随机事件及其概率习题

随机事件及其概率习题
随机事件及其概率习题

第一章 随机事件及其概率

习题一 一、填空题

1.设样本空间}20|{≤≤=Ωx x ,事件}2

3

41|{ },121|{<≤=≤<=x x B x x A ,则B A Y 1

3{|0}{|

2}42x x x x =≤<≤≤U , B A 113{|}{|1}422

x x x x =≤≤<

Ω={}

112121 n n A A A A A A A -L L L ;

;;;. 3.一部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为

12

1

. 4.一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概

率是 n N m n M n m M C C C /-- .

5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 .

6.在区间(0, 1)中随机地取两个数,则事件“两数之和小于5

6

”的概率为 . 7.已知P (A )=, P(B )=,

(1) 当A ,B 互不相容时, P (A ∪B )= ; P(AB )= 0 . (2) 当B A 时, P(A+B )= ; P (AB )= ; 8. 若γ=β=α=)(,)(,)(AB P B P A P ,=+)(B A P 1γ

-;=

)(B A P βγ

-;

)(B A P +=

1αγ

-+.

9. 事件C B A ,,两两独立, 满足21)()()(<===C P B P A P ABC ,φ,且P (A+B+C )=16

9, )(A P 则= .

10.已知随机事件A 的概率5.0)(=A P ,随机事件的概率6.0)(=B P ,及条件概率8.0)|(=A B P ,则和事件B A +的概率=+)(B A P .

12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三

等品,则取到一等品的概率为

23

.

13. 已知===)

(则B A P b A B P a A P ,)|(,)( ab a - . 14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率

6

1

. 15. 甲、乙、丙三人入学考试合格的概率分别是5

2

,21 ,32,三人中恰好有两人合格的概率为 2/5 .

16. 一次试验中事件A 发生的概率为p , 现进行n 次独立试验, 则A 至少发生一次的概率为

11n

p --()

;A 至多发生一次的概率为 1

1(1)n n p np p --+-(

) .

17. 甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为 .

二、选择题

1.以A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为(D ). (A )“甲种产品畅销,乙种产品滞销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”. 2. 对于任意二事件不等价的是与和B B A B A =Y ,(D ).

() ; () ; () ; () .A A B B B A C AB D AB ??=Φ=Φ

3. 如果事件A ,B 有B A ,则下述结论正确的是(C ).

(A ) A 与B 同时发生; (B )A 发生,B 必发生; (C ) A 不发生B 必不发生; (D )B 不发生A 必不发生.

4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全是合格品”,则下述结论正确的是(B ).

() ; () ; () ; .

A A

B B A

C C B C

D A B C ====-() 5. 若二事件A 和B 同时出现的概率P(AB )=0则(C ).

(A )A 和B 不相容; (B )AB 是不可能事件; (C )AB 未必是不可能事件; (D )P(A )=0或P(B )=0. 6. 对于任意二事件A 和有=-)(B A P (C ).

(A) )()(B P A P -; (B ))()()(AB P B P A P +-; (C ))()(AB P A P -; (D ))()()()(B A P B P B P A P -++.

8. 设A , B 是任意两个概率不为0的不相容的事件,则下列事件肯定正确的(D ). (A) B A 与不相容; (B)B A 与相容; (C) P(AB )=P(A )P(B ); (D) P(A ?B )=P(A ). 9. 当事件A 、B 同时发生时,事件C 必发生则(B ).

(A)()()()1;(B)()()()1;

(C)()(); (D)()().

P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+

10. 设B A ,为两随机事件,且A B ? ,则下列式子正确的是 (A ). (A ))()(A P B A P =+; (B) )()(A P AB P =;

(C) )()|(B P A B P =; (D) )()()(A P B P A B P -=-.

11. 设则下列等式成立的是是三随机事件,且、、,0)(>C P C B A ( B).

() (|)(|)1; () (|)(|)(|)(|);() (|)(|)1;

() (|)(|)(|).

A P A C P A C

B P A B

C P A C P B C P AB C C P A C P A C

D P A B C P A C P B C +==+-+==U U 12. 设B A ,是任意两事件, 且0)(,>?B P B A , 则下列选项必然成立的是(B ).

()()(|); ()()(|);

()()(|); ()()(|).

A P A P A

B B P A P A B

C P A P A B

D P A P A B <≤>≥

13.设B A ,是任意二事件,且()0P B >,(|)1P A B =,则必有( C ).

