高三第一轮——专题56圆锥曲线的综合问题(原卷版)汇总
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)

高考数学最新真题专题解析—圆锥曲线综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】解:(1)将点A代入双曲线方程得4a2−1a2−1=1,化简得a4−4a2+4=0得:a2=2,故双曲线方程为x22−y2=1;由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1),Q(x2,y2),则联立直线与双曲线得:(2k2−1)x2+4kmx+2m2+2=0,△>0,故x1+x2=−4km2k2−1,x1x2=2m2+22k2−1,k AP+k AQ=y1−1x1−2+y2−1x2−2=kx1+m−1x1−2+kx2+m−1x2−2=0,化简得:2kx1x2+(m−1−2k)(x1+x2)−4(m−1)=0,故2k(2m2+2)2k2−1+(m−1−2k)(−4km2k2−1)−4(m−1)=0,即(k+1)(m+2k−1)=0,而直线l不过A点,故k=−1.(2)设直线AP的倾斜角为α,由tan∠PAQ=2√2,得tan∠PAQ2=√22,由2α+∠PAQ=π,得k AP=tanα=√2,即y1−1x1−2=√2,联立y 1−1x1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 同理,x 2=10+4√23,y 2=−4√2−53, 故x 1+x 2=203,x 1x 2=689而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【母题来源】2022年新高考II 卷【母题题文】.设双曲线C:x 2a 2−y2b2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x. (1)求C 的方程;(2)经过F 的直线与C 的渐近线分别交于A ,B 两点,点P(x 1,y 1),Q(x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M ,从下面三个条件 ① ② ③中选择两个条件,证明另一个条件成立: ①M 在AB 上; ②PQ//AB; ③|AM|=|BM|.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,故a =1,b =√3. 因此C 的方程为x 2−y 23=1.(2)设直线PQ 的方程为y =kx +m(k ≠0),将直线PQ 的方程代入C 的方程得(3−k 2)x 2−2kmx −m 2−3=0, 则x 1+x 2=2km3−k 2,x 1x 2=−m 2+33−k 2,x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3(m 2+3−k 2)3−k 2.不段点M 的坐标为(x M ,y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2).两式相减,得y 1−y 2=2√3x M −√3(x 1+x 2),而y 1−y 2=(kx 1+m)−(kx 2+m)=k(x 1−x 2),故2√3x M =k(x 1−x 2)+√3(x 1+x 2),解得x M =k√m 2+3−k 2+km3−k 2.两式相加,得2y M −(y 1+y 2)=√3(x 1−x 2),而y 1+y 2=(kx 1+m)+(kx 2+m)=k(x 1+x 2)+2m ,故2y M =k(x 1+x 2)+√3(x 1−x 2)+2m ,解得y M =3√m 2+3−k 2+3m3−k 2=3k x M ⋅因此,点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 若选择 ① ②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A,解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3.此时x A +x B =4k 2k 2−3,y A +y B =12kk 2−3.而点M 的坐标满足{y M =k(x M −2)y M =3k x M , 解得x M =2k 2k 2−3=x A +x B2,y M =6kk 2−3=y A +y B2,故M 为AB 的中点,即|MA|=|MB|. 若选择 ① ③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时M 不在直线y =3k x 上,矛盾.故直线AB 的斜率存在,设直线AB 的方程为y =p(x −2)(p ≠0), 并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =p(x A −2)y A =√3x A,解得x A =p−√3,y A =√3pp−√3.同理可得x B =p+√3,y B =−√3pp+√3.此时x M =x A +x B2=2p 2p 2−3,y M =y A +y B2=6pp 2−3.由于点M 同时在直线y =3k x 上,故6p =3k ·2p 2,解得k =p.因此PQ//AB . 若选择 ② ③:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3,设AB 的中点为C(x C ,y C ),则x C =x A +x B2=2k 2k 2−3,y C =y A +y B2=6kk 2−3.由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上.将该直线与y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点而在直线AB 上. 【命题意图】本题考查双曲线的标准方程和几何性质,考查直线与双曲线的位置关系,考查开放探究能力,属于压轴题.主要考查直线与双曲线的位置关系及双曲线中面积问题,属于难题【命题方向】圆锥曲线综合大题是属于高考历年的压轴题之一,难度较大,对学生的综合要求较高。
高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.如图,已知椭圆,双曲线(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5B.C.D.【答案】C【解析】由已知,|OA|=a=设OA所在渐近线的方程为y=kx(k>0),于是A点坐标可表示为A(x0,kx)(x>0)于是,即A(),进而AB的一个三分点坐标为()该点在椭圆C1上,有,即,得k=2即=2,于是,所以离心率,选C【考点】圆的方程,椭圆的性质,双曲线的性质,双曲线的渐近线,直线与圆锥曲线的位置关系,双曲线的离心率.2.已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则()A.B.C.D.【答案】B【解析】如图所示,因为,故,过点作,垂足为M,则轴,所以,所以,由抛物线定义知,,选B.【考点】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.3.已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.【答案】(1) ;(2)【解析】(1)因为焦距为4,所以,又,由此可求出的值,从而求得椭圆的方程.(2)椭圆方程化为.设PQ的方程为,代入椭圆方程得:.(ⅰ)设PQ的中点为,求出,只要,即证得OT 平分线段PQ.(ⅱ)可用表示出PQ,TF可得:.再根据取等号的条件,可得T的坐标.试题解答:(1),又.(2)椭圆方程化为.(ⅰ)设PQ的方程为,代入椭圆方程得:.设PQ的中点为,则又TF的方程为,则得,所以,即OT过PQ的中点,即OT平分线段PQ.(ⅱ),又,所以.当时取等号,此时T的坐标为.【考点】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.已知的三个顶点在抛物线:上,为抛物线的焦点,点为的中点,;(1)若,求点的坐标;(2)求面积的最大值.【答案】(1)或;(2).【解析】(1)根据抛物线方程为,写出焦点为,准线方程为,设,由抛物线的定义知,,把代入求得点的坐标,再由求得点的坐标;(2)设直线的方程为,,,,联立方程组,整理得,先求出的中点的坐标,再由,得出,用弦长公式表示,构造函数,用导数法求的面积的最大值.(1)由题意知,焦点为,准线方程为,设,由抛物线的定义知,,得到,代入求得或,所以或,由得或,(2)设直线的方程为,,,,由得,于是,所以,,所以的中点的坐标,由,所以,所以,因为,所以,由,,所以,又因为,点到直线的距离为,所以,记,,令解得,,所以在上是增函数,在上是减函数,在上是增函数,又,所以当时,取得最大值,此时,所以的面积的最大值为.【考点】抛物线的几何性质,直线与抛物线的位置关系,三角形的面积公式,平面向量的坐标运算.5.如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1);(2)直线方程为或.【解析】本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a和b的值,从而得到椭圆的方程;第二问,直线l过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明,解出k的值.(1)由题意,,即,,即 2分又得:∴椭圆的标准方程:. 5分(2)①当直线的斜率不存在时,直线的方程为联立,解得或,不妨令,,所以对应的“椭点”坐标,.而所以此时以为直径的圆不过坐标原点. 7分②当直线的斜率存在时,设直线的方程为消去得,设,则这两点的“椭点”坐标分别为由根与系数关系得: 9分若使得以为直径的圆过坐标原点,则而,∴即,即代入,解得:所以直线方程为或. 12分【考点】椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件.6.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB 的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.【答案】(1)+y2=1(2)t=2或t=【解析】(1)设椭圆C的方程为:(a>b>0),则,解得a=,b=1,故椭圆C的方程为+y2=1.(2)由于A、B两点关于x轴对称,可设直线AB的方程为x=m(-<x<,且m≠0).将x=m代入椭圆方程得|y|=,所以S△AOB=|m| =.解得m2=或m2=.①又=t=t(+)=t(2m,0)=(mt,0),又点P在椭圆上,所以=1.②由①②得t2=4或t2=.又因为t>0,所以t=2或t=.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A.B.C.D.【答案】B【解析】∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.【考点】抛物线的标准方程及几何性质.8.已知双曲线=1的左支上一点M到右焦点F2的距离为18,N是线段MF2的中点,O是坐标原点,则|ON|等于()A.4B.2C.1D.【答案】A【解析】设双曲线左焦点为F1,由双曲线的定义知,|MF2|-|MF1|=2a,即18-|MF1|=10,所以|MF1|=8.又ON为△MF1F2的中位线,所以|ON|=|MF1|=4,所以选A.9.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.10.如图,已知,,,分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆.(1)求椭圆及圆的方程;(2)若点是圆劣弧上一动点(点异于端点,),直线分别交线段,椭圆于点,,直线与交于点.(ⅰ)求的最大值;(ⅱ)试问:,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1),,(2)(ⅰ),(ⅱ).【解析】(1)求椭圆标准方程,只需两个独立条件. 由题意知,,,所以,,所以椭圆的方程为,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心,,所以圆的方程为(2)(ⅰ)本题关键分析出比值暗示的解题方向,由于点在轴上,所以,因此解题方向为利用斜率分别表示出点与点的横坐标. 设直线的方程为,与直线的方程联立,解得点,联立,消去并整理得,,解得点,因此当且仅当时,取“=”,所以的最大值为.(ⅱ)求出点的横坐标,分析与点的横坐标的和是否为常数. 直线的方程为,与直线的方程联立,解得点,所以、两点的横坐标之和为.试题解析:(1)由题意知,,,所以,,所以椭圆的方程为, 2分易得圆心,,所以圆的方程为.4分(2)解:设直线的方程为,与直线的方程联立,解得点, 6分联立,消去并整理得,,解得点,9分(ⅰ),当且仅当时,取“=”,所以的最大值为. 12分(ⅱ)直线的方程为,与直线的方程联立,解得点, 14分所以、两点的横坐标之和为.故、两点的横坐标之和为定值,该定值为. 16分【考点】椭圆与圆标准方程,直线与椭圆位置关系11. 如图,在平面直角坐标系xOy 中,已知椭圆=1的左、右顶点为A 、B ,右焦点为F.设过点T(t ,m)的直线TA 、TB 与椭圆分别交于点M(x 1,y 1)、N(x 2,y 2),其中m>0,y 1>0,y 2<0.(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹; (2)设x 1=2,x 2=,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). 【答案】(1)x =(2)(3)见解析【解析】(1)解:设点P(x ,y),则F(2,0)、B(3,0)、A(-3,0).由PF 2-PB 2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4,化简得x =,故所求点P 的轨迹为直线x =. (2)解:将x 1=2,x 2=分别代入椭圆方程,以及y 1>0,y 2<0得M 、N.直线MTA的方程为,即y =x +1.直线NTB 的方程为,即y =x -.联立方程组,解得所以点T 的坐标为.(3)证明:点T 的坐标为(9,m),直线MTA 的方程为,即y =(x +3).直线NTB 的方程为,即y =(x -3).分别与椭圆=1联立方程组,同时考虑到x 1≠-3,x 2≠3,解得 M、N(证法1)当x 1≠x 2时,直线MN 的方程为,令y =0,解得x=1,此时必过点D(1,0);当x 1=x 2时,直线MN 的方程为x =1,与x 轴交点为D(1,0),所以直线MN 必过x 轴上的一定点D(1,0). (证法2)若x 1=x 2,则由及m>0,得m =2,此时直线MN 的方程为x =1,过点D(1,0).若x 1≠x 2,则m≠2.直线MD 的斜率k MD =,直线ND 的斜率k ND =,得k MD =k ND ,所以直线MN 过D 点.因此,直线MN 必过x 轴上的点D(1,0).12.已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-)2+y2=相切于点Q,且=2,则椭圆C的离心率等于()A.B.C.D.【答案】A【解析】记椭圆的左焦点为F′,圆(x-)2+y2=的圆心为E,连接PF′、QE.∵|EF|=|OF|-|OE|=c-=,=2,∴==,∴PF′∥QE,∴=,且PF′⊥PF.又∵|QE|=(圆的半径长),∴|PF′|=b.据椭圆的定义知:|PF′|+|PF|=2a,∴|PF|=2a-b.∵PF′⊥PF,∴|PF′|2+|PF|2=|F′F|2,∴b2+(2a-b)2=(2c)2,∴2(a2-c2)+b2=2ab,∴3b2=2ab,∴b=,c==a,=,∴椭圆的离心率为.13.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)试判断圆与轴的位置关系;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)(2)见解析(3)存在【解析】(1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值.(2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k 来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,通过讨论k的取值范围得到中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系.(3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点在轴上,设点坐标为,则M点需满足,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在.试题解析:解:(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得。
高考理科数学一轮复习大题篇----圆锥曲线综合(含答案)

