试验1高分子材料拉伸强度及断裂伸长率测定
高分子物理实验报告

高分子物理实验报告高分子物理实验报告引言:高分子物理是研究高分子材料的结构、性质和行为的学科。
本实验旨在通过实验方法,对高分子材料的一些基本性质进行探究,以加深对高分子物理的理解。
实验一:高分子材料的熔融流动性材料:聚乙烯(PE)、聚丙烯(PP)方法:将PE和PP分别切成小块,放入两个不同的容器中,通过加热使其熔化,观察其流动性。
结果:PE在加热后迅速熔化,并呈现出较大的流动性,而PP则需要较高的温度才能熔化,且流动性较小。
结论:高分子材料的熔融流动性与其分子结构有关,分子链间的相互作用力越强,熔融温度越高,流动性越小。
实验二:高分子材料的拉伸性能材料:聚酯(PET)、聚氯乙烯(PVC)方法:将PET和PVC分别切成薄片状,用拉力试验机进行拉伸测试,记录其拉伸强度和断裂伸长率。
结果:PET具有较高的拉伸强度和断裂伸长率,而PVC的拉伸强度较低,断裂伸长率也较小。
结论:高分子材料的拉伸性能与其分子链的排列方式、分子量以及交联程度等因素有关,分子链越有序,交联程度越高,拉伸强度越大,断裂伸长率越小。
实验三:高分子材料的热稳定性材料:聚苯乙烯(PS)、聚碳酸酯(PC)方法:将PS和PC分别切成小块,放入热风箱中进行热稳定性测试,记录其质量损失。
结果:PS在高温下易分解,质量损失较大,而PC在相同条件下质量损失较小。
结论:高分子材料的热稳定性与其分子链的稳定性有关,分子链越稳定,热稳定性越好,质量损失越小。
实验四:高分子材料的玻璃化转变温度材料:聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)方法:将PMMA和PVA分别切成小块,通过差示扫描量热法(DSC)测试其玻璃化转变温度。
结果:PMMA的玻璃化转变温度较高,而PVA的玻璃化转变温度较低。
结论:高分子材料的玻璃化转变温度与其分子链的自由度有关,分子链越自由,玻璃化转变温度越低。
结论:通过以上实验,我们可以看到不同高分子材料在熔融流动性、拉伸性能、热稳定性和玻璃化转变温度等方面表现出不同的特性。
试验1高分子材料拉伸强度及断裂伸长率测定

试验1高分子材料拉伸强度及断裂伸长率测定摘要:本实验旨在测定高分子材料的拉伸强度和断裂伸长率。
通过标准试验方法,采用拉伸试验机对高分子材料进行拉伸变形,测量其断裂前的最大拉伸力和断裂时的伸长率,以评估材料的强度和延展性能。
实验结果显示,高分子材料的拉伸强度和断裂伸长率与其结构和成分密切相关。
关键词:高分子材料、拉伸强度、断裂伸长率、材料性能评估引言:高分子材料具有广泛的应用领域,如塑料、橡胶、纤维等。
对于这些材料而言,其力学性能尤为重要,包括强度和延展性。
拉伸强度和断裂伸长率是评估高分子材料力学性能的重要参数,能够反映材料是否具有足够的强度和延展性。
因此,通过测定高分子材料的拉伸强度和断裂伸长率,可以评估其适用范围和质量。
实验方法:1.实验仪器与试样准备使用标准拉伸试验机,根据国际标准ASTM D638或GB 1040,选择合适的试样尺寸。
将试样制备成矩形条形,宽度为10 mm,厚度为约2 mm。
试样长度根据实际需要确定。
2.实验设定与操作将试样夹持在拉伸试验机上,并调整夹具,使试样处于合适的拉伸状态。
根据试样质量和试验要求,设定拉伸速度,在试验过程中保持恒定。
3.实验数据记录在执行拉伸试验时,使用试验机自带的数据采集系统或外接数据采集设备,记录试验过程中采集到的试样载荷和位移数据。
根据数据计算并记录试验过程中的应力和应变值。
4.数据处理根据试验数据计算最大拉伸力(F_max)和最断裂时的伸长率(ε_rupt)。
拉伸强度(σ_max)= F_max / 初始试样横截面积断裂伸长率(ε_rupt)= (L_rupt - L_0)/ L_0 × 100%其中,L_0为试样的初始长度,L_rupt为试样断裂时的长度。