(A) ()()P A B P A +>; (B) ()()P A B P B +>; (C) ()()P A B P A +=; (D) ()()P A B P B +=.

14. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D ).

1212() ; () ; () ; () .

4455A B C D

15. 设则,1)|()|(,1)(0,1)(0=+<<<

16. 某人向同一目标重复射击,每次射击命中目标的概率为)10(<

222

2

2

2

(A)3(1); (B)6(1); (C)3(1); (D)6(1).

p p p p p p p p ----

三、解答题

1.写出下列随机实验样本空间:

(1) 同时掷出三颗骰子,记录三只骰子总数之和;

(2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;

(3) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

(4) 将一尺之棰折成三段,观察各段的长度. 解 1(1)}18,,5,4,3{Λ; (2)}10,,5,4,3{Λ;

(3)查出合格品记为“1”,查出次品记为“0”,

{00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111}; (4)}1,0,0,0|),,{(=++>>>z y x z y x z y x 其中z y x ,,分别表示三段之长. 2. 设C B A ,,为三事件,用C B A ,,运算关系表示下列事件:

(1)A 发生,B 和C 不发生; (2)A 与B 都发生, 而C 不发生; (3)C B A ,,均发生; (4)C B A ,,至少一个不发生; (5)C B A ,,都不发生; (6)C B A ,,最多一个发生; (7)C B A ,,中不多于二个发生; (8)C B A ,,中至少二个发生.

解 (1)C B A 或A - (AB+AC )或A - (B +C );(2)C AB 或AB -ABC 或AB -C ;(3)ABC ;(4)A B C ++;(5)C B A 或C B A ++;

(6)C B A C B A C B A C B A +++;(7)ABC ;(8)BC AC AB ++.

3.下面各式说明什么包含关系

(1) A AB = ; (2) A B A =+; (3) A C B A =++ 解 (1)B A ?; (2)B A ?; (3)C B A +?

4. 设}7,6,5{ },5,4,3{ },4,3,2{A },10,9,8,7,6,5,4,3,2,1{====ΩC B 具体写出下列各事件: (1) B A , (2) B A +, (3) B A , (4) BC A , (5))(C B A +. 解 (1){5}; (2) {1,3,4,5,6,7,8,9,10}; (3) {2,3,4,5};

(4) {1,5,6,7,8,9,10}; (5) {1,2,5,6,7,8,9,10}. 5. 从数字1,2,3,…,10中任意取3个数字, (1)求最小的数字为5的概率; 记“最小的数字为5”为事件A

∵ 10个数字中任选3个为一组:选法有3

10C 种,且每种选法等可能.

又事件A 相当于:有一个数字为5,其余2个数字大于5。这种组合的种数有2

51C ? ∴

12

11)(3

1025=?=C C A P . (2)求最大的数字为5的概率。

记“最大的数字为5”为事件B ,同上10个数字中任选3个,选法有3

10C 种,且每种选法等可能,又事件B 相当于:有一个数字为5,其余2数字小于5,选法有241C ?种

20

1

1)(3

102

4=?=C C B P . 6. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少 记A 表“4只全中至少有两支配成一对” 则A 表“4只人不配对”

∵ 从10只中任取4只,取法有??

? ??410种,每种取法等可能。

要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。取法有4

245???

? ??

.21

13

2181)(1)(218

2)(4

10445=-

=-==?=∴

A P A P C C A P

7. 试证)()()()(AB P B P A P B A B A P 2-+=+. 。

8.已知10只晶体管中有2只次品,在其中取二次,每次随机取一只,作不放回抽样,求下列事件的概率。

(1)两只都是正品 ;(2)两只都是次品 ;(3)一只是正品,一只是次品;(4)至少一只是正品。

解 (1) ;45

282

10

2

81==

C C p 45

1)2(210222==C C p

.45

4445111 (4) ;4516)

3(24210

12183=-=-==

=

p p C C C p 9. 把10本书任意放在书架上,求其中指定的5本书放在一起的概率。 解 .42

1

!10!5!6=?=

p 所求概率 10. 某学生宿舍有8名学生,问(1)8人生日都在星期天的概率是多少(2)8人生日都不在星期天的概率是多少(3)8人生日不都在星期天的概率是多少

解 ;7171)

1(8

81??

?

??==p

;7676)

2(8882??

?

??==p 8

3811(3)

1177p ??

=-=- ???

.