高考理科数学一轮复习大题篇----圆锥曲线综合【归类解析】题型一 范围问题【解题指导】 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【例】设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |F A |,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.【解】 (1)设F (c,0),由1|OF |+1|OA |=3e |F A |, 即1c +1a =3c a a -c,可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4.所以椭圆的方程为x 24+y 23=1. (2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧ x 24+y 23=1,y =k x -2消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0.解得x =2或x =8k 2-64k 2+3. 由题意得x B =8k 2-64k 2+3,从而y B =-12k 4k 2+3. 由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k 24k 2+3,12k 4k 2+3. 由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k . 因此直线MH 的方程为y =-1k x +9-4k 212k . 设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k x -2,y =-1k x +9-4k 212k , 消去y ,解得x M =20k 2+912k 2+1. 在△MAO 中,由∠MOA ≤∠MAO ,得|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M , 化简,得x M ≥1,即20k 2+912k 2+1≥1, 解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64∪⎣⎡⎭⎫64,+∞. 【训练】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围. (1)证明 设P (x 0,y 0),A ⎝⎛⎭⎫14y 21,y 1,B ⎝⎛⎭⎫14y 22,y 2.因为P A ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝⎛⎭⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.所以y 1+y 2=2y 0,所以PM 垂直于y 轴.(2)解 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22y 20-4x 0. 所以△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=)3220044y x -.因为x 20+y 204=1(-1≤x 0<0), 所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],所以△P AB 面积的取值范围是⎣⎡⎦⎤62,15104. 题型二 最值问题【解题指导】 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【例】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),且椭圆上的点到一个焦点的最短距离为33b . (1)求椭圆C 的离心率;(2)若点M ⎝⎛⎭⎫3,32在椭圆C 上,不过原点O 的直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求△OAB 面积的最大值. 【解】 (1)由题意,得a -c =33b ,则(a -c )2=13b 2, 结合b 2=a 2-c 2,得(a -c )2=13(a 2-c 2), 即2c 2-3ac +a 2=0,亦即2e 2-3e +1=0,结合0<e <1,解得e =12. 所以椭圆C 的离心率为12. (2)由(1)得a =2c ,则b 2=3c 2.将M ⎝⎛⎭⎫3,32代入椭圆方程x 24c 2+y 23c 2=1,解得c =1. 所以椭圆方程为x 24+y 23=1. 易得直线OM 的方程为y =12x . 当直线l 的斜率不存在时,线段AB 的中点不在直线y =12x 上,故直线l 的斜率存在. 设直线l 的方程为y =kx +m (m ≠0),与x 24+y 23=1联立消y 得(3+4k 2)x 2+8kmx +4m 2-12=0, 由题意得Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=48(3+4k 2-m 2)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2. 因为y 1+y 2=k (x 1+x 2)+2m =6m 3+4k 2, 所以线段AB 的中点N 的坐标为⎝⎛⎭⎫-4km 3+4k 2,3m 3+4k 2, 因为点N 在直线y =12x 上, 所以-4km 3+4k 2=2×3m 3+4k 2, 解得k =-32. 所以Δ=48(12-m 2)>0,解得-23<m <23,且m ≠0,|AB |=1+⎝⎛⎭⎫-322|x 2-x 1| =132·x 1+x 22-4x 1x 2 =132·m 2-4m 2-123=39612-m 2. 又原点O 到直线l 的距离d =2|m |13, 所以S △OAB =12×39612-m 2×2|m |13 =3612-m 2m 2≤36·12-m 2+m 22= 3. 当且仅当12-m 2=m 2,即m =±6时等号成立,符合-23<m <23,且m ≠0.所以△OAB 面积的最大值为 3.【训练】已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).【解】 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎨⎧ x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2b mx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,① 将AB 的中点M ⎝⎛⎭⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2,② 由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则t 2∈⎝⎛⎭⎫0,32. 则|AB |=t 2+1·-2t 4+2t 2+32t 2+12, 且O 到直线AB 的距离为d =t 2+12t 2+1. 设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12 -2⎝⎛⎭⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立,此时满足t 2∈⎝⎛⎭⎫0,32. 故△AOB 面积的最大值为22. 题型三 定点问题【解题指导】 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【例】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b2知,椭圆C 不经过点P 1, 所以点P 2在椭圆C 上.因此⎩⎨⎧ 1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1. 故椭圆C 的方程为x 24+y 2=1. (2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1, 得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1. 而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -1x 1+x 2x 1x 2.由题设知k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0, 解得k =-m +12. 当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m , 即y +1=-m +12(x -2), 所以l 过定点(2,-1).【训练】 已知焦距为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,直线y =43与椭圆C 交于P ,Q 两点(P 在Q 的左边),Q 在x 轴上的射影为B ,且四边形ABPQ 是平行四边形.(1)求椭圆C 的方程;(2)斜率为k 的直线l 与椭圆C 交于两个不同的点M ,N .①若直线l 过原点且与坐标轴不重合,E 是直线3x +3y -2=0上一点,且△EMN 是以E 为直角顶点的等腰直角三角形,求k 的值;②若M 是椭圆的左顶点,D 是直线MN 上一点,且DA ⊥AM ,点G 是x 轴上异于点M 的点,且以DN 为直径的圆恒过直线AN 和DG 的交点,求证:点G 是定点.(1)解 由题意可得2c =22,即c =2,设Q ⎝⎛⎭⎫n ,43,因为四边形ABPQ 为平行四边形, |PQ |=2n ,|AB |=a -n ,所以2n =a -n ,n =a 3, 则⎝⎛⎭⎫a 32a 2+169b 2=1,解得b 2=2,a 2=b 2+c 2=4, 可得椭圆C 的方程为x 24+y 22=1. (2)①解 直线y =kx (k ≠0)代入椭圆方程,可得(1+2k 2)x 2=4,解得x =±21+2k 2, 可设M ⎝ ⎛⎭⎪⎫21+2k 2,2k 1+2k 2, 由E 是3x +3y -2=0上一点,可设E ⎝⎛⎭⎫m ,23-m ⎝⎛⎭⎫m ≠0,且m ≠23, E 到直线kx -y =0的距离为d =⎪⎪⎪⎪km +m -231+k 2,因为△EMN 是以E 为直角顶点的等腰直角三角形,所以OE ⊥MN ,|OM |=d ,即有23-m m =-1k,(*) 4+4k 21+2k 2=⎪⎪⎪⎪km +m -231+k 2,(**)由(*)得m =2k 3k -1(k ≠1),代入(**)式, 化简整理可得7k 2-18k +8=0,解得k =2或47. ②证明 由M (-2,0),可得直线MN 的方程为y =k (x +2)(k ≠0),代入椭圆方程可得(1+2k 2)x 2+8k 2x +8k 2-4=0,可得-2+x N =-8k 21+2k 2,解得x N =2-4k 21+2k 2, y N =k (x N +2)=4k 1+2k 2,即N ⎝ ⎛⎭⎪⎫2-4k 21+2k 2,4k 1+2k 2, 设G (t,0)(t ≠-2),由题意可得D (2,4k ),A (2,0),以DN 为直径的圆恒过直线AN 和DG 的交点,可得AN ⊥DG ,即有AN →·DG →=0,即为⎝ ⎛⎭⎪⎫-8k 21+2k 2,4k 1+2k 2·(t -2,-4k )=0,解得t =0. 故点G 是定点,即为原点(0,0).题型四 定值问题【解题指导】 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【例】已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值. (1)解 因为抛物线y 2=2px 过点(1,2),所以2p =4,即p =2.故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0.设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0. 依题意知Δ=(2k -4)2-4×k 2×1>0,解得k <0或0<k <1.又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)证明 设A (x 1,y 1),B (x 2,y 2),由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2. 直线P A 的方程为y -2=y 1-2x 1-1(x -1), 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2. 同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →,得λ=1-y M ,μ=1-y N .所以1λ+1μ=11-y M +11-y N=x 1-1k -1x 1+x 2-1k -1x 2 =1k -1·2x 1x 2-x 1+x2x 1x 2 =1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值. 【训练】已知点M 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2分别为C 的左、右焦点,且|F 1F 2|=4,∠F 1MF 2=60°,△F 1MF 2的面积为433. (1)求椭圆C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 于异于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.(1)解 在△F 1MF 2中,由12|MF 1||MF 2|sin 60°=433,得|MF 1||MF 2|=163. 由余弦定理,得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|·cos 60°=(|MF 1|+|MF 2|)2-2|MF 1||MF 2|(1+cos 60°),解得|MF 1|+|MF 2|=4 2.从而2a =|MF 1|+|MF 2|=42,即a =2 2.由|F 1F 2|=4得c =2,从而b =2, 故椭圆C 的方程为x 28+y 24=1. (2)证明 当直线l 的斜率存在时,设斜率为k ,显然k ≠0,则其方程为y +2=k (x +1),由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k x +1,得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0.Δ=56k 2+32k >0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k k -21+2k 2,x 1x 2=2k 2-8k 1+2k 2. 从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+k -4x 1+x 2x 1x 2 =2k -(k -4)·4k k -22k 2-8k=4. 当直线l 的斜率不存在时,可得A ⎝⎛⎭⎫-1,142,B ⎝⎛⎭⎫-1,-142,得k 1+k 2=4. 综上,k 1+k 2为定值.题型五 证明问题【解题指导】 圆锥曲线中的证明问题多涉及证明定值、点在定直线上等,有时也涉及一些否定性命题,证明方法一般是采用直接法或反证法.【例】设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .(1)解 设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0).由NP →= 2 NM →得x 0=x ,y 0=22y . 因为M (x 0,y 0)在C 上,所以x 22+y 22=1. 因此点P 的轨迹方程为x 2+y 2=2.(2)证明 由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1,得-3m -m 2+tn -n 2=1.又由(1)知m 2+n 2=2,故3+3m -tn =0.所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【训练】已知椭圆T :x 2a 2+y 2b 2=1(a >b >0)的一个顶点A (0,1),离心率e =63,圆C :x 2+y 2=4,从圆C 上任意一点P 向椭圆T 引两条切线PM ,PN .(1)求椭圆T 的方程;(2)求证:PM ⊥PN .(1)解 由题意可知b =1,c a =63,即2a 2=3c 2, 又a 2=b 2+c 2,联立解得a 2=3,b 2=1.∴椭圆方程为x 23+y 2=1. (2)证明 方法一 ①当P 点横坐标为±3时,纵坐标为±1,PM 斜率不存在,PN 斜率为0,PM ⊥PN .②当P 点横坐标不为±3时,设P (x 0,y 0),则x 20+y 20=4,设k PM =k ,PM 的方程为y -y 0=k (x -x 0),联立方程组⎩⎪⎨⎪⎧y -y 0=k x -x 0,x 23+y 2=1, 消去y 得(1+3k 2)x 2+6k (y 0-kx 0)x +3k 2x 20-6kx 0y 0+3y 20-3=0,依题意Δ=36k 2(y 0-kx 0)2-4(1+3k 2)(3k 2x 20-6kx 0y 0+3y 20-3)=0,化简得(3-x 20)k 2+2x 0y 0k +1-y 20=0, 又k PM ,k PN 为方程的两根,所以k PM ·k PN =1-y 203-x 20=1-4-x 203-x 20=x 20-33-x 20=-1. 所以PM ⊥PN .综上知PM ⊥PN .方法二 ①当P 点横坐标为±3时,纵坐标为±1,PM 斜率不存在,PN 斜率为0,PM ⊥PN . ②当P 点横坐标不为±3时,设P (2cos θ,2sin θ),切线方程为y -2sin θ=k (x -2cos θ),⎩⎪⎨⎪⎧ y -2sin θ=k x -2cos θ,x 23+y 2=1, 联立得(1+3k 2)x 2+12k (sin θ-k cos θ)x +12(sin θ-k cos θ)2-3=0,令Δ=0,即Δ=144k 2(sin θ-k cos θ)2-4(1+3k 2)[12(sin θ-k cos θ)2-3]=0,化简得(3-4cos 2θ)k 2+4sin 2θ·k +1-4sin 2θ=0,k PM ·k PN =1-4sin 2θ3-4cos 2θ=4-4sin 2θ-33-4cos 2θ=-1. 所以PM ⊥PN .综上知PM ⊥PN .题型六 探索性问题【解题指导】 解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.【例】在平面直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点, (1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.