5.实验重复与数据分析对同一批次的高分子材料进行多次试验,记录多组数据,并计算出平均值和标准差。
根据实验数据进行统计分析,评估材料的拉伸强度和断裂伸长率。
结果与讨论:通过多组实验数据分析,可以得出高分子材料的拉伸强度和断裂伸长率范围。
高分子材料性能测试实验报告

高分子材料性能测试实验报告一、实验目的本实验旨在对常见的高分子材料进行性能测试,以深入了解其物理、化学和机械性能,为材料的选择和应用提供科学依据。
二、实验材料与设备1、实验材料聚乙烯(PE)聚丙烯(PP)聚苯乙烯(PS)聚氯乙烯(PVC)2、实验设备电子万能试验机热重分析仪(TGA)差示扫描量热仪(DSC)硬度计冲击试验机三、实验原理1、拉伸性能测试高分子材料在受到拉伸力作用时,会发生形变。
通过测量材料在拉伸过程中的应力应变曲线,可以得到材料的拉伸强度、断裂伸长率等性能指标。
2、热性能测试TGA 用于测量材料在加热过程中的质量损失,从而分析材料的热稳定性和组成成分。
DSC 则可以测量材料在加热或冷却过程中的热量变化,用于研究材料的相变温度、玻璃化转变温度等。
3、硬度测试硬度是衡量材料抵抗局部变形的能力。
硬度计通过压入材料表面一定深度,测量所施加的力来确定材料的硬度值。
4、冲击性能测试冲击试验机通过施加冲击载荷,测量材料在冲击作用下的吸收能量,评估材料的抗冲击性能。
四、实验步骤1、拉伸性能测试将高分子材料制成标准哑铃状试样。
安装试样到电子万能试验机上,设置拉伸速度和测试温度。
启动试验机,记录应力应变曲线。
2、热性能测试称取一定量的高分子材料样品,放入 TGA 和 DSC 仪器的样品盘中。
设置升温程序和气氛条件,进行测试。
3、硬度测试将试样平稳放置在硬度计工作台上。
选择合适的压头和试验力,进行硬度测量。
4、冲击性能测试制备标准冲击试样。
将试样安装在冲击试验机上,进行冲击试验。
五、实验结果与分析1、拉伸性能聚乙烯(PE):拉伸强度较低,断裂伸长率较高,表现出较好的柔韧性。
聚丙烯(PP):拉伸强度较高,断裂伸长率适中,具有一定的刚性和韧性。
聚苯乙烯(PS):拉伸强度较高,但断裂伸长率较低,脆性较大。
聚氯乙烯(PVC):拉伸强度和断裂伸长率因配方不同而有所差异。
2、热性能TGA 结果显示,不同高分子材料的热分解温度和分解过程有所不同。
高分子材料研发小试试验报告

高分子材料研发小试试验报告摘要本次试验旨在探索高分子材料的研发方法与应用。
通过对不同高分子材料的制备、性能测试及分析,试验得出了有关高分子材料的关键参数和应用特点。
结果表明,高分子材料在电子、医疗、环境保护等领域具有广泛的应用前景。
1. 引言高分子材料是一种由重复单元连接而成的长链聚合物,常用于制备塑料、橡胶、纤维等产品。
随着科技的进步和工业的发展,高分子材料在各个领域都有着重要的应用。
本次试验旨在探索高分子材料的研发方法和应用特点,为相关领域的发展提供参考。
2. 实验材料与方法2.1 实验材料•异丁烯•丁二酸•二乙酸酐•异辛二酸酐•氯化铂2.2 实验方法1.制备高分子材料2.对高分子材料进行性能测试3.对测试结果进行分析3. 制备高分子材料3.1 高分子材料A的制备1.将异丁烯与丁二酸按适当比例混合2.加入二乙酸酐作为催化剂3.在适当温度和压力下进行反应4.通过过滤和干燥得到高分子材料A3.2 高分子材料B的制备1.将异辛二酸酐与丁二酸按适当比例混合2.加入氯化铂作为催化剂3.在适当温度和压力下进行反应4.通过溶剂萃取和干燥得到高分子材料B4. 性能测试4.1 力学性能测试1.使用万能材料试验机进行拉伸试验2.测量高分子材料的拉伸强度、断裂伸长率等力学性能参数4.2 热学性能测试1.使用热分析仪对高分子材料进行热重分析2.测量高分子材料的热稳定性、热膨胀系数等热学性能参数5. 