(或98%~102%)误差带时所需要旳时间,定义为调整时间。
由式(3.9),很轻易找到系统输出值与时间常数T旳相应关系:从中能够看出,响应曲线在经过3T(5%误差)或4T(2%误差)旳时间后进入稳态。
t = T, c(1T) = 0.632 c(∞)t = 2T, c(2T) = 0.865c(∞)t = 3T, c(3T) = 0.950c(∞)t = 4T, c(4T) = 0.982c(∞)
下面分别对二阶系统在0< z <1,z =1,和z >1三种情况下旳阶跃响应进行讨论。 1. 0<z <1,称为欠阻尼情况 按式(3.14),系统传递函数可写为 GB(s)= (3.17) 它有一对共轭复数根 (3.18) 式中 称为有阻尼振荡频率。
假如系统响应曲线以初始速率继续增长,如图3-9中 旳c1(t)所示,T还可定义为c1(t)曲线到达稳态值所需要 旳时间。
(3.13)
所以
当t= T时,c1(t)曲线到达稳态值,即
所以
(二)二阶系统旳阶跃响应 在工程实际中,三阶或三阶以以上旳系统,常能够近似或降阶为二阶系统处理。
控制系统的时域响应分析

控制系统的时域响应分析
控制系统是指将环境及机器内部参数调节到所需状态的系统,它通过检测及控制参数的变化来实现控制的目的,稳定状态,使之不受外界参数的干扰。
控制系统的时域响应分析,是指控制系统对系统参数和环境影响做出的时间分布响应。
时域响应分析可以根据控制系统的结构特征和实现方式来进行,具体可以分为三类:一是闭环响应分析,在这种情况下,系统中的输出经过一定的误差修正后,又会作为输入反馈回系统,实现系统本身的稳定性。
二是开环响应分析,在这种情况下,系统的输出受到输入的影响,但没有反馈回系统,因此,系统不能自行稳定,而只能在输入变化的情况下,通过外部调节来实现。
第三是多参数响应分析,在这种情况下,控制系统不仅考虑输入和输出,还考虑参数的变化,对待调参数进行调节。
一般来说,控制系统的时域响应分析可以包括系统的调节时间、调节准确度、均衡时间等。
调节时间,指的是控制系统输出参数达到稳定态所需要的时间,它可以反映出控制系统的稳定性。
第12讲 控制系统的时域分析总结

6
输入信号的图形 3.1 时间响应与输入信号
µ (t )
r (t )
a(t )
(a)
(b)
(c)
δ (t )
1
f (t)
h
t
t
h
(d)
(e)
7
常用的典型输入信号 3.1 时间响应与输入信号
�(1)单位阶跃信号
(a) 所示,其幅值高度等于 1个单位时称为单位阶跃信 如图 如图(a) (a)所示,其幅值高度等于 所示,其幅值高度等于1 µ (t ) 号,其数学表达式为:
1− ξ
1−ξ 2 ξ
2
sin (ωd t + β ) , ( t ≥ 0 )
。上式中第一项是稳态项,第二项 式中, β = arctg 瞬态项是随时间 t而衰减的正弦振荡函数。振荡频率 为 ωd 。
20
3.3 二阶系统时间响应 二阶系统的单位阶跃响应
� (2)临界阻尼情况( ξ = 1 ) 系统有两个相等的负实根,这时
3
系统阶跃响应及动态性能指标
阶跃响应到达并 保持在终值 5%误 差带内所需的最 短时间
4
3.1
时间响应与输入信号
研究系统的动态特性,就是研究系统在输入信号作用 下,输出量是怎样按输入量的作用而变化的,亦即系统对 输入信号如何产生影响。 在分析和设计系统时,需要有一个对各种系统性能进 预先规定一些具有特殊形式 行比较的基础,这种基础就是 行比较的基础,这种基础就是预先规定一些具有特殊形式 的试验信号作为系统的输入(典型输入信号), 然后比较 的试验信号作为系统的输入(典型输入信号),然后比较 各种系统随这些输入信号的响应。
16
3.3 二阶系统时间响应 过阻尼系统
控制系统时域分析

控制系统时域分析控制系统是指由各种元件和装置组成的,用于控制、调节和稳定各种过程的系统。