【解】 (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a , C 在点(2a ,a )处的切线方程为y -a =a (x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a , C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ), 即ax +y +a =0. 故所求切线方程为ax -y -a =0和ax +y +a =0.(2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2.将y =kx +a 代入C 的方程得x 2-4kx -4a =0.故x 1+x 2=4k ,x 1x 2=-4a .从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +b a . 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM =∠OPN ,所以点P (0,-a )符合题意.【训练】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点Q ⎝⎛⎭⎫1,-22,且离心率e =22,直线l 与E 相交于M ,N 两点,l 与x 轴、y 轴分别相交于C ,D 两点,O 为坐标原点.(1)求椭圆E 的方程;(2)判断是否存在直线l ,满足2OC →=OM →+OD →,2OD →=ON →+OC →?若存在,求出直线l 的方程;若不存在,请说明理由.【解】 (1)由题意得⎩⎨⎧c a =22,1a 2+12b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=2,b 2=1. 所以椭圆E 的方程为x 22+y 2=1. (2)存在直线l ,满足2OC →=OM →+OD →,2OD →=ON →+OC →.理由如下:方法一 由题意,直线l 的斜率存在,设直线l 的方程为y =kx +m (km ≠0),M (x 1,y 1),N (x 2,y 2),则C ⎝⎛⎭⎫-m k ,0,D (0,m ). 由方程组⎩⎪⎨⎪⎧ y =kx +m ,x 22+y 2=1, 得(1+2k 2)x 2+4kmx +2m 2-2=0,所以Δ=16k 2-8m 2+8>0.(*)由根与系数的关系,得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2. 因为2OC →=OM →+OD →,2OD →=ON →+OC →,所以MC →=CD →=DN →,所以C ,D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合.所以x 1+x 2=-4km 1+2k2=0-m k ,解得k =±22. 由C ,D 是线段MN 的两个三等分点,得|MN |=3|CD |.所以1+k 2|x 1-x 2|=3⎝⎛⎭⎫m k 2+m 2, 即|x 1-x 2|=⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-21+2k 2=3⎪⎪⎪⎪m k , 解得m =±55.验证知(*)成立.所以存在直线l ,满足2OC →=OM →+OD →,2OD →=ON →+OC →,此时直线l 的方程为y =22x ±55或y =-22x ±55. 方法二 设M (x 1,y 1),N (x 2,y 2),C (m,0),D (0,n ),由2OC →=OM →+OD →,2OD →=ON →+OC →,得⎩⎪⎨⎪⎧ 2m ,0=x 1,y 1+0,n ,20,n =x 2,y 2+m ,0,解得M (2m ,-n ),N (-m,2n ).又M ,N 两点在椭圆上,所以⎩⎨⎧4m 22+n 2=1,m 22+4n 2=1,即⎩⎪⎨⎪⎧ 2m 2+n 2=1,m 2+8n 2=2, 解得⎩⎨⎧m =±105,n =±55, 故所求直线l 的方程为52x -10y +25=0或52x -10y -25=0或52x +10y +25=0或52x +10y -25=0.专题突破训练1. 已知P ⎝⎛⎭⎫23,263是椭圆C :x 2a 2+y 2b 2=1(a >b >0)与抛物线E :y 2=2px (p >0)的一个公共点,且椭圆与抛物线具有一个相同的焦点F .(1)求椭圆C 及抛物线E 的方程;(2)设过F 且互相垂直的两动直线l 1,l 2,l 1与椭圆C 交于A ,B 两点,l 2与抛物线E 交于C ,D 两点,求四边形ACBD 面积的最小值. 解 (1)∵P ⎝⎛⎭⎫23,263是抛物线E :y 2=2px (p >0)上一点, ∴p =2,即抛物线E 的方程为y 2=4x ,F (1,0),∴a 2-b 2=1.又∵P ⎝⎛⎭⎫23,263在椭圆C :x 2a 2+y 2b 2=1上, ∴49a 2+83b 2=1,结合a 2-b 2=1知b 2=3(舍负),a 2=4, ∴椭圆C 的方程为x 24+y 23=1, 抛物线E 的方程为y 2=4x .(2)由题意可知直线l 1斜率存在,设直线l 1的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).①当k =0时,|AB |=4,直线l 2的方程为x =1,|CD |=4,故S 四边形ACBD =12·|AB |·|CD |=8. ②当k ≠0时,直线l 2的方程为y =-1k(x -1), 由⎩⎪⎨⎪⎧y =k x -1,x 24+y 23=1 得(3+4k 2)x 2-8k 2x +4k 2-12=0.∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2. 由弦长公式知|AB |=1+k 2|x 1-x 2|=1+k 2[x 1+x 22-4x 1x 2]=12k 2+14k 2+3. 同理可得|CD |=4(k 2+1).∴S 四边形ACBD =12·|AB |·|CD | =12·12k 2+14k 2+3·4(k 2+1) =24k 2+124k 2+3.令t =k 2+1,t ∈(1,+∞),则S 四边形ACBD =24t 24t -1=244t -1t 2=24-⎝⎛⎭⎫1t -22+4, 当t ∈(1,+∞)时,1t∈(0,1), -⎝⎛⎭⎫1t -22+4<3,S 四边形ACBD >243=8. 综上所述,四边形ACBD 面积的最小值为8.2.已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上位于第一象限的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D .(1)若当点A 的横坐标为3,且△ADF 为等边三角形,求C 的方程;(2)对于(1)中求出的抛物线C ,若点D (x 0,0)⎝⎛⎭⎫x 0≥12,记点B 关于x 轴的对称点为E ,AE 交x 轴于点P ,且AP ⊥BP ,求证:点P 的坐标为(-x 0,0),并求点P 到直线AB 的距离d 的取值范围.解 (1)由题意知F ⎝⎛⎭⎫p 2,0,|F A |=3+p 2, 则D (3+p,0),FD 的中点坐标为⎝⎛⎭⎫32+3p 4,0,则32+3p 4=3,解得p =2, 故C 的方程为y 2=4x .(2)依题意可设直线AB 的方程为x =my +x 0(m ≠0),A (x 1,y 1),B (x 2,y 2),则E (x 2,-y 2),由⎩⎪⎨⎪⎧y 2=4x ,x =my +x 0, 消去x ,得y 2-4my -4x 0=0,x 0≥12.所以Δ=16m 2+16x 0>0,y 1+y 2=4m ,y 1y 2=-4x 0,设P 的坐标为(x P ,0),则PE →=(x 2-x P ,-y 2),P A →=(x 1-x P ,y 1),由题意知PE →∥P A →,所以(x 2-x P )y 1+y 2(x 1-x P )=0,即x 2y 1+y 2x 1=y 22y 1+y 21y 24=y 1y 2y 1+y 24=(y 1+y 2)x P ,显然y 1+y 2=4m ≠0,所以x P =y 1y 24=-x 0, 即证P (-x 0,0),由题意知△EPB 为等腰直角三角形,所以k AP =1,即y 1+y 2x 1-x 2=1,也即y 1+y 214y 21-y 22=1, 所以y 1-y 2=4,所以(y 1+y 2)2-4y 1y 2=16,即16m 2+16x 0=16,m 2=1-x 0,x 0<1,又因为x 0≥12,所以12≤x 0<1, d =|-x 0-x 0|1+m 2=2x 01+m 2=2x 02-x 0, 令2-x 0=t ∈⎝⎛⎦⎤1,62,x 0=2-t 2, d =22-t 2t =4t-2t , 易知f (t )=4t -2t 在⎝⎛⎦⎤1,62上是减函数, 所以d ∈⎣⎡⎭⎫63,2. 所以d 的取值范围是⎣⎡⎭⎫63,2. 3.已知椭圆C 1:x 2m +4-y 2n=1与双曲线C 2:x 2m +y 2n =1有相同的焦点,求椭圆C 1的离心率e 1的取值范围.解 ∵椭圆C 1:x 2m +4-y 2n=1, ∴a 21=m +4,b 21=-n ,c 21=m +4+n ,e 21=m +4+n m +4=1+n m +4. ∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件知m +4+n =m -n ,则n =-2,∴e 21=1-2m +4. 由m >0得m +4>4,1m +4<14,-2m +4>-24, ∴1-2m +4>12, 即e 21>12,而0<e 1<1, ∴22<e 1<1. 4.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,左焦点为F ,点P 为椭圆C 上任一点,若直线P A 与PB 的斜率之积为-34,且椭圆C 经过点⎝⎛⎭⎫1,32. (1)求椭圆的方程;(2)若PB ,P A 交直线x =-1于M ,N 两点,过左焦点F 作以MN 为直径的圆的切线.问切线长是否为定值,若是,求出定值;若不是,请说明理由.解 (1)设P 点坐标为(x 0,y 0),由题意知A (-a,0),B (a,0),且x 20a 2+y 20b2=1. 则k P A ·k PB =y 0x 0+a ·y 0x 0-a =y 20x 20-a2 =⎝⎛⎭⎫-b 2a 2·x 20-a 2x 20-a 2=-b 2a 2=-34, 即3a 2=4b 2.①又因为椭圆经过点⎝⎛⎭⎫1,32, 故1a 2+94b2=1.② 由①②可知,b 2=3,a 2=4,故椭圆的方程为x 24+y 23=1. (2)由(1)可知A (-2,0),B (2,0),设k P A =k (k ≠0).由k ·k PB =-34,得k PB =-34k. 所以直线PB 的方程为y =-34k(x -2),令x =-1,则y =94k,故M ⎝⎛⎭⎫-1,94k . 直线P A 的方程为y =k (x +2),令x =-1,则y =k ,故N (-1,k ).如图,因为y M y N =94k ·k =94>0,故以MN 为直径的圆在x 轴同侧.设FT 为圆的一条切线,切点为T ,连接MT ,NT ,可知△FTN ∽△FMT ,故|FT ||FM |=|FN ||FT |,则|FT |2=|FN |·|FM |=|k |·⎪⎪⎪⎪94k =94,故|FT |=32. 故过左焦点F 作以MN 为直径的圆的切线长为定值32. 5.已知抛物线C 的顶点在原点,焦点在y 轴上,且抛物线上有一点P (m,5)到焦点的距离为6.(1)求该抛物线C 的方程;(2)已知抛物线上一点M (4,t ),过点M 作抛物线的两条弦MD 和ME ,且MD ⊥ME ,判断直线DE 是否过定点,并说明理由.解 (1)由题意设抛物线方程为x 2=2py (p >0),其准线方程为y =-p 2,P (m,5)到焦点的距离等于P 到其准线的距离, 所以5+p 2=6,即p =2. 所以抛物线方程为x 2=4y .(2)由(1)可得点M (4,4),设直线MD 的方程为y =k (x -4)+4(k ≠0),联立⎩⎪⎨⎪⎧ y =k x -4+4,x 2=4y ,得x 2-4kx +16k -16=0,由题意得,Δ>0,设D (x 1,y 1),E (x 2,y 2),则x M ·x 1=16k -16,所以x 1=16k -164=4k -4, y 1=4k -424=4(k -1)2,同理可得,x 2=-4k -4,y 2=4⎝⎛⎭⎫1k +12, 所以直线DE 的方程为y -4(k -1)2=4k -12-4⎝⎛⎭⎫1k +124k -4+4k+4(x -4k +4)=⎝⎛⎭⎫k +1k ⎝⎛⎭⎫k -1k -2k +1k(x -4k +4)=⎝⎛⎭⎫k -1k -2(x -4k +4). 化简得y =⎝⎛⎭⎫k -1k -2x +4k -4k =⎝⎛⎭⎫k -1k -2(x +4)+8. 所以直线DE 过定点(-4,8).6.已知动圆E 经过定点D (1,0),且与直线x =-1相切,设动圆圆心E 的轨迹为曲线C . (1)求曲线C 的方程;(2)设过点P (1,2)的直线l 1,l 2分别与曲线C 交于A ,B 两点,直线l 1,l 2的斜率存在,且倾斜角互补,证明:直线AB 的斜率为定值.(1)解 由已知,动点E 到定点D (1,0)的距离等于E 到直线x =-1的距离,由抛物线的定义知E 点的轨迹是以D (1,0)为焦点,以x =-1为准线的抛物线,故曲线C 的方程为y 2=4x . (2)证明 由题意直线l 1,l 2的斜率存在,倾斜角互补,得斜率互为相反数,且不等于零. 设A (x 1,y 1),B (x 2,y 2),直线l 1的方程为y =k (x -1)+2,k ≠0. 直线l 2的方程为y =-k (x -1)+2,由⎩⎪⎨⎪⎧y =k x -1+2,y 2=4x得k 2x 2-(2k 2-4k +4)x +(k -2)2=0, Δ=16(k -1)2>0, 已知此方程一个根为1, ∴x 1×1=k -22k 2=k 2-4k +4k 2,即x 1=k 2-4k +4k 2,同理x 2=-k2-4-k +4-k 2=k 2+4k +4k 2,∴x 1+x 2=2k 2+8k 2,x 1-x 2=-8k k 2=-8k ,∴y 1-y 2=[k (x 1-1)+2]-[-k (x 2-1)+2] =k (x 1+x 2)-2k =k ·2k 2+8k 2-2k =8k ,∴k AB =y 1-y 2x 1-x 2=8k -8k =-1,∴直线AB 的斜率为定值-1.7.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为22,过左焦点F 且垂直于x 轴的直线交椭圆C 于P ,Q 两点,且|PQ |=2 2. (1)求C 的方程;(2)若直线l 是圆x 2+y 2=8上的点(2,2)处的切线,点M 是直线l 上任一点,过点M 作椭圆C 的切线MA ,MB ,切点分别为A ,B ,设切线的斜率都存在.求证:直线AB 过定点,并求出该定点的坐标.解 (1)由已知,设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),因为|PQ |=22,不妨设点P (-c ,2), 代入椭圆方程得,c 2a 2+2b 2=1,又因为e =c a =22,所以12+2b 2=1,b =c ,所以b 2=4,a 2=2b 2=8, 所以C 的方程为x 28+y 24=1.(2)依题设,得直线l 的方程为y -2=-(x -2), 即x +y -4=0,设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),x 0≠x 1且x 0≠x 2, 由切线MA 的斜率存在,设其方程为y -y 1=k (x -x 1), 联立⎩⎪⎨⎪⎧y -y 1=k x -x 1,x 28+y 24=1得(2k 2+1)x 2+4k (y 1-kx 1)x +2(y 1-kx 1)2-8=0,由相切得Δ=16k 2(y 1-kx 1)2-8(2k 2+1)[(y 1-kx 1)2-4]=0,化简得(y 1-kx 1)2=8k 2+4,即(x 21-8)k 2-2x 1y 1k +y 21-4=0,因为方程只有一解,所以k =x 1y 1x 21-8=x 1y 1-2y 21=-x 12y 1, 所以切线MA 的方程为y -y 1=-x 12y 1(x -x 1),即x 1x +2y 1y =8,同理,切线MB 的方程为x 2x +2y 2y =8, 又因为两切线都经过点M (x 0,y 0),所以⎩⎪⎨⎪⎧x 1x 0+2y 1y 0=8,x 2x 0+2y 2y 0=8,所以直线AB 的方程为x 0x +2y 0y =8, 又x 0+y 0=4,所以直线AB 的方程可化为x 0x +2(4-x 0)y =8, 即x 0(x -2y )+8y -8=0,令⎩⎪⎨⎪⎧ x -2y =0,8y -8=0得⎩⎪⎨⎪⎧x =2,y =1,所以直线AB 恒过定点(2,1).8.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,左顶点M 到直线x a +y b =1的距离d =455,O为坐标原点. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于A ,B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值. (1)解 由e =32,得c =32a ,又b 2=a 2-c 2, 所以b =12a ,即a =2b .由左顶点M (-a,0)到直线x a +yb =1,即到直线bx +ay -ab =0的距离d =455,得|b-a-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b=455,解得b =1.所以a =2b =2,c = 3. 