结果与分析5.1 高分子材料A的性能分析•力学性能:拉伸强度为XX MPa,断裂伸长率为XX%•热学性能:热稳定性好,热膨胀系数为XX5.2 高分子材料B的性能分析•力学性能:拉伸强度为XX MPa,断裂伸长率为XX%•热学性能:热稳定性一般,热膨胀系数为XX6. 高分子材料的应用6.1 电子领域•高分子材料A适用于电子芯片封装材料,具有良好的机械强度和热稳定性•高分子材料B适用于电池隔膜,具有较高的热膨胀系数和离子传导性能6.2 医疗领域•高分子材料A可用于制备医疗器械,如人工器官和医用导管等•高分子材料B可用于制备缝合线,具有良好的生物相容性和可吸收性能6.3 环境保护领域•高分子材料A和B均可用于制备环保塑料袋,减少对环境的影响7. 总结通过对高分子材料的制备、性能测试和应用分析,本次试验得出了高分子材料A和B的性能特点和应用领域。
高分子材料的拉伸强度与断裂韧性研究

高分子材料的拉伸强度与断裂韧性研究摘要本文研究了高分子材料的拉伸强度和断裂韧性的相关性。
通过对不同高分子材料的拉伸实验和断裂韧性测试,我们得出了一些重要的结论。
本研究有助于深入了解高分子材料的机械性能,并为材料设计和应用提供参考。
引言高分子材料广泛应用于各个领域,如塑料制品、纤维材料和橡胶制品等。
在这些应用中,材料的拉伸强度和断裂韧性是非常重要的机械性能指标。
因此,研究高分子材料的拉伸强度和断裂韧性对于材料的开发和应用具有重要意义。
实验方法我们选择了三种常见的高分子材料A、B和C进行实验研究。
首先,我们使用拉伸实验仪对这些材料进行了拉伸实验,测量其拉伸强度和断裂伸长率。
然后,我们采用断裂韧性测试方法,通过对断裂表面的形态分析来评估材料的断裂韧性。
结果与讨论根据实验数据,我们得出了以下结论:1. 高分子材料A具有最高的拉伸强度,并且表现出很好的断裂韧性。
2. 高分子材料B的拉伸强度和断裂韧性较高,但低于材料A。
3. 高分子材料C的拉伸强度和断裂韧性较低,表现出较差的机械性能。
我们推测这些差异主要来自于材料的分子结构和聚合度。
高分子材料A具有较长的分子链,使得其相互作用更强,从而提高了拉伸强度和断裂韧性。
相反,高分子材料C的分子链较短,使得其相互作用较弱,导致了较低的机械性能。
结论本研究对高分子材料的拉伸强度和断裂韧性进行了系统性的研究。
通过实验和分析,我们得出了不同高分子材料的机械性能差异,并提出了一些材料设计和应用的建议。
这些研究结果对于高分子材料领域的科学研究和工程应用具有重要意义。
拉伸强度和断裂伸长率关系

拉伸强度和断裂伸长率关系拉伸强度(tensile strength)和断裂伸长率(elongation at break)是材料力学性能中两个重要的指标,用于评价材料在拉伸过程中的抗拉能力和延展性。
本篇文章将深入探讨拉伸强度和断裂伸长率之间的关系,旨在帮助读者更好地理解这两个指标的意义及其对材料性能的影响。
一、拉伸强度的定义和测量方式拉伸强度是指在材料拉伸过程中,材料抵抗断裂的能力。
它代表了材料的极限抗拉强度,通常以单位面积的力来衡量。
在拉伸试验中,材料样品会被沿着轴向加载,直到出现断裂。
拉伸强度可通过计算样品断裂前的最大受力来确定,然后除以样品的初始横截面积得出具体数值。
二、断裂伸长率的定义和测量方式断裂伸长率是指材料在拉伸过程中的延展性,它表示材料在断裂时拉伸的程度或变形量。
断裂伸长率是通过将拉伸试样两端固定在夹具上,然后在一个控制的速度下进行拉伸,直到样品断裂为止来测量的。
断裂伸长率可以通过测量样品断裂前后的长度差异来计算,并以百分比表示。
三、拉伸强度和断裂伸长率的关系拉伸强度和断裂伸长率是材料性能的两个重要方面,它们通常具有相对的关系。
一般来说,具有较高拉伸强度的材料往往具有较低的断裂伸长率,而具有较高断裂伸长率的材料往往具有较低的拉伸强度。
这个关系的原因主要是由于材料的微观结构和组织决定了它们的力学性能。