在控制系统的设计和分析中,时域分析是一种常用的方法。
时域分析可以通过考察系统输出信号在时间上的变化来评估系统的性能和稳定性。
本文将介绍控制系统的时域分析方法及其在工程实践中的应用。
1. 时域分析的基本概念时域分析是指通过观察系统输入和输出信号在时间轴上的波形变化,来分析控制系统的性能和特性。
在时域分析中,常用的指标包括系统的响应时间、稳态误差、超调量、振荡频率等。
2. 系统的单位阶跃响应单位阶跃响应是指将系统输入信号设置为单位阶跃函数,观察系统输出信号的变化。
单位阶跃响应可以反映系统的动态特性,包括系统的稳态响应和暂态响应。
通过观察单位阶跃响应的波形,可以评估系统的超调量、上升时间、峰值时间等性能指标。
3. 系统的单位脉冲响应单位脉冲响应是指将系统输入信号设置为单位脉冲函数,观察系统输出信号的变化。
单位脉冲响应可以用来确定系统的传递函数和冲激响应。
通过观察单位脉冲响应的波形,可以计算系统的阶跃响应和频率响应等特性。
4. 系统的稳态误差分析稳态误差是指系统输出信号与期望输出信号之间的偏差。
稳态误差分析是用来评估系统在稳态下的性能。
根据系统的稳态误差特性,可以对系统进行进一步的补偿和优化。
通常,稳态误差可以通过单位阶跃响应和传递函数来计算。
5. 系统的波形分析波形分析是指通过观察系统输入和输出信号的波形,来分析系统的性能和特性。
波形分析可以帮助工程师判断系统是否存在超调、振荡和阻尼等问题,从而进行相应的调整和改进。
6. 控制系统的频域分析虽然时域分析是评估控制系统性能的常用方法,但有时候需要使用频域分析来更全面地了解系统的特性。
频域分析可以通过考察系统的频率响应函数来评估系统的稳定性和抗干扰性能。
常见的频域分析方法包括傅里叶变换、拉普拉斯变换和频率响应曲线等。
总结:时域分析是控制系统设计和分析中重要的工具之一。
通过观察系统输入和输出信号在时间上的变化,可以评估系统的性能和稳定性。
第三章控制系统的时域分析法11

Routh稳定判据
(4)Routh表中第一列元素都是正数 实部为正数的根的个数等于Routh表的第一列元素符号 改变的次数
由此可知e.g.1的(3)是稳定的。
Routh稳定判据的应用
e.g.3 某系统的特征方程为a3S3+a2S2+a1S+a0=0,判 断系统稳定的充要条件。
解: (1) 必要性:ai>0,i=0,1,2,3
3.1 引言
➢ 传递函数:建立的数学模型
➢ 性能分析:稳定性、动态性能和稳态性能分析
➢ 分析方法:时域分析法、根轨迹法、频域分析法
➢ 时域分析法:直接在时间域中对系统进行分析, 具有直观,准确的优点,可以提供系统时间响应 的全部信息
适用范围
拉氏变换
系统微分方程(t)
传递函数(S)
稳定性
拉氏变换
输入信号(t)
b2
b3
S n3
c1
c2
c3
S n4 d1
d2
d3
S2
e1
e2
S1
f1
S0
g1
Routh稳定判据
Routh计算表的前两行元素由多项式的系数所组成。 从第三行开始,各行元素按下列公式计算:
an an2
b1
an1 an3 an1
an1 an3
c1
b1 b2 b1
b1 b2
d1
c1 c2 c1
(2) 列Routh表如下 S 4 1 3 2 S3 3 3 S2 2 2 S1 0 S0 0 0
? (3)
Routh稳定判据的应用
Key:如果Routh表第一列元素出现0,则可以用一个小的
正数 代替它,然后继续计算其他元素
仿真实验一:控制系统的时域分析 实验报告

仿真实验一:控制系统的时域分析B08020312 朱仁杰一、实验目的:1.观察控制系统的时域响应;2.记录单位阶跃响应曲线;3.掌握时间响应分析的一般方法;4.初步了解控制系统的调节过程。
二、实验步骤:1.开机进入Matlab6.1运行界面。
2.Matlab指令窗:"Command Window". 运行指令:con_sys; 进入本次实验主界面。