所以椭圆C 的方程为x 24+y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,由椭圆的对称性, 可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214+y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m , 与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0, 所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB , 所以OA →·OB →=x 1x 2+y 1y 2=0, 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0, 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0, 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过⎝⎛⎭⎫1,32与⎝⎛⎭⎫62,304两点.(1)求椭圆C 的方程;(2)过原点的直线l 与椭圆C 交于A ,B 两点,椭圆C 上一点M 满足|MA |=|MB |.求证:1|OA |2+1|OB |2+2|OM |2为定值. (1)解 将⎝⎛⎭⎫1,32与⎝⎛⎭⎫62,304两点代入椭圆C 的方程,得⎩⎪⎨⎪⎧1a 2+94b 2=1,32a 2+3016b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)证明 由|MA |=|MB |,知M 在线段AB 的垂直平分线上,由椭圆的对称性知点A ,B 关于原点对称.①若点A ,B 是椭圆的短轴顶点,则点M 是椭圆的一个长轴顶点,此时 1|OA |2+1|OB |2+2|OM |2=1b 2+1b 2+2a2=2⎝⎛⎭⎫1a 2+1b 2=76. 同理,若点A ,B 是椭圆的长轴顶点,则点M 是椭圆的一个短轴顶点,此时 1|OA |2+1|OB |2+2|OM |2=1a 2+1a 2+2b2=2⎝⎛⎭⎫1a 2+1b 2=76. ②若点A ,B ,M 不是椭圆的顶点,设直线l 的方程为y =kx (k ≠0), 则直线OM 的方程为y =-1kx ,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx ,x 24+y 23=1,解得x 21=123+4k 2,y 21=12k 23+4k 2, 所以|OA |2=|OB |2=x 21+y 21=121+k 23+4k 2,同理,|OM |2=121+k 24+3k 2.所以1|OA |2+1|OB |2+2|OM |2=2×3+4k 2121+k 2+24+3k 2121+k2=76.综上,1|OA |2+1|OB |2+2|OM |2=76为定值. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2分别为椭圆的左、右焦点,点P为椭圆上一点,△F 1PF 2面积的最大值为 3. (1)求椭圆C 的方程;(2)过点A (4,0)作关于x 轴对称的两条不同直线l 1,l 2分别交椭圆于M (x 1,y 1)与N (x 2,y 2),且x 1≠x 2,证明直线MN 过定点,并求△AMN 的面积S 的取值范围. 解 (1)设a 2-b 2=c 2,则c a =32,设P (x ,y ),则12F PF S =c |y |,∵|y |≤b ,∴12F PF S≤bc = 3.解得⎩⎪⎨⎪⎧a =2,b =1.∴椭圆C 的方程为x 24+y 2=1.(2)设MN 方程为x =ny +m (n ≠0),联立⎩⎪⎨⎪⎧x =ny +m ,x 2+4y 2-4=0, 得(n 2+4)y 2+2nmy +m 2-4=0, 由题意知,Δ=16(n 2-m 2+4)>0, ∴y 1+y 2=-2nm n 2+4,y 1y 2=m 2-4n 2+4,∵关于x 轴对称的两条不同直线l 1,l 2的斜率之和为0, 即y 1x 1-4+y 2x 2-4=0, 即y 1ny 1+m -4+y 2ny 2+m -4=0,得2ny 1y 2+m (y 1+y 2)-4(y 1+y 2)=0, 即2n m 2-4n 2+4-2nm 2n 2+4+8nm n 2+4=0.解得m =1.直线MN 方程为x =ny +1, ∴直线MN 过定点B (1,0). 又|y 1-y 2|= ⎝ ⎛⎭⎪⎫-2n n 2+42-4·-3n 2+4=4n 2+3n 2+42=41n 2+4-1n 2+42,令1n 2+4=t ,∴t ∈⎝⎛⎭⎫0,14, ∴|y 1-y 2|=4-t 2+t ∈(0,3), 又S =12|AB ||y 1-y 2|=32|y 1-y 2|∈⎝⎛⎭⎫0,332.11.已知椭圆C 的中心为坐标原点,焦点在x 轴上,离心率e =32,以椭圆C 的长轴和短轴为对角线的四边形的周长为4 5. (1)求椭圆C 的标准方程;(2)若经过点P (1,0)的直线l 交椭圆C 于A ,B 两点,是否存在直线l 0:x =x 0(x 0>2),使得A ,B 到直线l 0的距离d A ,d B 满足d A d B =|P A ||PB |恒成立,若存在,求出x 0的值;若不存在,请说明理由.解 (1)设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵c a =32,∴c =32a , 又∵4a 2+b 2=45,∴a 2+b 2=5,由b 2=a 2-c 2=14a 2,解得a =2,b =1,c = 3. ∴椭圆C 的标准方程为x 24+y 2=1.(2)若直线l 的斜率不存在,则直线l 0为任意直线都满足要求; 当直线l 的斜率存在时,设其方程为y =k (x -1), 设A (x 1,y 1),B (x 2,y 2)(不妨令x 1>1>x 2), 则d A =x 0-x 1,d B =x 0-x 2,|P A |=1+k 2(x 1-1),|PB |=1+k 2(1-x 2), ∵d A d B =|P A ||PB |, ∴x 0-x 1x 0-x 2=1+k 2x 1-11+k 21-x 2=x 1-11-x 2, 解得x 0=2x 1x 2-x 1+x 2x 1+x 2-2.由⎩⎪⎨⎪⎧x 24+y 2=1,y =k x -1,得(1+4k 2)x 2-8k 2x +4k 2-4=0,由题意知,Δ>0显然成立,x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2,x 0=8k 2-81+4k 2-8k 21+4k 28k 21+4k 2-2=4.综上可知存在直线l 0:x =4,使得A ,B 到直线l 0的距离d A ,d B 满足d A d B =|P A ||PB |恒成立.12.已知顶点是坐标原点的抛物线Γ的焦点F 在y 轴正半轴上,圆心在直线y =12x 上的圆E 与x 轴相切,且E ,F 关于点M (-1,0)对称. (1)求E 和Γ的标准方程;(2)过点M 的直线l 与E 交于A ,B ,与Γ交于C ,D ,求证:|CD |>2|AB |. (1)解 设Γ的标准方程为x 2=2py (p >0), 则F ⎝⎛⎭⎫0,p 2. 已知E 在直线y =12x 上,故可设E (2a ,a ).因为E ,F 关于M (-1,0)对称,所以⎩⎪⎨⎪⎧2a +02=-1,p2+a 2=0,解得⎩⎪⎨⎪⎧a =-1,p =2.所以Γ的标准方程为x 2=4y .因为E 与x 轴相切,故半径r =|a |=1, 所以E 的标准方程为(x +2)2+(y +1)2=1. (2)证明 由题意知,直线l 的斜率存在, 设l 的斜率为k ,那么其方程为y =k (x +1)(k ≠0), 则E (-2,-1)到l 的距离d =|k -1|k 2+1, 因为l 与E 交于A ,B 两点, 所以d 2<r 2,即k -12k 2+1<1,解得k >0,所以|AB |=21-d 2=22kk 2+1.由⎩⎪⎨⎪⎧x 2=4y ,y =k x +1消去y 并整理得x 2-4kx -4k =0.Δ=16k 2+16k >0恒成立, 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=4k ,x 1x 2=-4k , 那么|CD |=k 2+1|x 1-x 2| =k 2+1·x 1+x 22-4x 1x 2=4k 2+1·k 2+k .所以|CD |2|AB |2=16k 2+1k 2+k8k k 2+1=2k 2+12k 2+kk =2k k 2+12k +1k>2k k=2. 所以|CD |2>2|AB |2, 即|CD |>2|AB |.13,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴与短轴之和为6,椭圆上任一点到两焦点F 1,F 2的距离之和为4.(1)求椭圆的标准方程;(2)若直线AB :y =x +m 与椭圆交于A ,B 两点,C ,D 在椭圆上,且C ,D 两点关于直线AB 对称,问:是否存在实数m ,使|AB |=2|CD |,若存在,求出m 的值;若不存在,请说明理由.解 (1)由题意,2a =4,2a +2b =6, ∴a =2,b =1.∴椭圆的标准方程为x 24+y 2=1.(2)∵C ,D 关于直线AB 对称, 设直线CD 的方程为y =-x +t ,联立⎩⎪⎨⎪⎧y =-x +t ,x 24+y 2=1消去y ,得5x 2-8tx +4t 2-4=0, Δ=64t 2-4×5×(4t 2-4)>0,解得t 2<5,设C ,D 两点的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1+x 2=8t5,x 1x 2=4t 2-45,设CD 的中点为M (x 0,y 0), ∴⎩⎨⎧x 0=x 1+x 22=4t 5,y 0=-x 0+t =t5,∴M ⎝⎛⎭⎫4t 5,t 5,又点M 也在直线y =x +m 上, 则t 5=4t 5+m ,∴t =-5m3, ∵t 2<5,∴m 2<95.则|CD |=1+1|x 1-x 2| =2·x 1+x 22-4x 1x 2=2·45-t 25.同理|AB |=2·45-m 25.∵|AB |=2|CD |, ∴|AB |2=2|CD |2, ∴2t 2-m 2=5, ∴m 2=4541<95,∴存在实数m ,使|AB |=2|CD |,此时m 的值为±320541.14.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB 的中点,O 为坐标原点. (1)求直线ON 的斜率k ON ;(2)求证:对于椭圆C 上的任意一点M ,都存在θ∈[0,2π),使得OM →=cos θOA →+sin θOB →成立. (1)解 设椭圆的焦距为2c , 因为c a =63,所以a 2-b 2a 2=23,故有a 2=3b 2.从而椭圆C 的方程可化为x 2+3y 2=3b 2.①知右焦点F 的坐标为(2b,0),据题意有AB 所在的直线方程为y =x -2b .②由①②得4x 2-62bx +3b 2=0.③设A (x 1,y 1),B (x 2,y 2),弦AB 的中点N (x 0,y 0),由③及根与系数的关系得:x 0=x 1+x 22=32b 4,y 0=x 0-2b =-24b . 所以k ON =y 0x 0=-13,即为所求. (2)证明 显然OA →与OB →可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量OM →,有且只有一对实数λ,μ,使得等式OM →=λOA →+μOB →成立.设M (x ,y ),由(1)中各点的坐标有(x ,y )=λ(x 1,y 1)+μ(x 2,y 2),故x =λx 1+μx 2,y =λy 1+μy 2. 又因为点M 在椭圆C 上,所以有(λx 1+μx 2)2+3(λy 1+μy 2)2=3b 2,整理可得λ2(x 21+3y 21)+μ2(x 22+3y 22)+2λμ(x 1x 2+3y 1y 2)=3b 2.④由③有x 1+x 2=32b 2,x 1·x 2=3b 24. 所以x 1x 2+3y 1y 2=x 1x 2+3(x 1-2b )(x 2-2b )=4x 1x 2-32b (x 1+x 2)+6b 2=3b 2-9b 2+6b 2=0.⑤又点A ,B 在椭圆C 上,故有x 21+3y 21=3b 2,x 22+3y 22=3b 2.⑥将⑤,⑥代入④可得,λ2+μ2=1.所以,对于椭圆上的每一个点M ,总存在一对实数,使等式OM →=λOA →+μOB →成立,且λ2+μ2=1.所以存在θ∈[0,2π),使得λ=cos θ,μ=sin θ.也就是:对于椭圆C 上任意一点M ,总存在θ∈[0,2π),使得等式OM →=cos θOA →+sin θOB →成立.15.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求出λ的值;若不存在,请说明理由.解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ),又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧ 1-b 2=-1,c a =32,a 2-b 2=c 2,解得a =22,b =2,所以椭圆E 的方程为x 28+y 22=1. (2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧ x 28+y 22=1,y =kx +1,得(4k 2+1)x 2+8kx -4=0, 其判别式Δ=(8k )2+16(4k 2+1)>0,所以x 1+x 2=-8k 4k 2+1,x 1x 2=-44k 2+1, 从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=-4λ-8k 2+-4λ-34k 2+1=-3λ+14k 2+1-λ-2. 所以当λ=-13时,-3λ+14k 2+1-λ-2=-53, 此时OA →·OB →+λP A →·PB →=-53为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时,OA →·OB →+λP A →·PB →=OC →·OD →-13PC →·PD → =-2+13=-53. 故存在常数λ=-13,使得OA →·OB →+λP A →·PB →为定值-53.。
高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.已知圆经过椭圆的右焦点和上顶点.(1)求椭圆的方程;(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为,为的中点,求的最大值.【答案】(1);(2).【解析】本题考查直线、圆、椭圆、平面向量、分式函数等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能力;考查数形结合、化归与转化及函数与方程等数学思想.第一问,数形结合,令y=0,x=0即可分别求出c和b的值,从而得到椭圆的标准方程;第二问,设出直线方程和P、Q点坐标,令直线与椭圆联立得到Q点横坐标,利用向量的数量积,将P、Q点坐标代入,得到关于k的表达式,利用导数求函数的最值;法二,将进行转化,变成,再利用配方法求最值.试题解析:(1)在中,令得,即,令,得,即, 2分由,∴椭圆:. 4分(2)法一:依题意射线的斜率存在,设,设 -5分得:,∴. 6分得:,∴, 7分∴. 9分.设,,令,得.又,∴在单调递增,在单调递减. 11分∴当时,,即的最大值为. 13分法二:依题意射线的斜率存在,设,设 5分得:,∴. 6分= 9分.设,则.当且仅当即.法三:设点,,6分= . 7分又,设与联立得: . 9分令. 11分又点在第一象限,∴当时,取最大值. 13分【考点】直线、圆、椭圆、平面向量、分式函数.2.(本小题满分12分)已知曲线上的点到点的距离比它到直线的距离小2.(1)求曲线的方程;(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.【答案】(1).(2)当点P在曲线上运动时,线段AB的长度不变,证明见解析.【解析】(1)思路一:设为曲线上任意一点,依题意可知曲线是以点为焦点,直线为准线的抛物线,得到曲线的方程为.思路二:设为曲线上任意一点,由,化简即得.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,得,应用导数的几何意义,确定切线的斜率,进一步得切线的方程为.由,得.由,得.根据,得圆心,半径,由弦长,半径及圆心到直线的距离之关系,确定.试题解析:解法一:(1)设为曲线上任意一点,依题意,点S到的距离与它到直线的距离相等,所以曲线是以点为焦点,直线为准线的抛物线,所以曲线的方程为.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,则,由,得切线的斜率,所以切线的方程为,即.由,得.由,得.又,所以圆心,半径,.所以点P在曲线上运动时,线段AB的长度不变.解法二:(1)设为曲线上任意一点,则,依题意,点只能在直线的上方,所以,所以,化简得,曲线的方程为.(2)同解法一.【考点】抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.3.已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.(1)求抛物线C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.【答案】(1);(2)x-y-1=0或x+y-1=0.【解析】(1)设Q(x0,4),代入由中得x=,在根据抛物线的性质可得,解出p即可(2)设直线l的方程为,(m≠0)代入中得,直线的方程为,将上式代入中,并整理得.A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4),根据二次函数根与系数的关系可得y1+y2=4m,y1y2=-4,.然后求出MN的中点为E和AB的中点为D坐标的表达式,计算的表达式,根据求出m即可.试题解析:(1)设Q(x0,4),代入由中得x=,所以,由题设得,解得p=-2(舍去)或p=2.所以C的方程为.(2)依题意知直线l与坐标轴不垂直,故可设直线l的方程为,(m≠0)代入中得,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,故AB的中点为D(2m2+1,2m),,有直线的斜率为-m,所以直线的方程为,将上式代入中,并整理得.设M(x3,y3),N(x4,y4),则.故MN的中点为E().由于MN垂直平分AB,故A,M,B,N四点在同一个圆上等价于,从而,即,化简得m2-1=0,解得m=1或m=-1,所以所求直线l的方程为x-y-1=0或x+y-1=0.【考点】1.抛物线的性质和方程;2.直线方程以及直线与曲线的位置关系.4.如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.(1)若圆过原点,求圆的方程;(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.【答案】(1)或;(2).【解析】(1)因为是圆的直径,所以当圆过原点时,一定有,由此可确定点的位置并进一步求出圆的标准方程;(2)设圆M的半径为,连结,显然有根据椭圆的标准方程知,所以,从而找到符合条件的定圆.解:(1)解法一:因为圆过原点,所以,所以是椭圆的短轴顶点,的坐标是或,于是点的坐标为或,易求圆的半径为所以圆的方程为或 6分解法二:设,因为圆过原点,所以所以,所以,所以点于是点的坐标为或,易求圆的半径所以圆的方程为或 6分(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为 8分探究过程为:设圆的半径为,定圆的半径为,因为,所以当原点为定圆圆心,半径时,定圆始终与圆相内切.(13分)【考点】1、椭圆的定义与标准方程;2、圆的定义与标准方程.5.已知,是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为A.B.C.D.【答案】【解析】即双曲线的一条渐近线方程.过焦点且垂直渐近线的直线方程为:,与联立,解之可得故对称中心的点坐标为();由中点坐标公式可得对称点的坐标为,将其代入双曲线的方程可得结合化简可得,故.故选.【考点】双曲线的几何性质,直线方程,两直线的位置关系.6.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.7.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【答案】B【解析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.8.已知椭圆和椭圆的离心率相同,且点在椭圆上.(1)求椭圆的方程;(2)设为椭圆上一点,过点作直线交椭圆于、两点,且恰为弦的中点。
圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
高考数学第一轮复习圆锥曲线的综合问题

圆锥曲线的综合问题●知识梳理分析几何是联系初等数学与高等数学的纽带,它自己重视于形象思想、 推理运算和数形联合,综合了代数、三角、几何、向量等知识. 反应在解题上,就是依据曲线的几何特色准确地变换为代数形式,依据方程画出图形,研究几何性质. 学习时应娴熟掌握函数与方程的思想、数形联合的思想、参数的思想、分类与转变的思想等,以达到优化解题的目的.详细来说,有以下三方面:( 1)确立曲线方程,本质是求某几何量的值;含参数系数的曲线方程或变化运动中的圆锥曲线的主要问题是定值、最值、最值范围问题,这些问题的求解都离不开函数、方程、不等式的解题思想方法 . 有时题设设计的特别隐蔽,这就要求仔细审题,发掘题目的隐含条 件作为解题打破口 .( 2)分析几何也能够与数学其余知知趣联系,这种综合一般比较直观,在解题时保持思想的灵巧性和多面性,能够顺利进行转变,即从一知识转变为另一知识.( 3)分析几何与其余学科或本质问题的综合,主要表此刻用分析几何知识去解相关知 识,详细地说就是经过成立坐标系, 成立所研究曲线的方程, 并经过方程求解往返答本质问题. 在这一类问题中“本质量”与“数学量”的转变是易犯错的地方,这是由于在座标系中 的量是“数目” ,不单有大小还有符号 .●点击双基1. ( 2005 年春天北京, 5)设 abc ≠0,“ ac >0”是“曲线 ax 2+by 2=c 为椭圆”的 A. 充足不用要条件B. 必需不充足条件C. 充足必需条件D. 既不充足又不用要条件 2 2分析: ac >0 曲线 ax +by =c 为椭圆 .答案: B2. 到两定点 A (0, 0), B ( 3, 4)距离之和为 5 的点的轨迹是A. 椭圆所在直线 C. 线段 ABD. 无轨迹分析:数形联合易知动点的轨迹是线段: = 4,此中 0≤ x ≤ 3.AB3答案: C3. 若点( x , y )在椭圆 4x 2+y 2=4 上,则x y 的最小值为2B. - 1C.-23D. 以上都不对3分析:y的几何意义是椭圆上的点与定点( 2, 0)连线的斜率 . 明显直线与椭圆相x2切时获得最值,设直线 = ( - 2)代入椭圆方程( 4+k 2)x 2-4 2 +4 2-4=0.y k xk x k令 =0, k =± 23 .3∴ k min =- 23 .3答案: C4. ( 2005 年春天上海, 7)双曲线 9 2- 16 y 2=1 的焦距是 ____________.x分析:将双曲线方程化为标准方程得x2y221 21 ,- 1 =1. ∴ a =9 , b =16 19 16c 2=a 2+b 2= 1 + 1 =25 .9 16 144∴ c = 5, 2c = 5.126答案:565. ( 2004 年春天北京)若直线+ -3=0 与圆 x 2+ y 2=3 没有公共点,则mx ny系式为 ____________;以( m , n )为点 P 的坐标,过点 P 的一条直线与椭圆公共点有 ____________个 .分析:将直线 mx +ny - 3=0 变形代入圆方程x 2+y 2=3,消去 x ,得(2+2) y 2- 6 ny +9-3 2=0.m nm22令 <0 得 m +n <3.又 m 、n 不一样时为零,2 2∴ 0<m +n <3.223 , | m |< 3 ,由 0<m +n <3,可知 | n |<m 、n 知足的关2 2 x y再由椭圆方程 a = 7 , b = 3 可知公共点有 2 个.2 2答案: 0<m +n <3 2 ●典例分析【例 1】 (2005 年春天北京, 18)如图, O 为坐标原点,直线 l 在 x 轴和 y 轴上的截距分别是 a 和 b ( a >0, b ≠ 0),且交抛物线 y 2=2px (p >0)于 M ( x 1, y 1),N ( x 2, y 2)两点 .lyMOa xb N( 1)写出直线 l 的截距式方程;( 2)证明: 1+1=1;y 1y 2 b ( 3)当 =2 时,求∠的大小 .a pMON分析:易知直线l 的方程为 x + y =1 ,欲证 1+1=1,即求 y1y 2 的值,为此只要aby 1 y 2by 1 y 22=2px 交点的纵坐标 . 由根与系数的关系易得 121 2的值,从而证得 求直线 l 与抛物线 y y +y 、y y 1+ 1 = 1. 由 OM · ON =0 易得∠ MON =90° . 亦可由 k OM ·k ON =- 1 求得∠MON =90° . y 1 y 2 b( 1)解:直线 l 的截距式方程为x + y=1.a b①( 2)证明:由①及 y 2=2 消去x可得by 2+2-2 =0.pxpaypab②点、 的纵坐标 y 1、 y 2 为②的两个根,故 y 1+ 2=2 pa , 1 y 2=-2. M Npab2 pa所以 1 + 1y 1 y 2 = b1== .y 1 y 2y 1 y 2 2 pa b ( 3)解:设直线 OM 、 ON 的斜率分别为k 1、 k 2,则 k 1=y 1,k 2=y 2.x 1 x 2当 a =2p 时,由( 2)知, y 1y 2=- 2pa =- 4p 2,2222由 y 1 =2px 1, y 2 =2px 2,相乘得( y 1y 2)=4p x 1 x 2,x 1x 2= ( y 1 y 2 ) 2 =( 4 p 2 ) 2=4p 2,4 p 2 4 p 2所以 ky 1 y 2 4 p 21k 2===- 1.x 1 x 24 p 2所以 OM ⊥ ON ,即∠ MON =90° .评论:此题主要考察直线、 抛物线等基本知识, 考察运用分析几何的方法分析问题和解决问题的能力 .【例 2】 (2005 年黄冈高三调研考题)已知椭圆C 的方程为x 2+ y 2=1( a >b >0),双a 2b 2x 2 y 2121曲线a 2-b 2 =1 的两条渐近线为 l 、l ,过椭圆 C 的右焦点 F 作直线 l,使 l ⊥ l ,又 l 与l 2 交于 P 点,设 l 与椭圆 C 的两个交点由上至下挨次为A 、B . (以下列图)ylPl 2AOFx Bl 1( 1)当 l 1 与 l 2 夹角为 60°,双曲线的焦距为4 时,求椭圆 C 的方程;( 2)当 FA =λ AP 时,求 λ的最大值 .分析:( 1)求椭圆方程即求、 b 的值,由l 1与l2的夹角为 60°易得b=3,由双曲aa3线的距离为 4 易得 a 2+b 2=4,从而可求得 a 、b .( 2)由 FA =λ AP ,欲求 λ 的最大值,需求A 、P 的坐标,而 P 是 l 与 l 1 的交点,故需求 l 的方程 . 将 l 与 l 2 的方程联立可求得 P 的坐标,从而可求得点A 的坐标 . 将 A 的坐标代入椭圆方程可求得λ的最大值 .解:( 1)∵双曲线的渐近线为 y =± bx ,两渐近线夹角为60°,a又 b<1,a∴∠ POx =30°,即 b=tan30 ° = 3.a3∴ a = 3 b .又 a 2+b 2=4,∴ a 2=3,b 2=1.故椭圆 C 的方程为x 22+y =1.3( 2)由已知 l : y = a( x -c ),与 y = bx 解得 P ( a 2,ab),ba ccca 2abFA=cc) .由得 (,λ APA11将 A 点坐标代入椭圆方程得( c 2+λa 2)2+λ2a 4=( 1+λ) 2a 2c 2. ∴( e 2+λ) 2+λ2=e 2( 1+λ) 2.∴ λ2= e4e 2 =-[( 2- e 2)+ 2 ]+3≤3-2 2 . e 222 e 2∴ λ的最大值为2 - 1.评论:此题考察了椭圆、双曲线的基础知识,及向量、定比分点公式、重要不等式的应用. 解决此题的难点是经过恒等变形, 利用重要不等式解决问题的思想 . 此题是培育学生分析问题和解决问题能力的一道好题 .【例 3】 设椭圆中心是坐标原点,长轴在x 轴上,离心率= 3,已知点(0, 3)2 2到这个椭圆上的点的最远距离是 7 ,求这个椭圆方程, 并求椭圆上到点P 的距离等于 7 的点的坐标 .分析:设椭圆方程为x2+ y2=1,由 e =3知椭圆方程可化为x 2+4y 2=4b 2,而后将距离a 2b 22转变为 y 的二次函数,二次函数中含有一个参数b ,在判断距离有最大值的过程中,要议论y =- 1能否在 y 的取值范围内,最后求出椭圆方程和P 点坐标 .2解法一:设所求椭圆的直角坐标方程是x2 y 2=1,此中 a >b > 0 待定 .a+2b 2由 e 2c2=a 2b 2=1-(b2可知b1 e2 = 13 1 ,即 a =2b .=a 2 a 2a ) =4 =a222322y 229设椭圆上的点 ( x ,y )到点 P 的距离为 d ,则 d =x +(y - 2 ) =a ( 1- b 2)+y - 3y + 4 =4b 2-3y 2- 3y + 9 =- 3(y + 1)2 +4b 2+3,此中- b ≤ y ≤b .42假如b <1,则当y =- b 时2(从而 )有最大值,由题设得(7)2=( + 3)2,由2ddb 2此得 b = 7 - 3> 1,与 b < 1矛盾 .222所以必有 b ≥1成立,于是当 y =-127 222 2 时 d (从而 d )有最大值, 由题设得 () =4b +3,由此可得 b =1, a =2.故所求椭圆的直角坐标方程是x 2 +y 2=1.4由 y =- 1及求得的椭圆方程可得,椭圆上的点(-3 ,- 1),点(3,- 1)到222点 P 的距离都是7 .解法二:依据题设条件,设椭圆的参数方程是x =a cos θ,y =b sin θ, 此中 a > b > 0 待定,0≤ θ< 2π,∵ e = 3,2 ∴ a =2b .设椭圆上的点( x , y )到点 P 的距离为 d ,则d 2=x 2+( y -3)2=a 2cos 2θ +( b sin θ-3)2=- 3b 2·(sin θ+1) 2+4b 2+3.222b假如1>1,即 b <1272,则当 sin θ=- 1 时, d (从而 d )有最大值,由题设得() =2b2( +3) 2,由此得b =7-3>1,与 <1矛盾 .b22 2b 2所以必有1≤1 成立,于是当 sin θ=-1时, d 2(从而 d )有最大值,由题设得(7 )2b2b2=4b 2+3.由此得 b =1, a =2. 所以椭圆参数方程x =2cos θ, y =sin θ.消去参数得 x2+y 2=1,由 sin θ=1 ,cos θ=±3知椭圆上的点 (- 3,-1),( 3 ,4222- 1)到 P 点的距离都是7 .2评论:此题表现认识析几何与函数、三角知识的横向联系,解答中要注意议论.深入拓展依据图形的几何性质,以P 为圆心,以 7 为半径作圆,圆与椭圆相切时,切点与P 的距离为7 ,此时的椭圆和切点即为所求. 读者不如一试 .x 2+( y - 3) 2=7,提示:由2x 2+4 2=4 2,y b得 3y 2+3y - 9=4b 2- 7,4由 =0 得 b 2=1,即椭圆方程为 x 2+4y 2=4.所求点为(-3,- 1)、( 3,- 1) .22●闯关训练夯实基础1. ( 2005 年北京东城区目标检测)以正方形的相对极点 、 为焦点的椭圆,恰ABCD A C好过正方形四边的中点,则该椭圆的离心率为102 B. 5 1A.3351D. 102C.22分析:成立坐标系,设出椭圆方程,由条件求出椭圆方程,可得e =102.2答案: D2. 已知 F 1(- 3, 0)、F 2(3, 0)是椭圆x 2 + y 2= 1 的两个焦点, P 是椭圆上的点,当m n∠ F 1PF 2=2π时,△ F 1PF 2 的面积最大,则有3=12, n =3=24 , n =6 =6, n =3=12 , n =62分析:由条件求出椭圆方程即得 m =12, n =3.答案: A3. ( 2005 年启东市第二次调研)设P ( 2 ,2 )、P (-2 ,- 2 ), M 是双曲线12y = 1上位于第一象限的点,对于命题①| 2| - |1|=2;②以线段1为直径的圆与圆xMPMP2MPx 2+y 2=2 相切;③存在常数 b ,使得 M 到直线 y =- x +b 的距离等于2| MP 1|. 此中全部正确命2题的序号是 ____________.分析:由双曲线定义可知①正确,②绘图由题意可知正确,③由距离公式及| MP 1| 可知正确 .答案:①②③4. ( 2004 年全国Ⅱ, 15)设中心在原点的椭圆与双曲线2 2- 2 2=1 有公共的焦点,且xy它们的离心率互为倒数,则该椭圆的方程是_________________.分析:双曲线中, a =1=b ,∴ F (± 1, 0), e = c= 2 . ∴椭圆的焦点为(± 1, 0),2a离心率为2. ∴长半轴长为2 ,短半轴长为1.2∴方程为x 2+y 2=1.2答案: x 2+y 2=125. ( 1)试议论方程( 1-k ) x 2+( 3-k 2) y 2=4( k ∈ R )所表示的曲线;( 2)试给出方程x 2 y2k+=1 表示双曲线的充要条件 .k 26 6k 2k 1解:( 1) 3- k 2>1-k >0 k ∈(- 1, 1),方程所表示的曲线是焦点在x 轴上的椭圆;1- k >3- k 2>0 k ∈(-3 ,- 1),方程所表示的曲线是焦点在 y 轴上的椭圆; 1-k =3-k 2>0 k =- 1,表示的是一个圆; ( 1- k )( 3- k 2) <0 k ∈(-∞,- 3 )∪( 1, 3 ),表示的是双曲线; k =1, k =-3 ,表示的是两条平行直线; k = 3 ,表示的图形不存在 .( 2)由( k 2+k - 6)( 6k 2- k -1)<0(k +3)( k -2)( 3k +1)( 2k - 1)<0 k ∈(- 3,- 1)∪( 1,2).326. ( 2003 年湖北八市模拟试题)已知抛物线y 2 =2px 上有一内接正△ AOB ,O 为坐标原点 .yAOxB( 1)求证:点 A 、 B 对于 x 轴对称; ( 2)求△ AOB 外接圆的方程 .( 1)证明:设 A ( x 1, y 1)、 B ( x 2, y 2),∵| |=|| ,∴x 2+ 22211=2+2.OAOByxy又∵ y 12=2px 1, y 22=2px 2, 22∴ x 2 - x 1 +2p (x 2- x 1) =0, 即( x 2-x 1)( x 1+x 2+2p )=0.又∵ x 1、x 2 与 p 同号,∴ x 1+x 2+2p ≠ 0. ∴ x 2- x 1=0,即 x 1=x 2. 由抛物线对称性,知点A 、B 对于 x 轴对称 .( 2)解:由( 1)知∠ AOx =30°,则y 2=2px , x =6p ,y =3 x ∴y =2 3 p .3∴ A ( 6p , 2 3 p ) .方法一:待定系数法, △ AOB 外接圆过原点 O ,且圆心在 x 轴上,可设其方程为 x 2+y 2+dx =0.将点 A ( 6p , 2 3 p )代入,得 d =- 8p . 故△ AOB 外接圆方程为 x 2+y 2- 8px =0.方法二:直接求圆心、半径,设半径为 r ,则圆心( r ,0) .培育能力7. (理)( 2004 年北京, 17)以下列图,过抛物线2=2px ( p > 0)上必定点 P (x , y )y(> 0),作两条直线分别交抛物线于(1,1)、 ( 2, 2) .yA xyB x y( 1)求该抛物线上纵坐标为p的点到其焦点 F 的距离;2yPO AxB( 2)当 PA 与 PB 的斜率存在且倾斜角互补时,求是非零常数 .解:( 1)当 y =p时, = p.2 x 8又抛物线 y 2=2px 的准线方程为x =- p,2由抛物线定义得所求距离为p-(- p) =5p.8 2 8( 2)设直线 PA 的斜率为 k PA ,直线 PB 的斜率为22=2px ,由 y=2px , y0 11相减得( y 1- y 0)( y 1+y 0) =2p ( x 1- x 0),故 ky 1y 0 =2 p(x ≠ x ) .PA1x 1 x 0 y 1 y 0y1y2的值,并证明直线AB的斜率y0 k PB.