较高的拉伸强度意味着材料的原子或晶粒间的键结更强,更难破坏。
而较高的断裂伸长率则表示材料更能够承受较大的形变,原子或晶粒之间的结构在拉伸过程中以一种更连续和延展的方式进行变化。
另外,拉伸强度和断裂伸长率还与材料的化学成分和加工工艺有关。
不同的材料配方和加工方法会导致微观结构的差异,进而影响它们的力学性能。
一些特殊合金材料通过合理的合金设计和热处理工艺,可以同时提高拉伸强度和断裂伸长率,实现优异的力学性能。
四、拉伸强度和断裂伸长率在工程中的应用拉伸强度和断裂伸长率是工程设计和材料选择中的重要参考指标。
试验1高分子材料拉伸强度及断裂伸长率测定

实验1 高分子材料拉伸强度及断裂伸长率测定一、实验目的通过实验了解聚合物材料应力—应变曲线特点、试验速度对应力—应变曲线的影响、拉伸强度及断裂伸长率的意义,熟悉它们的测试方法;并通过测试应力—应变曲线来判断不同聚合物的力学性能。
二、实验原理为了评价聚合物材料的力学性能,通常用等速施力下所获得的应力—应变曲线来进行描述。
所谓应力是指拉伸力引起的在试样内部单位截面上产生的内力;而应变是指试样在外力作用下发生形变时,相对其原尺寸的相对形变量。
不同种类聚合物有不同的应力—应变曲线。
等速条件下,无定形聚合物典型的应力—应变曲线如图1所示。
图中的α点为弹性极限,σα为弹性(比例)极限强度,εα为弹性极限伸长。
在α点前,应力—应变服从虎克定律:σ=Έε式中σ——应力,MPa;ε——应变,%;Ε——弹性(杨氏)模量(曲线的斜率),MP 。
曲线斜率E反映材料的硬性。
Y称屈服点,对应的σy和εy称屈服强度和屈服伸长。
材料屈服后,可在t点处,也可在t′点处断裂。
因而视情况,材料断裂强度可大于或小于屈服强度。
εt(或εt′)称断裂伸长率,反映材料的延伸性。
从曲线的形状以及σt和εt的大小,可以看出材料的性能,并借以判断它的应用范围。
如从σt的大小,可以判断材料的强与弱;而从εt的大小,更正确地讲是从曲线下的面积大小,可判断材料的脆性与韧性。
从微观结构看,在外力的作用下,聚合物产生大分子链的运动,包括分子内的键长、键角变化,分子链段的运动,以及分子间的相对位移。
沿力方向的整体运动(伸长)是通过上述各种运动来达到的。
由键长、键角产生的形变较小(普弹形变),而链段运动和分子间的相对位移(塑性流动)产生的形变较大。
材料在拉伸到破坏时,链段运动或分子位移基本上仍不能发生,或只是很小,此时材料就脆。
若达到一定负荷,可以克服链段运动及分子位移所需要的能量,这些运动就能发生,形变就大,材料就韧。
如果要使材料产生链段运动用分子位移所需要的负荷较大,材料就较强及硬。
拉伸强度与断裂伸长率 冲击强度

试样编号 截面积 mm2 1 40 上屈服应力 下屈服应力 最大负荷点 最大负荷 N Mpa Mpa 强度 Mpa 33.603 最大负荷 点伸长率 断裂负荷 N 拉伸强度 Mpa 断裂负荷 点伸长率
3 4 5 6 平均值
40.000 40.000 40.000 40.000 40.000
最大负荷 点伸长率 % 15.541
断裂负荷 N
拉伸强度 Mpa
16.240 13.411 14.493 13.753 12.667 14.351
972.120 591.585 604.956 492.611 490.887 369.794 586.992
24.303 14.790 15.124 12.315 12.272 9.245 14.675
33.602 21.379 22.170 21.263 21.176 22.099 23.615
1409.202 883.498 934.196 872.155 924.505 920.098 99.355 21.084 23.113 23.002 24.645
22.305 21.359 21.120 22.109 23.647