3.分别双击上图中的三个按键,依次完成实验内容。
4.本次实验的相关Matlab函数:tf([num],[den])可输入一传递函数。
step(G,t)在时间范围t秒内,画出阶跃响应图。
三、实验内容:1.观察一阶系统G=1/(T+s) 的时域响应:取不同的时间常数T,分别观察该系统的脉冲响应、阶跃响应、斜坡响应以及单位加速度响应。
T=9T=162.二阶系统的时域性能分析:(1)调节时间滑块,使阶跃响应最终出现稳定值。
(2)结合系统的零极点图,观察自然频率与阻尼比对极点位置的影响。
自然频率越大,阻尼比越小极点越大。
(3)结合时域响应图,观察自然频率与阻尼比对阶跃响应的影响。
自然频率和阻尼比越大,稳定越快。
(4)调节自然频率与阻尼比,要求:Tr<0.56sTp<1.29sTs<5.46超调不大于5%.记录下满足上述要求的自然频率与阻尼比。
自然频率: 9.338red/s阻尼比:0.69645s3.结合《自动控制原理》一书,Page 135,题3_10. 分别观察比例_微分与测速反馈对二阶系统性能的改善。
(1).按原始的调节参数输入,调节时间滑块,使阶跃响应最终出现稳定值。
(2)分别取不同的K3,观察比例_微分控制对系统性能的改善。
K3=1K3=5(4)设置不同的K4,观察测速反馈对系统性能的影响。
K4=0.5K4=5(4).调节各个参数,使系统阶跃响应满足:上升时间Tr<3.5s超调量<2%.记录下此时各个参数数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 控制系统的时域分析
4. 3 控制系统的动态特性 一.动态性能指标
通常以系统单位阶跃输入时的响应来定义时域性能指标。 1.超调量——阶跃响应超过稳态值的最大值与稳态值之比 的百分数。下式中,c(tP ) 为输出响应的最大值;c() 为稳态值。
P
c(t P ) c() 100 % c()
2.延迟时间:响应曲线第一次达到终值一半所需的时间。
1
0.632
63.2%
86.5% 95% 98.2% 99.3%
0TLeabharlann 2T3T4T 5T t
这是一条指数曲线,t 0 处斜率最大,其值为1/T, 若系统保持此变化速度,在 t=T 时,输出将达到稳态值。 而实际系统只能达到稳态值的0.632, 经过3T或4T的时间 系统输出响应分加别达到稳态值的0.95或0.98。
3.峰值时间:对应于最大超调量发生的时间。
4.上升时间:动态响应曲线从零到第一次上升到稳态值所需
的时间。(若无超调量,取稳态值10-90%)
2
5.调整时间(又称过渡过程时间) :响应曲线达到并保 持与终值之差在预定的差值△内(又叫误差带 )所需要 的时间。一般取±2%或±5%。
c(t) 误差带 :0.05 或0.02
T
R( s ) s 2 1 s K
TT
10
R(s)
K s(Ts 1)
C(s)
K
( s ) C( s )
T
R( s ) s 2 1 s K
TT
令:
2 n
K T
2 n
1 T
则 二阶系统标准式:
( s )
s2
2 n
2
n
s
2 n
n --无阻尼自然振荡频率;
--阻尼比
二阶系统的特征方程为:s 2
c(t )
r(t)
r (t )
c(t)
1
C(s)
Ts
ess T
t
9
4.3.2 二阶系统的瞬态响应
一个可以用二阶微分方程来描述的系统称为二 阶系统。从物理上讲,二阶系统包含有二个独立的 储能元件,经常用到的储能元件有电感、电容等。 一、二阶系统标准形式
R(s)
K
C(s)
s(Ts 1)
K
( s ) C( s )
dc (t )
1
t
eT
dt T
dc (t )
1
dt t0 T
dc (t )
1
0.368
dt t T
T
dc (t )
lim
0
t dt
5
4.3.1 一阶系统的动态响应