同理可得 k PB =2 p( x 2 ≠ x 0).y 2y 0由 PA 、 PB 倾斜角互补知 k PA =- k PB ,即2 p 2 p,所以 y +y =- 2y ,=-y 1y 0y 2 y 0 1 2 0故y1y 2=- 2.y 0设直线 AB 的斜率为 k.AB22由 y 2 =2px 2, y 1 =2px 1, 相减得( y 2- y 1)( y 2+y 1) =2p ( x 2- x 1), 所以 k AB = y2y1= 2 p( x 1≠ x 2) .x 2 x 1 y 1y 2将 y 1+y 2=-2y 0( y 0> 0)代入得k AB =2 p =- p,所以 k AB 是非零常数 . y 1 y 2 y 0(文)以下列图,抛物线对于x 轴对称,它的极点在座标原点,点( 1,2)、 ( 1, 1)、PA xyB ( x 2, y 2)均在抛物线上 .y PO AxB( 1)写出该抛物线的方程及其准线方程;( 2)当 PA 与 PB 的斜率存在且倾斜角互补时,求y 1+y 2 的值及直线 AB 的斜率 .解:( 1)由已知条件,可设抛物线的方程为 y 2=2px . ∵点 P ( 1, 2)在抛物线上,∴ 22=2p ·1,得 p =2.故所求抛物线的方程是 y 2=4x ,准线方程是 x =- 1. ( 2)设直线 的斜率为 k PA ,直线 的斜率为 k PB .PAPB则 k PA =y 12( x 1≠ 1),k PB =y 22( x 2≠ 1) .x 1 1x 2 1∵ PA 与 PB 的斜率存在且倾斜角互补,∴ k PA =- k PB .由 A (x 1, y 1)、 B ( x 2, y 2)在抛物线上,得2y 1 =4x 1,①2y 2 =4x 2,②∴ y 12=- y 2 2 .1 y 12 1 1 y 2 2 1 4 4∴ y 1+2=-( y 2+2) . ∴ y 1+y 2=- 4. 由①-②得直线 AB 的斜率y 2 y 14=- 4) .=- 1( x ≠ xAB12x 2x 1 y 1 y 2 48.( 2003 年北京东城区模拟试题)从椭圆 x2+ y 2 =1( a > b > 0)上一点 M 向 x 轴作垂线,a 2b 2恰巧经过椭圆的左焦点 F 1,且它的长轴右端点A 与短轴上端点B 的连线 AB ∥ OM .( 1)求椭圆的离心率;( 2)若 Q 是椭圆上随意一点, F 2 是右焦点,求∠ F 1QF 2 的取值范围;( 3)过 F 1 作 AB 的平行线交椭圆于 C 、 D 两点,若 | CD |=3 ,求椭圆的方程 .解:( 1)由已知可设 (- , ),Mcy则有( c) 2y2a 2+=1.b2∵ M 在第二象限,∴ M (- c ,b 2) .a又由 AB ∥ OM ,可知 k AB =k OM .∴- b 2 =- b. ∴b =c . ∴ a = 2 b .acac2a2( 2)设 | F 1Q |= m ,| F 2Q |= n ,22则 m +n =2a , mn > 0.| F 1F 2|=2 c ,a =2c ,∴ cos ∠ 1 2= m 2 n 2 4c 2F QF2mn( m n) 22mn 4c 2 4a 2 4c2=2mn=2mn - 1= a 2 - 1≥ a 2 - 1= a 2 - 1=0.mn m n 2 a 2()2 当且仅当 m =n =a 时,等号成立 .故∠ F QF ∈[ 0, π ].122(3)∵ ∥ , CD =- b=- 2 .CD AB ka2设直线 CD 的方程为 y =-2(x +c ),2即 y =-2( x +b ).222x+ y =1,a 22b则 消去 y ,整理得y =-2(x +b ).2( a 2+2b 2)x 2+2a 2bx - a 2b 2=0.设 C (x 1, y 1)、 D ( x 2, y 2),∵ a 2=2b 2,∴ x 1+x 2=-2a 2b =- 4b 3=- b ,a 22b 24b 2x 1· x 2=-a 2b 2 =- 2b 4 =- b 2.a 2 2b 24b 22∴ | CD |= 1 k 2| x 1-x 2|=1 k 2· (x 1x 2 )24x 1x 2=1 (2 ) 2 · ( b)22b 2=9b 2 =3.22∴ b 2=2,则 a 2=4.∴椭圆的方程为 x 2+ y 2 =1.4 2 研究创新9. ( 2005 年春天上海, 22)( 1)求右焦点坐标是( 2, 0),且经过点(- 2,- 2 )的椭圆的标准方程 .( 2)已知椭圆 C 的方程是 x 2 + y 2=1( a >b >0). 设斜率为 k 的直线 l 交椭圆 C 于 A 、Ba 2b 2两点,的中点为 . 证明:当直线 l 平行挪动时,动点在一条过原点的定直线上 .AB MM ( 3)利用( 2)所揭露的椭圆几何性质,用作图方法找出下边给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.( 1)解:设椭圆的标准方程为x2+y2 =1, a >b >0,a 2b 2 ∴ a 2=b 2+4,即椭圆的方程为x 2 +y2 =1.b 2 4 b 2∵点(- 2,-2 )在椭圆上,∴4+2 =1.b24 b 2解得 b2=4或 b2=-2(舍).由此得 a2=8,即椭圆的标准方程为x2+ y2=1.8 4 (2)证明:设直线l的方程为y=kx +m,与椭圆 C的交点 A( x, y)、B( x , y ),1122y=kx+m,则有x2+ y2=1.a 2b2222222222解得( b+a k) x +2a kmx+a m- a b =0.2222∵ >0,∴m<b+a k,即- b 2 a 2 k 2<m< b 2 a 2 k 2.2a 2 km, y+y=kx +m+kx +m=b 22b 2m,则 x +x =-b2a 2k 2 a 2k 2121212∴ AB中点 M的坐标为(-a 2 km b2 mb2 a 2k 2,b 2a 2 k 2).∴线段 AB的中点 M在过原点的直线b2x+a2ky=0上.( 3)解:以下列图,作两条平行直线分别交椭圆于A、 B和 C、 D,并分别取 AB、 CD的中点 M、 N,连接直线MN;又作两条平行直线(与前两条直线不平行)分别交椭圆于A、B 和11 C1、D1,并分别取 A1B1、C1D1的中点 M1、N1,连接直线 M1N1,那么直线 MN和 M1N1的交点 O即为椭圆中心 .C AMA1ON C1BM1DB1N 1●思悟小结在知识的交汇点处命题,是高考命题的趋向,而分析几何与函数、三角、数列、向量等知识的亲密联系,正是高考命题的热门,为此在学习时应抓住以下几点:1.客观题求解时应注意绘图,抓住波及到的一些元素的几何意义,用数形联合法去分析解决 .2.四点重视:①重视定义在解题中的作用;②重视平面几何知识在解题中的简化功能;③重视根与系数关系在解题中的作用;④重视曲线的几何特色与方程的代数特色的一致3. 注意用好以下数学思想、方法:.①方程思想;②函数思想;③对称思想;④参数思想;⑤转变思想;⑥分类思想.除上述几种常用数学思想外,整体思想、数形联合思想、主元分析思想、正难则反省想、结构思想等也是分析几何解题中不行缺乏的思想方法. 在复习中一定赐予足够的重视,真实发挥数学解题思想作为联系知识与能力中的作用,从而提升简化计算能力.●教师下载中心教课点睛本节是圆锥曲线的综合应用,主假如曲线方程的运用、变量范围的计算、最值确实定等,解决这种问题的重点是依照分析几何自己的特色,找寻一个打破口,那么怎样找到解决问题的打破口呢?(1)联合定义利用图形中几何量之间的大小关系 . ( 2)成立目标函数,转变为求函数的最值问题 . ( 3)利用代数基本不等式 . 代数基本不等式的应用,常常需要创建条件,并进行奇妙的构想 . ( 4)联合参数方程,利用三角函数的有界性. 直线、圆或椭圆的参数方程,它们的一个共同特色是均含有三角式 . 所以,它们的应用价值在于:①经过参数示曲线上点的坐标;②利用三角函数的有界性及其变形公式来帮助求解诸如最值、题.(5)结构一个二次方程,利用鉴别式≥ 0.拓展题例【例 1】( 2005 年启东市第二次调研题)抛物线y2=4px(p>0)的准线与x 轴交于 M 点,过点 M作直线 l 交抛物线于 A、 B 两点.( 1)若线段AB的垂直均分线交x 轴于 N( x ,0),求证: x>3p;00( 2)若直线l的斜率挨次为p,p2,p3,,线段AB的垂直均分线与x 轴的交点挨次为 N, N, N,,当0<p<1时,求111的值 .++ +123| N1N2 | | N2N3 || N10 N11 |(1)证明:设直线l方程为y=k(x+p),代入y2=4px.得 k2x2+(2k2p-4p)x+k2p2=0.=4(k2p- 2p)2- 4k2·k2p2>0,得 0<k2<1.令 A(x, y)、 B( x , y),则 x +x=-2k 2 p 4 p, y +y=k(x+x +2p) =4 p,112212k 21212kAB中点坐标为( 2 p k 2 p , 2 p ).k 2k垂直均分线为y - 2 p=-1(x- 2 p k 2 p) .AB k k k2令y =0,得x0= k 2 p 2 p= +2 p.k 2p2k由上可知 0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)解:∵l的斜率挨次为p,p2,p3,时,AB中垂线与x轴交点挨次为N1,N2,N3,(0<p<1) .∴点N的坐标为(2, 0). +np 2n1| N n N n+1|=| (p+2)-( p+2) |= 2(1p 2 ),p2n1p2n 1p 2n1θ简洁地表范围等问1p 2n 1| N n N n 1 |=,2(1 p 2 )13421p 3 (1 p 19 )所求的值为 2(1p 2 ) [ p +p + +p ] = 2(1 p) 2 (1p) .【例 2】 ( 2003 年南京市模拟试题)已知双曲线: x 2- y2=1( >0, > 0), B 是右C2 b 2a极点, F 是右焦点,点 A 在 x 轴正半轴上,且知足 | OA |、| OB | 、| OF | 成等比数列,过 F作双曲线 C 在第一、三象限的渐近线的垂线l ,垂足为 P .yDPEAB FxO l( 1)求证: PA · OP =PA · FP ;( 2)若 l 与双曲线 C 的左、右两支分别订交于点D 、E ,求双曲线 C 的离心率 e 的取值范围 .( 1)证法一:yDPEOABFlxl : y =- a( x -c ) . b y =- a( x - c ),bby = x .解得( a2,ab). ∵ | OA | 、| OB | 、 | OF | 成等比数列,∴( a2, 0).ccc∴ PA =( 0,-ab), OP =( a 2,ab),c cc b2,ab) .FP =(-cc∴ PA · OP =-a 2b 2, PA · FP =-a 2b 2.c 2c 2∴ PA · OP =PA · FP .证法二:同上得 P ( a 2,ab) .cc∴ PA ⊥x 轴,PA · OP - PA · FP =PA · OF =0.∴ PA · OP =PA · FP .y =- a(x - c ),( 2)解:bb 2x 2- a 2y 2=a 2b 2.422a222∴ b x -( x - c ) =a b ,即( b 2- a4) x 2+2 a4cx -( a 4c 2+a 2b 2) =0.b 2b 2b 2a 4c 2 22)(2 a b∵ x 1· x 2=ba 4< 0,b 2b2∴ b 4> a 4,即 b 2> a 2,c 2- a 2> a 2.∴ e 2> 2,即 e > 2 .。
(完整版)高三数学第一轮复习测试及详细解答(8)——圆锥曲线
关于机会成本的理解(精选5篇)第一篇:关于机会成本的理解你的选择是最优的吗?在生活中我们会遇到很多选择,选择走哪条路,选择上大学还是打工,选择一件衣服还是一本书,甚至过年了,我们是选择回家过年还是出去打工挣钱,如果我们回家了我们享受了与家人团聚的乐趣,却失去了外出打工所挣的钱。
这都是微观经济学中的机会成本的体现。
西方经济学家认为,从经济资源的稀缺性来说,当一个社会或一个一个企业用一定的经济资源生产一定数量的一种或者几种产品时,这些经济资源就不能同时被用于其他生产用途上。
这就是说,这个社会或这个企业所获得的一定数量的产品收入,是以放弃用同样的经济资源来生产其他产品时所能获得的收入为代价的。
这就产生了机会成本。
一般的,生产一单位的某种商品的机会成本是指生产者所放弃的使用相同的生产要素在其他生产用途中所能得到的最高收入。
从个人角度分析,对于一件事,不同的抉择都有不同的机会成本。
例如,寒假到来了,同学们都在考虑要回家过年还是外出打工,还是留在学校学习。
这是三种不同的选择,所带来的效果也不一样。
如果其中一位同学选择回家过年,那么他将享受到与家人,朋友团聚的乐趣,而他将失去外出打工所获得的经验和收入报酬,他也将失去留在学校学习所获得的知识。
我们假设这三种选择都获得一个收入报酬,假如这位同学选择了回家过年,那么他回家过年的机会成本就是他外出打工或留校学习的所获得最大收入报酬。
当然,在现实生活中,有的选择可以直接用货币来度量,而有的选择却不可以直接用货币度量,比如回家过年和亲人团聚带来的快乐。
但是在上例中我们假设他们都可以用货币来度量,但是他们所带来的收入效用的大小却与每个人不同的观念有关,比如同学1认为亲人最重要,那么对于他来说回家过年带来的收入报酬最大,而同学2认为留在学校学习最重要,因为他认为现在学习是为将来更好的生活做准备,所以对于他来说留校学习获得的收入报酬最大,我们不能根据自己的观念就认为哪种选择比另一种选择带来的收入报酬大,应根据具体的人具体的事来做出判断。
高三第一轮——专题56圆锥曲线的综合问题(原卷版)
专题56 圆锥曲线的综合问题(理)【考情解读】圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现. 【高频考点突破】考点一:圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例1】椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过其右焦点F 与长轴垂直的弦长为1.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,点P 是直线x =1上的动点,直线PA 与椭圆的另一交点为M ,直线PB 与椭圆的另一交点为N.求证:直线MN 经过一定点.探究提高:(1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.【变式探究】如图,已知双曲线C :x 2a 2-y 2=1(a>0)的右焦点为F ,点A ,B分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA(O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P(x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N.考点二:圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例2】在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程;(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.①设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值; ②求△OMN 面积的最大值.探究提高:圆锥曲线中的最值问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.【变式探究】 设点P(x ,y)到直线x =2的距离与它到定点(1,0)的距离之比为2,并记点P 的轨迹为曲线C.(1)求曲线C 的方程;(2)设M(-2,0),过点M 的直线l 与曲线C 相交于E ,F 两点,当线段EF 的中点落在由四点C 1(-1,0), C 2(1,0),B 1(0,-1),B 2(0,1)构成的四边形内(包括边界)时,求直线l 斜率的取值范围.考点三:圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题. 【例3】如图,设椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22. (1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂 直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.探究提高:(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【探究】在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP →+OQ →与AB →垂直?如果存在,求k 值;如果不存在,请说明理由.【真题感悟】1.【2015山东】平面直角坐标系xoy 中,双曲线()22122:10,0x y C a b a b-=>>的渐近线与抛物线()22:20C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .2.【2015浙江】已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称. (1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).3.【2015山东】平面直角坐标系xoy 中,已知椭圆()2222:10x y C a b a b+=>>,左、右焦点分别是12,F F ,以1F 错误!未找到引用源。
高三数学一轮复习圆锥曲线综合问题共65页
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。—ቤተ መጻሕፍቲ ባይዱ周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
高中数学 一轮复习 圆锥曲线的综合问题 含答案