33.602 21.379 22.170 21.263 21.176 22.099 23.615
1409.202 883.498 934.196 872.155 924.505 920.098 990.609
35.230 22.087 23.355 21.084 23.113 23.002 24.645
断裂负荷 点伸长率 % 320.996
251.890 393.789 262.837 251.822 186.894 278.038
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 高分子材料拉伸强度及断裂伸长率测定一、实验目的通过实验了解聚合物材料应力—应变曲线特点、试验速度对应力—应变曲线的影响、拉伸强度及断裂伸长率的意义,熟悉它们的测试方法;并通过测试应力—应变曲线来判断不同聚合物的力学性能。
二、实验原理为了评价聚合物材料的力学性能,通常用等速施力下所获得的应力—应变曲线来进行描述。
所谓应力是指拉伸力引起的在试样内部单位截面上产生的内力;而应变是指试样在外力作用下发生形变时,相对其原尺寸的相对形变量。
不同种类聚合物有不同的应力—应变曲线。
等速条件下,无定形聚合物典型的应力—应变曲线如图1所示。
图中的α点为弹性极限,σα为弹性(比例)极限强度,εα为弹性极限伸长。
在α点前,应力—应变服从虎克定律:σ=Έε式中σ——应力,MPa;ε——应变,%;Ε——弹性(杨氏)模量(曲线的斜率),MP 。
曲线斜率E反映材料的硬性。
Y称屈服点,对应的σy和εy称屈服强度和屈服伸长。
材料屈服后,可在t点处,也可在t′点处断裂。
因而视情况,材料断裂强度可大于或小于屈服强度。
εt(或εt′)称断裂伸长率,反映材料的延伸性。
从曲线的形状以及σt和εt的大小,可以看出材料的性能,并借以判断它的应用范围。
如从σt的大小,可以判断材料的强与弱;而从εt的大小,更正确地讲是从曲线下的面积大小,可判断材料的脆性与韧性。
从微观结构看,在外力的作用下,聚合物产生大分子链的运动,包括分子内的键长、键角变化,分子链段的运动,以及分子间的相对位移。
沿力方向的整体运动(伸长)是通过上述各种运动来达到的。
由键长、键角产生的形变较小(普弹形变),而链段运动和分子间的相对位移(塑性流动)产生的形变较大。
材料在拉伸到破坏时,链段运动或分子位移基本上仍不能发生,或只是很小,此时材料就脆。
若达到一定负荷,可以克服链段运动及分子位移所需要的能量,这些运动就能发生,形变就大,材料就韧。
如果要使材料产生链段运动用分子位移所需要的负荷较大,材料就较强及硬。
图1 无定形聚合物的应力—应变曲线图2 结晶型聚合物的应力—应变曲线结晶性高聚物的应力—应变曲线分三个区域,如图2所示。
(1)OC段曲线的起始部分,近似直线,属普弹性变形,是由于分子的键长、键角以及原子间的距离改变所引起的,其形变是可逆的,应力与应变之间服从胡克定律。
(2)微晶在c点以后将出现取向或熔解,然后沿力场方向进行重排或重结晶,故σc称重结晶强度,它同时也是材料“屈服”的反映。
从宏观上看,材料在c点将出现细颈,出现细颈现象的本质是分子在该处发生取向结晶,使该处强度增大。
随着拉伸的进行,细颈不断发展,至d点细颈发展完全,此阶段应力几乎不变,而变形增加很大。
(3)dt段被均匀拉细后的试样,分子进一步取向,应力随应变的增大而增大,直到断裂点t,试样被拉断,t点的应力称为强度极限,即抗拉强度或断裂强度σ,是材料重要的质量指标,其计算公式为:σ=P/(b×d) (MPa)式中P——最大破坏载荷,N;b——试样宽度,mm;d——试样厚度,mm;断裂伸长率ε是试样断裂时的相对伸长率,ε按下式计算:ε=(F-G)/G×100%式中G——试样标线间的距离,mm;F——试样断裂时标线间的距离,mm。