11.从0 ~ 9中任取4个数构成电话号码(可重复取)求: (1)有2个电话号码相同,另2个电话号码不同的概率p ; (2)取的至少有3个电话号码相同的概率q .

解 432.010)1(42

9

24110==A C C p ;

.037.010)2(4

110

1934110=+=C A C C q

12. 随机地将15名新生平均分配到三个班中,这15名新生有3名优秀生.求(1)每个班各分一名优秀生的概率p (2)3名优秀生在同一个班的概率q .

解 基本事件总数有

!!!

5 5 515种 (1) 每个班各分一名优秀生有3! 种, 对每一分法,12名非优秀生平均分配到三个班中分法总数为!!!!4 4 412种, 所以共有!

!!!!4 4 412 3种分法. 所以 p =91255 5 5154 4 4

12 3=!

!!!!!!!

!. (2)3名优秀生分配到同一个班, 分法有3种, 对每一分法,12名非优秀生分配到三个班

中分法总数为!!!!5 5 212, 共有!

!!!5 5 2123?种, 所以 q =9165 5 5155 5 2

123=?!

!!!!!!!

. 13. 在单位园内随机地取一点Q ,试求以Q 为中点的弦长超过1的概率. 解: 在单位园内任取一点Q ,并记Q 点的坐标为(x ,y ),由题意得样本空间

(){}

1,22<+=Ωy x y x ,记事件A 为“以Q 为中心的弦长超过1”,则事件

()()

??

??????????? ??>+-=2

2

2211,y x y x A ,即()??????<+=43,22y x y x A

由几何概率计算公式得 4

3143

)(=??

=ππA P .

14. 设A ,B 是两事件且P (A )=,P (B )=. 问(1)在什么条件下P (AB )取到最大值,最大值是多少(2)在什么条件下P (AB )取到最小值,最小值是多少

解:由P (A ) = ,P (B ) = 即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=+= >1与P (A ∪B )≤1矛盾). 从而由加法定理得

P (AB )=P (A )+P (B )-P (A ∪B ) (*)

(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=,

(2)从(*)式知,当A ∪B=Ω时,P (AB )取最小值,最小值为 P (AB )=+-1= .

15. 设A ,B 是两事件,证明: )(2)()AB P B P A P B A B A P -+=+()( 证)()()()() A B P B A P B A B A P B A P B A P B A B A P -+-=-+=+()( )(2)()()()()()( AB P B P A P AB P B P AB P A P -+=-+-=.

16. 某门课只有通过口试及笔试两种考试,方可结业. 某学生通过口试概率为80%,通过笔试的概率为65%,至少通过两者之一的概率为75%,问该学生这门课结业的可能性有多大

解 A=“他通过口试”,B=“他通过笔试”,则 P(A)=, P(B)=, P(A+B)= P (A B )=P (A )+P(B)?P(A+B)=+?=

即该学生这门课结业的可能性为70%.

17. 某地有甲、乙、丙三种报纸,该地成年人中有20%读甲报,16%读乙报,14%读丙报,其中8%兼读甲和乙报,5%兼读甲和丙报,4%兼读乙和丙报,又有2%兼读所有报纸,问成年人至少读一种报纸的概率.

解 报纸分别表示读甲,乙,丙,,设C B A

35.002.004.005.008.014.016.02.0)()()()()()()()

(=+---++=+---++=++ABC P BC P AC P AB P C P B P A P C B A P .

18. 已知16

1

)()(,0)(,41)()()(======BC P AC P AB P C P B P A P ,

求事件C B A ,,全不发生的概率.

83

81431)]()()()()()()([1 )

(1)()(=

??????--=+---++-=++-=++=ABC P BC P AC P AB P C P B P A P C B A P C B A P C B A P 解.

19.某厂的产品中有4%的废品,在100件合格品在有75件一等品,试求在该产品任取一件的是一等品的概率.

解 “任取一件是一等品”,“任取一件是合格品”令==B A 72.075.0)04.01()|()()(=?-==A B P A P AB P .

20. 在100个次品中有10 个次品 ,每次从任取一个(不放回),求直到第4次才取到正品的概率.

解 i A =“第i 次取到正品” i =1,2,3,4.

00069.097

9098899910010)

|()|()|()()(32142131214321=???=

=A A A A P A A A P A A P A P A A A A P

21. 某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少

记H 表拨号不超过三次而能接通, A i 表第i 次拨号能接通. 注意:第一次拨号不通,第二拨号就不再拨这个号码.