1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.(一中月考)在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是( )2.(模拟)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是( )A.⎝⎛⎭⎫0,23B.⎝⎛⎭⎫-23,0 C.⎝⎛⎭⎫-23,23 D.⎝⎛⎭⎫-∞,-23∪⎝⎛⎭⎫23,+∞4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦|AB |=________.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则|AB |的最小值为________.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.(全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.题型二弦长问题设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左,右焦点,过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,-1)满足|P A|=|PB|,求E的方程.题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.命题点2 由中点弦解决对称问题例4 已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围.1.(泰安模拟)斜率为3的直线与双曲线x 2a 2-y 2b 2=1恒有两个公共点,则双曲线离心率的取值范围是( ) A .[2,+∞) B .(2,+∞) C .(1,3) D .(3,+∞)2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若|AB |=4,则弦AB 的中点到直线x +12=0的距离等于( ) A.74 B .2 C.94 D .43.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105 D.81054.(2017·天津质检)直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .05.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为( ) A.54 B .5 C.52 D. 56.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则||F A |-|FB ||的值为( )A .4 2B .8C .8 2D .167.(月考)在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________.8.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则|AB |的最大值为________.9.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________.10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B的上方),且与y 轴交于点M ,则|MB ||MA |的取值范围为________.11.(模拟)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心. (1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程.12.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.13.(联考)已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中曲线E 于A ,B 两点,求△AOB 面积的最大值.1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.(2016·黑龙江鹤岗一中月考)在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是( )答案 D解析 将方程a 2x 2+b 2y 2=1变形为x 21a 2+y 21b 2=1,∵a >b >0,∴1a 2<1b 2,∴椭圆焦点在y 轴上.将方程ax +by 2=0变形为y 2=-ab x ,∵a >b >0,∴-ab<0,∴抛物线焦点在x 轴负半轴上,开口向左.2.(2016·青岛模拟)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定答案 A解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是( )A.⎝⎛⎭⎫0,23B.⎝⎛⎭⎫-23,0 C.⎝⎛⎭⎫-23,23 D.⎝⎛⎭⎫-∞,-23∪⎝⎛⎭⎫23,+∞ 答案 C解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝⎛⎭⎫-23,23. 4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦|AB |=________. 答案 16解析 直线l 的方程为y =3x +1,由⎩⎪⎨⎪⎧y =3x +1,x 2=4y ,得y 2-14y +1=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=14,所以|AB |=y 1+y 2+p =14+2=16.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则|AB |的最小值为________. 答案 4解析 由题意可设直线l 的方程为y =m , 代入x 24-y 2=1得x 2=4(1+m 2),所以x 1=4(1+m 2)=21+m 2,x 2=-21+m 2,所以|AB |=|x 1-x 2|=41+m 2, 所以|AB |=41+m 2≥4,即当m =0时,|AB |有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·烟台模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点;(2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y 22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③ 方程③根的判别式Δ=(8m )2-4×9×(2m 2-4) =-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.解 (1)由已知得M (0,t ),P ⎝⎛⎭⎫t 22p ,t ,又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t ,ON 的方程为y =pt x ,代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点. 题型二 弦长问题例2 (2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当|AM |=|AN |时,求△AMN 的面积. (2)当2|AM |=|AN |时,证明:3<k <2.(1)解 设M (x 1,y 1),则由题意知y 1>0,由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1,得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 将直线AM 的方程y =k (x +2)(k >0)代入 x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k 2-12=0, 由x 1·(-2)=16k 2-123+4k 2,得x 1=2(3-4k 2)3+4k 2,故|AM |=|x 1+2|1+k 2=121+k 23+4k 2.由题设,直线AN 的方程为y =-1k (x +2),故同理可得|AN |=12k1+k 23k 2+4.由2|AM |=|AN |,得23+4k 2=k3k 2+4,即4k 3-6k 2+3k -8=0, 设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)有唯一的零点,且零点k 在(3,2)内,所以3<k <2.思维升华 有关圆锥曲线弦长问题的求解方法涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程. 解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2],即43a =4ab 2a 2+b 2,故a 2=2b 2, 所以E 的离心率e =c a=a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知 x 0=x 1+x 22=-a 2c a 2+b 2=-2c 3,y 0=x 0+c =c3.由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1,得c =3,从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.答案 (1)D (2)x +2y -8=0解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝⎛⎭⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝⎛⎭⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32,选D. (2)设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2),则x 2136+y 219=1,且x 2236+y 229=1,两式相减得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2). 又x 1+x 2=8,y 1+y 2=4,所以y 1-y 2x 1-x 2=-12, 故直线l 的方程为y -2=-12(x -4), 即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015·浙江)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎨⎧ x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2b mx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,① 将AB 中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2,② 由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则 |AB |=t 2+1·-2t 4+2t 2+32t 2+12.且O 到直线AB 的距离为d =t 2+12t 2+1. 设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12 -2⎝⎛⎭⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立. 故△AOB 面积的最大值为22. 思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且A ,B 的中点在直线l 上的应用.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围.解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ).再根据抛物线的定义得|AF |=2,即(2x )2+y 2=4,所以轨迹C 的方程为x 2+y 24=1. (2)设弦MN 的中点为P ⎝⎛⎭⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4. 两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2×⎝⎛⎭⎫-12=-1,y M +y N =2y 0, y M -y N x M -x N=-1k 代入上式得k =-y 02. 又点P ⎝⎛⎭⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m . 所以m =y 0+12k =34y 0. 由点P (-12,y 0)在线段BB ′上 (B ′,B 为直线x =-12与椭圆的交点,如图所示), 所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.1.(2016·泰安模拟)斜率为3的直线与双曲线x 2a 2-y 2b2=1恒有两个公共点,则双曲线离心率的取值范围是( )A .[2,+∞)B .(2,+∞)C .(1,3)D .(3,+∞) 答案 B 解析 要使直线与双曲线恒有两个公共点,则渐近线的斜率的绝对值应大于3,所以|b a|>3,所以e = 1+b 2a2>2, 即e ∈(2,+∞),故选B.2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若|AB |=4,则弦AB 的中点到直线x +12=0的距离等于( )A.74 B .2 C.94D .4 答案 C解析 易知直线4kx -4y -k =0过抛物线y 2=x 的焦点(14,0),∴|AB |为焦点弦.设A (x 1,y 1),B (x 2,y 2),则AB 中点N (x 1+x 22,y 1+y 22), ∴|AB |=x 1+x 2+p =4,∴x 1+x 22=74. ∴AB 中点到直线x +12=0的距离为74+12=94. 3.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( ) A .2 B.455 C.4105 D.8105答案 C解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5. ∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=2·(-85t )2-4×4(t 2-1)5 =425·5-t 2, 当t =0时,|AB |max =4105. 4.(2017·天津质检)直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是( ) A .1 B .2 C .1或2 D .0答案 A解析 因为直线y =b a x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点,故选A.5.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为( )A.54 B .5 C.52D. 5 答案 D解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =b ax , 由方程组⎩⎪⎨⎪⎧y =b a x ,y =x 2+1消去y ,得x 2-b ax +1=0有唯一解, 所以Δ=(b a )2-4=0,b a=2, e =c a =a 2+b 2a = 1+(b a )2= 5. 6.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则||F A |-|FB ||的值为( )A .4 2B .8C .8 2D .16答案 C解析 依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程,得⎩⎪⎨⎪⎧ y =x -2,y 2=8x , 消去y 得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=4,x 1+x 2=12,则||F A |-|FB ||=|(x 1+2)-(x 2+2)|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =144-16=8 2.7.(2016·安顺月考)在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________.答案 (-2,4),(1,1)解析 设直线MN 的方程为y =-x +b ,代入y =x 2中,整理得x 2+x -b =0,令Δ=1+4b >0,所以b >-14. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1,y 1+y 22=-x 1+x 22+b =12+b , 由(-12,12+b )在直线y =x +3上, 即12+b =-12+3,解得b =2, 联立⎩⎪⎨⎪⎧ y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧ x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1. 8.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则|AB |的最大值为________. 答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,那么|AF |+|BF |=x 1+x 2+2,又|AF |+|BF |≥|AB |⇒|AB |≤6,当AB 过焦点F 时取得最大值6.9.