对于结晶聚合物,当结晶度非常高时(尤其当晶相为大的球晶时),会出现聚合物脆性断裂的特征。
总之,当聚合物的结晶度增加时,模量将增加,屈服强度和断裂强度也增加,但屈服形变和断裂形变却减小。
聚合物晶相的形态和尺寸对材料的性能影响也很大。
同样的结晶度,如果晶相是由很大的球晶组成,则材料表现出低强度、高脆性倾向。
如果晶相是由很多的微晶组成,则材料的性能有相反的特征。
另外,聚合物分子链间的化学交联对材料的力学性能也有很大的影响。
这是因为有化学交联时,聚合物分子链之间不可能发生滑移,粘流态消失。
当交联密度增加时,对于T g以上的橡胶态聚合物来说,其抗张强度增加,模量增加,断裂伸长率下降。
交联度很高时,聚合物成为三维网状链的刚硬结构。
因此,只有在适当的交联度时抗张强度才有最大值。
综上所述,材料的组成、化学结构及聚集态结构都会对应力与应变产生影响。
即使是同一品种,由于它们的交联度、结晶度、增塑剂含量及分子量的大小不同而表现出不同的结果。
另,不同的测定条件(试验温度和试验速度)对聚合物应力—应变曲线也有很大的影响。
塑料属于粘弹性材料,它的力学松弛过程不仅与试验温度有关,且与时间即试验速度有关。
当升高温度时,分子链段的热运动增加,松弛过程进行得较快,在拉伸试验中就表现出较大的变形和较低的强度。
而当减慢拉伸速度时,使外力作用时间延长,即松弛过程进行得较快,在拉伸试验中就表现出较大的变形和较低的强度。
但不同的塑料其影响程度不同。
归纳各种不同类聚合物的应力—应变曲线,主要有以下5种类型,如图3所示。
应力—应变实验所得的数据也与温度、湿度、拉伸速度有关。
因此,应规定一定的测试条件。
图3 5种类型聚合物的应力—应变曲线(a)软而弱;(b)硬而脆;(c)硬而强;(d)软而韧;(e)硬而韧三、实验仪器、用具及试样1、采用承德精密试验机有限公司生产的WDT-20KN电子式万能材料试验机。
电子式万能材料试验机整机示意图见图4。
2、游标卡尺一把。
3、高密度聚乙烯(HDPE)、聚丙烯(PP)、无定形聚苯乙烯(PS)标准试样,拉伸样条的形状(双铲型)如图5所示。
试样表面应平整,无气泡、裂纹、分层及机械加工损伤等缺陷。
L——总长度(最小),150mm;b——试样中间平行部分宽度,10±0.2mm;C——夹具间距离,115mm;d——试样厚度,2~10mm;G——试样有效距离,50±0.5mm;h——试样端部宽度,20±0.2mm;R——半径,60mm。
图4 电子式万能材料试验机整机示意图四、实验步骤准备两组试样,每组三种样条(HDPE、PP、PS或SBS/PS),每组的拉伸速度不同:A 组25mm/min,B组50mm/min。
1、熟悉万能试验机的结构,操作规程和注意事项。
万能试验机操作面板见图6。
图6 万能试验机操作面板A、显示窗“负荷”显示窗显示负荷值;“变形”显示窗显示变形值;“速度”显示窗显示当前横梁位移速度值;B、指示灯“拉伸”、“压缩”、“弯曲”等指示灯指示试验类型;“运行”指示灯在试验过程中闪烁;“等待”指示灯在试验结束后等待继续实验时闪烁,在待机状态与实验过程中不亮;“电机告警”指示灯指示电机告警状态;“上升”与“下降”指示横梁位移方向;“上限位”与“下限位”指示限位开关状态;“过载保护”与“撞车保护”指示横梁负荷保护状态。
2、用游标卡尺量样条中部左、中、右三点的宽度和厚度,精确到0.02mm,取平均值。
试样应编号,标出有效距离50mm和夹具间距离115mm。
3、实验参数设定接通电源,启动试验机按钮,启动计算机;双击桌面上“MCGS环境”进入系统主界面;分别点击“试验编号”、“试样设定”、“试样参数”、“测试项目”等按扭,设定参数。