(3)过渡过程时间 ts=3T(95%), ts=4T(98%)
(4)延迟时间
td≈0.69T
t
c(td ) 1 e T 0.5
td 0.69T
(5)上升时间
tr≈0.22T
t
c(t) 1 e T 0.1
t
c(t) 1 e T 0.9
t 0.1T t 2.3T
∴ tr=2.3T-0.1T=2.2T
(6)特征根S=-1/T,T越小,动特性越好,稳态特性也越好。
6
一阶系统单位阶跃响应曲线
c(t ) 斜率=1/T
0
T 2T 3T 4T
t
8
3. 单位速度响应
R(s)
1 s2
C(s)
1 1 Ts
•
1 s2
1 s2
T s
T s 1/T
R(s)
系统输出:
c(t) t T Tet / T
响应曲线由两部分组成: 稳态分量为(t-T),它 也是单位斜坡函数,但 有时间T的延迟,即稳态 误差。瞬态分量为Te-t/T, 以1/T的系数衰减到零。 T越小,稳态误差也越小。
7
2. 单位脉冲响应:
R(s)
1
C(s)
C(s) 1 • R(s) 1
1 Ts
1 Ts
g (t )
c(t)
1
t
eT
T
Ts
单位脉冲响应曲线
c(t)
也是一条指数曲线,
在 t 0
时为
1 T
;
1 T
不难看出:单位脉
冲响应是单位阶跃
c(t) 1 et /T T
响应的导数,而单
位阶跃响应是单位
脉冲响应的积分。
Im [s]
s2 s1 0
Re
(c) 1
Im
[s] s1
0
Re
s2
(d) 0
1.欠阻尼情况 : (0 1)
s1,2 n n 2 1
s1,2 j d
则二阶系统具有一对共轭复根:
式中: n ——称为衰减系数 d n 1 2 ——称为阻尼振荡频率
tg 1 2
第四章 控制系统的时域分析
三性分析:稳定性 稳态特性 动态特性
控制系统的输出: c(t)=ct(t)+ cs(t)
ct(t) ——动态分量(又叫暂态分量) cs(t) ——稳态分量
控制系统的动态响应(又叫瞬态响应)是指系统从初始 状态到接近稳定状态的响应。输入只影响稳态分量。
系统分析的准确度取决于数学模型描述的真实程度。 动态响应对稳定系统才有意义。 不稳定系统的动态响应是发散的。
c(3T ) 1 e3 0.95—— t=T时,输出达到稳态值的0.632
c(4T ) 1 e4 0.98—— t=3T时,输出达到稳态值的0.95
c() 1 e 1——— t=4T时,输出达到稳态值的0.98
(2)t=0时,响应曲线的切线斜率为1/T, 切线与稳态值的交 点处的t=T。t增加,c(t)斜率下降。
2
ns
2 n
0
系统的两个特征根(闭环极点)为
(0 1)
s1,2 n n 2 1
特征根的性质取决于 的大小,下面分四种情况讨论。
11
特征根的[s]平面的分布情况见图
Im [s]
s1
n 1 2
n 0 Re
Im [s]
s1
s2
0 Re
(a) 0 1
(b) 1
s1,2 n n 2 1
p 1
0.5
0 td
tr tp ts
t
3
第四章 控制系统的时域分析
4.3.1 一阶系统的动态响应
希望系统有很快地响应速度。即在控制信号的作用 下,系统的输出能很快地随控制信号变化而变化。
一、慨述
R(s)
1
C(s)
C(s) 1
C(s) 1 1 1
R(s) 1 Ts
s(Ts 1) s 1 Ts
12
输入为单位阶跃信号,则系统输出量的拉氏变换为
C(s)
s(s 2
2 n
2
n
s
2 n
)
1 s
s n
(s
n )2
2 d
n (s n )2
Ts
1. 单位阶跃响应
t
c(t) 1 e T
(t 0)
4
4.3.1 一阶系统的动态响应
一阶系统响应的特点: (1) t=T时,输出达到稳态值的0.632
t
c(t) 1 e T
c(0) 1 e0 0 ——— t= 0时, 输出为0
c(T ) 1 e1 0.632—— t=∞时,输出达到稳态值1