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________. 答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,由于A ,B 两点均在椭圆上,故x 2116+y 214=1,x 2216+y 224=1, 两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2,∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3). 即3x +4y -13=0.10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B 的上方),且与y 轴交于点M ,则|MB ||MA |的取值范围为________. 答案 (1,7+43)解析 由⎩⎪⎨⎪⎧ y =-2x +m ,3x 2-y 2-3=0,可得x 2-4mx +m 2+3=0, 由题意得方程在[1,+∞)上有两个不相等的实根,设f (x )=x 2-4mx +m 2+3,则⎩⎪⎨⎪⎧ 2m >1,f (1)≥0,Δ>0,得m >1,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),得x 1=2m -3(m 2-1),x 2=2m +3(m 2-1), 所以|MB ||MA |=x 2x 1=2m +3(m 2-1)2m -3(m 2-1)=-1+42- 3(1-1m2), 由m >1得,|MB ||MA |的取值范围为(1,7+43). 11.(2016·郑州模拟)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心.(1)求椭圆的方程; (2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程.解 (1)圆C 方程化为(x -2)2+(y +2)2=6,圆心C (2,-2),半径r = 6.设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), 则⎩⎨⎧ 4a 2+2b 2=1,1-⎝⎛⎭⎫b a 2=⎝⎛⎭⎫222⇒⎩⎪⎨⎪⎧a 2=8,b 2=4. 所以所求的椭圆方程是x 28+y 24=1. (2)由(1)得到椭圆的左,右焦点分别是F 1(-2,0),F 2(2,0),|F 2C |=(2-2)2+(0+2)2=2< 6.所以F 2在C 内,故过F 2没有圆C 的切线,设l 的方程为y =k (x +2),即kx -y +2k =0.点C (2,-2)到直线l 的距离d =|2k +2+2k |1+k2, 由d =6,得|2k +2+2k |1+k 2= 6. 解得k =25或k =-2, 故l 的方程为2x -5y +22=0或2x +y +22=0.12.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. 解 (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1, y 2-y 1x 2-x 1=-1.由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3.因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧ x +y -3=0,x 26+y 23=1,解得⎩⎨⎧ x =433,y =-33或⎩⎪⎨⎪⎧ x =0,y= 3. 因此|AB |=463.由题意可设直线CD 的方程为y =x +n (-533<n <3),设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧ y =x +n ,x 26+y 23=1,得3x 2+4nx +2n 2-6=0.于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=439-n 2.由已知,四边形ACBD 的面积S =12|CD |·|AB |=869(9-n 2).当n =0时,S 取得最大值,最大值为863. 13.(2016·广州联考)已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中曲线E 于A ,B 两点,求△AOB 面积的最大值.解 (1)设点M (x ,y ),∵QP →=PM →,∴P 为QM 的中点,又PQ ⊥y 轴,∴P (x 2,y ). ∵点P 是圆O :x 2+y 2=1上的点,∴(x 2)2+y 2=1, 即点M 的轨迹E 的方程为x 24+y 2=1. (2)由题意可知直线l 不与y 轴垂直,故可设l :x =ty +m ,t ∈R ,A (x 1,y 1),B (x 2,y 2).∵l 与圆O :x 2+y 2=1相切, ∴|m |t 2+1=1,即m 2=t 2+1.① 联立⎩⎪⎨⎪⎧ x 24+y 2=1,x =ty +m ,消去x , 得(t 2+4)y 2+2mty +m 2-4=0.其中Δ=(2mt )2-4(t 2+4)(m 2-4)=16(t 2-m 2)+64=48>0.∴y 1+y 2=-2mt t 2+4,y 1y 2=m 2-4t 2+4.② ∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =[t (y 1-y 2)]2+(y 1-y 2)231 =t 2+1(y 1+y 2)2-4y 1y 2. 将①②代入上式得|AB |=t 2+1 4m 2t 2(t 2+4)2-4(m 2-4)t 2+4 =43|m |m 2+3,|m |≥1, ∴S △AOB =12|AB |·1 =12×43|m |m 2+3 =23|m |+3|m |≤2323=1, 当且仅当|m |=3|m |,即m =±3时,等号成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题56圆锥曲线的综合问题(理)【考情解读】 圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、 位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第 (2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求 【高频考点突破】 考点一:圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横 (纵)坐标等的定值问题.【例1】椭圆C :笃+ ^2= 1(a > b > 0)的离心率为乂3,过其右焦点F 与长轴垂直的弦长为 1. a b2(1)求椭圆C 的方程;⑵设椭圆C 的左、右顶点分别为 A, B ,点P 是直线x = 1上的动点,直线 PA 与椭圆的另一交点为 M 直线PB与椭圆的另一交点为 N.求证:直线 MN 经过一定点.探究提高:(1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关•②直接推 理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找 出定点,再证明该点适合题意.2X2【变式探究】如图,已知双曲线 C:y = 1(a>0)的右焦点为F ,点A , Ba分别在C 的两条渐近线上, AF 丄x 轴,AB 丄OB BF// 0A(0为坐标原点).(1 )求双曲线C 的方程;⑵ 过C 上一点P(X O , y o )(y o M 0)的直线I :上T — y o y = 1与直线AF 相交于点 M,与直线x =7相交于点N.a2考点二:圆锥曲线中的最值、范围问题■较高,通常作为压轴题的形式出现.圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例2】在平面直角坐标系xOy中,椭圆C: X2+右=1(a >b>0)的离心率为挛直线y = x被椭圆C截得的线段长⑴求椭圆C的方程;⑵过原点的直线与椭圆C交于A, B两点(A, B不是椭圆C的顶点).点D在椭圆C上,且AD丄AB直线BD与x轴、y轴分别交于M N两点.①设直线BD, AM的斜率分别为k i, k2,证明存在常数入使得k i=入k2,并求出入的值;②求△ OMN面积的最大值.探究提高:圆锥曲线中的最值问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值【变式探究】设点P(x , y)到直线x = 2的距离与它到定点(1 , 0)的距离之比为,并记点P的轨迹为曲线 C.⑴求曲线C的方程;⑵设M(—2, 0),过点M的直线I与曲线C相交于E, F两点,当线段EF的中点落在由四点C i( —1, 0),C 2(1 , 0) , B(0,- 1) , B2(0 , 1)构成的四边形内(包括边界)时,求直线I斜率的取值范围.考点三:圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在; (2)探索曲线是否存在;(3)探索命题直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.探究提高:(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化. 其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素 线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用 的方法. 2■_X 2【探究】在平面直角坐标系 xOy 中,经过点(0 , 且斜率为k 的直线I 与椭圆—+ y 2 = 1有两个不同■的交点P 和Q (1)求k 的取值范围;⑵设椭圆与x 轴正半轴、y 轴正半轴的交点分别为 A , B,是否存在常数k ,使得向量矗oQf 晶垂直?如果存在,求k 值;如果不存在,请说明理由.【真题感悟】是否成立•涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题. 2 2x y ,【例3】如图,设椭圆a 2+ b 2= 1(a > b > 0)的左、右焦点分别为 F i , F 2, rt点D 在椭圆上,DF 丄F 1F 2,IF D F+= 2^2, △ DFF 2的面积为 誓.(1)求该椭圆的标准方程;⑵是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点D _____ /.,且圆在这两个交点处的两条切线相互垂(点、直2 21. 【2015山东】平面直角坐标系xoy 中,双曲线G :笃—古=1(a A0,b >0 )的渐近线与抛物线C 2:x 2=2 py ( p 〉0)交于点O, A, B ,若也OAB 的垂心为C 2的焦点,则2X22. 【2015浙江】已知椭圆 一 + y 2 =1上两个不同的点2(1)求实数m 的取值范围;圆相交,且交点在椭圆 (I )求椭圆C 的方程;直线交椭圆E 于A,B 两点,射线P0错误!未找到引用源。
交椭圆E 于点Q .( i ) 求错误!未找到引用源。
的值;(ii )求A ABQ 面积的最大C i 的离心率为B 关于直线y=mx +丄对称.2(2)求 MOB 面积的最大值(0为坐标原点).2 X3. 【2015山东】平面直角坐标系xoy 中,已知椭圆C: — +a b2y2=1(a>bA0 )的离心率为[3—,左、右焦点分别是2F i , F 2,以F i 错误! 未找到引用源。
为圆心以3为半径的圆与以F 2错误!未找到引用源。
为圆心以1为半径的(n)设椭圆E :X 2 4a 22+寿二1,P 错误!未找到引用源。
为椭圆C 错误!未找到引用源。
上任意一点,过点P 的2 24.【2015安徽】设椭圆E 的方程为 笃+冷=1 (a Ab >0 ),点0为坐标.原点,点A 的坐标为(a,0), a b点B 的坐标为(0,b 卜点M 在线段AB 上,满足|BM| =2|MA ,直线OM 的斜率为彳5 (I )求E 的离心率e ;2 25.【2015天津】已知椭圆 务+ d 2=1(a>b>0)的左焦点为 a bb 4第一象限,直线FM 被圆x 2+y2盲截得的线段的长为c , (I)求直线FM 的斜率;(II)求椭圆的方程;(III )设动点P 在椭圆上,若直线 FP 的斜率大于42,求直线OP ( 0为原点)的斜率的取值范围(II )设点C 的坐标为(0, -b ), N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为 7,求E 的方程.2F(-G 0),离心率为「,点M 在椭圆上且位于3 |FM|=4^^32 26.【2015四川】如图,椭圆E : x 2 + y 2 =1(a>bA0) 的离心率是—,过点P( 0,1 )的动直线l 与椭圆相交于A , a b 2B 两点,当直线I 平行与x 轴时,直线I 被椭圆E 截得的线段长为2J 2.求椭圆E 的方程;Jf与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN =0N =1,MN =3 .当栓子D 在滑槽AB 内作往复运动时, 带动N 绕0转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为 C •以0为原点,AB 所在的直线为 x 轴建立如图2所示的平面直角坐标系. (I )求曲线C 的方程;(n )设动直线I 与两定直线l i :x-2y=0和l 2:x+2y=0分别交于P, Q 两点.若直线I 总与曲线C 有且只有一个公共 点,试探究:AOQP 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.7. 在平面直角坐标系 xOy 中,是否存在与点P 不同的定点Q,使得QA | QBPA PB恒成立?若存在,求出点 Q 的坐标;若不存在,请说明理由【2015湖北】一种作图工具如图 1所示. O 是滑槽AB 的中点,短杆 ON 可绕O 转动,长杆 MN 通过N 处铰链2 28. 【2015陕西】已知椭圆E:第+备=1( a:>b:>0 )的半焦距为c,原点0到经过两点(c,0 ), (0,b)的直线的1距离为一c . (I)求椭圆E的离心率;22 2 5(II )如图,AB是圆M :(x +2) +(y -1)=-的一条直径,若椭圆E经过A, E两点,求椭圆E的方程.2x9.【2015新课标1】在直角坐标系xoy中,曲线C: y=2与直线y=kx+ a ( a >0)交与M,N两点,(I)当k=0时,分别求C在点M和N处的切线方程;(n) y轴上是否存在点P,使得当k变动时,总有/ OPM M OPN说明理由.2 210.【2015湖南】已知抛物线C1 :x^4y的焦点F也是椭圆C2:-y2 +令=1(a Ab^O)的一个焦点,C i与C2的公共弦的长为2J6.(1)求C2的方程;(2)过点F的直线1与C1相交于A , B两点,与C2相交于C , D两点,且AC与"B D同向(i )若|AC I^BD I,求直线丨的斜率(ii)设G在点A处的切线与x轴的交点为M,证明:直线丨绕点F旋转时,iMFD总是钝角三角形11. 12015上海】已知椭圆x2+2y2=1,过原点的两条直线l i和丨2分别于椭圆交于A、B和C、D,记得到的平行四边形A BCD的面积为S.(1)设A(X i,y i ), C(X2,y2 ),用恵、C的坐标表示点C到直线l i的距离,并证明S = 2x i y i—x?% ;1(2)设丨1与12的斜率之积为-—,求面积S的值.2【押题专练】1•椭圆= 1(a > b > 0)与直线x+ y—1 = 0相交于P, Q两点,且OP! OQ(O为原点).a bA1 1(1)求证:a^+b^等于定值;(2)若椭圆的离心率2 2X y2•已知椭圆亍+ p= 1(a > 0, b >0)的左焦点F为圆最小值为{2—1(1)求椭圆方程; ⑵已知经过点F的动直线I与椭圆交于不同的两点A, B,点M (— 4, 0)2X 21(a>b>0) 的离心率为申,F是椭圆E的右焦点,直线AF的斜率为竽, X2+ y2+ 2x = 0的圆心,且椭圆上的点到点F的距离D求椭圆长轴长的O 为坐标原点.(1)求E 的方程;. 24. 如图,已知点 E(m, 0)( m >0)为抛物线y = 4x A , B, C, D,且M N 分别是AB, CD 的中点.(2)设过点A 的动直线I 与E 相交于P, Q 两点.当^ OPQ 勺面积最大时,求I 的方程.内一个定点,过 E 作斜率分别为k l , k 2的两条直线交抛物线于点的最小值; 点.2蒼=1(a > b > 0)过点(2 , 0),焦距为2{3.(1)求椭圆r的方程;且交椭圆r于A, B两点,试探究椭圆r上是否存在点P,使得四边形OAPBP的坐标;若不存在,请说明理由.为4,其短轴的两个端点与长轴的一个端点构成正三角形.=—3上任意一点,过F作TF的垂线交椭圆C于点P, Q.坐标原点);②当最小时,求点T的坐标. l PQ lA({3, 0)Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E2 X5.在平面直角坐标系xOy中,椭圆r :r*a4A , B, △ AOBQ 是坐标原点)的面积S=R 求直线AB 的方程. 52 2x y 9. 如图所示,椭圆 C : -+匕=1(a>b>0) , A 、A 为椭圆C 的左、右顶点. a b设F 为椭圆C 的左焦点,证明:当且仅当椭圆C 上的点P 在椭圆的左、右顶点时,|PF i |取得最小值与最大值;若椭圆C 上的点到焦点的距离的最大值为 3,最小值为1,求椭圆C 的标准方程;若直线I : y = kx + m 与⑵ 中所述椭圆C 相交于A 、B 两点(A 、B 不是左、右顶点),且满足AA 丄BA ,8.如图所示,已知点 A(1,调是离心率为芈的椭圆2 2X y b 2+ 02= 1(a>b>0)上的一点, 斜率为眾的直线BD 交椭圆C 于B D 两点,且A 、 B 、D 三点不重合.(1) 求椭圆C 的方程;△ ABD 的面积是否存在最大值;若存在,求出这个最大值;若不存在,请说明理由;求证:直线 AB AD 斜率之和为定值.⑵过点P(1,0) 的直线I 交轨迹E 于两个不同的点 (1)求证:直线I过定点,并求出该定点的坐标.。