设定试验编号;注意试验编号不能重复使用;试样设定:试验类型:拉伸横梁方向:向上横梁速度:25或50mm/min变形测量:横梁位移试验结束条件:当负荷降到20%(最大)时传感器选择:下空间20000N曲线选择:负荷-形变;设定试样参数:板材、宽度、厚度标距:50每批数量: 3;测试项目:最大负荷点、断裂点、断裂伸长率;装夹试样:点击黄色三角形升降键将横梁运行到适当的位置,将样品在上下夹具上夹牢。
夹试样时,应使试样的中心线与上下夹具中心线一致。
4、试验:点击负荷清零和变形清零,点击开始试验,进行拉伸试验,观察拉伸过程的变形特征,直到试样断裂为止,记录试验数据;5、结果分析:点击主界面的“分析”,进入曲线分析界面,手动分析时,在分析结果区域中用鼠标左键双击对应的字母,然后在对应的曲线处单击,便可显示对应的数据,要想取消某一分析点,可在分析结果区域中,用鼠标左键双击对应的字母,然后双击鼠标右键即可;6、改变速度,重复做第二组试样。
五、实验注意事项1、实验前要认真预习,集中精神听指导老师讲解,操作试验机时,认真细致,注意安全。
2、夹具安装应注意上下垂直在同一平面上,防止实验过程中试样性能受到额外剪切力的影响。
六、实验报告要求1、简述实验原理。
2、明确操作步骤和注意事项。
3、做好原始记录。
4、详细记录拉伸过程中观察到的现象,结合学过的理论知识分析现象产生的原因(包括变形情况,表面及颜色变化,断裂情况及断面情况等)。
5、根据实验测定的应力—应变曲线,评价测试材料(HDPE、PP、PS或SBS/PS)的屈服强度,断裂强度和断裂伸长率等表征参数,判断材料的强弱、软硬、韧脆,说明材料的大致用途,并简要分析不同的高聚物,不同的测定条件,对测试结果的影响。
七、预习要求1、搞清实验原理;2、了解万能试验机结构,操作规程及注意事项(来实验室进行)。
3、写好预习报告,准备记录表格。
八、实验记录参考表格实验名称:实验设备名称及型号规格:试样名称实验温度湿度日期试样编号样品宽度b/mm样品厚度d/mm样品面积/mm拉伸速度mm/min拉伸强度MPa屈服载荷MPa断裂载荷MPa断裂伸长率/%备注思考题1、如何根据聚合物材料的应力—应变曲线来判断材料的性能?2、在拉伸实验中,如何测定模量?3、拉伸强度与断裂伸长率会随拉伸速度的改变而变化吗?为什么?4、结晶聚合物(如PE)与无定形聚合物(如PS)的应力—应变曲线有何不同?塑料与橡胶呢?实验2 塑料冲击强度实验一、实验目的1、加深对塑料冲击强度概念的理解;2、熟悉聚合物的冲击强度测试原理,掌握简支梁冲击试验机的操作方法及其结果处理;3、了解测试条件对结果的影响。
二、实验原理冲击实验是在冲击负荷的作用下测定材料的冲击强度。
在实验中对高聚物试样施加一次冲击负荷使试样破坏,记录下试样破坏时或过程中试样单位面积所吸收的能量,即得到冲击强度。
冲击强度是高分子材料的一项很重要的性能指标,可评价材料的抗冲击能力,判断其脆性和韧性程度。
冲击实验的方法很多,根据试样的受力状态不同,可分为摆锤式弯曲冲击(简支梁冲击GB1043和悬臂梁冲击GB1843)、拉伸冲击和剪切冲击,本实验采用简支梁冲击GB1043方法,工作原理如下图1所示。
图1 简支梁冲击实验工作原理示意图实验设备为简支梁冲击试验机(如原理图),本试验机的基本构造由机身、试样支座、冲击摆、测量装置及操纵机构五部分组成。
其基本原理是把摆锤抬高置挂于机架的扬臂上以后,此时扬角为α,如图所示,它便获得了一定的位能。
当摆锤自由落下,则位能转化为动能将试样冲断。
冲断试样后,摆锤仍以剩余能量升到其一高度,升角为β,在整个冲击试验过程中,按照能量守恒定律,试样所消耗冲击能量按下式计算:E = Pd(cosβ-cosα)式中:Pd —冲击摆摆力矩(常数)α— 冲击摆摆锤扬角 β— 冲击实验后摆锤升起的角度本实验机中由于摆的冲击常数Pd 、冲击前摆锤扬角均为常数,因此只要测出冲断试样后的摆锤升角,即可根据上述公式计算出试样冲断时所消耗的能量来,本实验机刻度盘的刻度就是根据上述原理进行计算的,因此我们实验时就可以直接从刻度盘中读出冲击能量。