.10

3819810991109101)|()|()()|()()()(2131211211321211=??+?+=

++=∴

++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥

Θ

22. 若0)(,0)(>>B P A P ,且)()|(A P B A P >,证明)()|(B P A B P >. 证 )()()()()

()

(

),()|( B P A P AB P A P B P AB P A P B A P >?>>则因为 )()

()

()()()()|( B P A P B P A P A P AB P A B P =>=

所以 . 23. 证明事件A 与B 互不相容,且0<)(B P <1,则)

()

()(B P A P B A P -=

1|。

证 )(1)

()

()()|B P A P B P B A P B A P -==

(.。 24. 设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别有5箱、3箱、2箱,三厂产品的废品率依次为、、,从这10箱中任取一箱,再从这箱中任取一件产品,求取得正品的概率.

解 设A ={取得的产品为正品}, 3,2,1,=i B i 分别为甲、乙、丙三厂的产品 )(1B P =5.0 ,)(2B P =3.0,)(3B P =2.0, 9. 0)|(1=B A P ,7.0)|(, 8. 0)|(32==B A P B A P

所以 ()()∑===3

1

i i i B A P B P A P )(.

25. 某一工厂有C B A ,,三个车间生产同一型号螺钉,每个车间的产量分别占该厂螺钉总产量的25 %、35 %、40 %,每个车间成品中的次品分别为各车间产量的5 %、4 %、2 %,如果从全厂总产品中抽取一件产品螺钉为次品,问它是C B A ,,车间生产的概率.

解 C B A 、、分别表示C B A 、、三车间生产的螺钉,D =“表示次品螺钉”

%25=)(A P %35=)(B P %45=)(C P

%5|=)(A D P %4|=)(B D P %2|=)(C D P

()()()()

D P A D P A P D A P =

=

()()

()()()()()()

C D P C P B D P B P A D P A P A D P A P ++=

69

25240435525525=?+?+??

同理 )(D B P |=6928 ; )(D C P |=69

16.

26. 已知男人中有5 %的色盲患者,女人中有 %的色盲患者,今从男女人数中随机地挑

选一人,恰好是色盲患者,问此人是男性的概率是多少

解 B ={从人群中任取一人是男性}, A ={色盲患者}

因为 ()

5.0==B P B P )

( %25.0 )|( %5 )|(==B A P B A P , 02625.00025.05.005.05.0)|()()|()()(=?+?=+=B A P B P B A P B P A P 所以 21

20

02625.005.05.0)()|()( )|(=

?==A P B A P B P A B P .

27.设)|()|(, ,10,,A B P A B P A B A =证明和的概率不等于其中是任意二事件是事件

B A 与独立的充分必要条件.

证 ,和的概率不等于所以和的概率不等于因为10,10A A

()()

(|)(|)()()

[1()]()()[()()] ()()(),P AB P AB P B A P B A P A P A P A P AB P A P B P AB P AB P A P B A B =?

=?-=-?=即和独立.

28. 设六个相同的元件,如下图所示那样 安置在系统中,设每个元件正常工作的概率 为p ,求这个系统正常工作的概率。假定各个 能否正常工作是相互独立的.

解: 设{}i A i =第条线路正常工作, 1,2,3,i

= {}A =代表这个系统正常工作,

{}A =代表这个系统正常工作,

由条件知,2

()i P A p =,2()1i P A p =-,

23123()1()1()1(1)P A P A P A A A p =-=-=--.

[二十六(1)]设有4个独立工作的元件1,2,3,4。它们的可靠性分别为P 1,P 2,P 3,

P 4,将它们按图(1)的方式联接,求系统的可靠性。

记A i 表示第i 个元件正常工作,i=1,2,3,4,

A 表示系统正常。

∵ A=A 1A 2A 3+ A 1A 4两种情况不互斥

∴ P (A )= P (A 1A 2A 3)+P (A 1A 4)-P (A 1A 2A 3 A 4) (加法公式)

= P (A 1) P (A 2)P (A 3)+ P (A 1) P (A 4)-P (A 1) P (A 2)P (A 3)P (A 4) = P 1P 2P 3+ P 1P 4-P 1P 2P 3P 4

(A 1, A 2, A 3, A 4独立)

29. 某类电灯泡使用时在1000小时以上的概率为,求三个灯泡在使用1000小以后最多只有一个坏的概率.

解 A 表示一个灯泡使用时数在1000小时以上

2.0=)(A P

P {三灯泡中最多有一个坏}=P {三个全好}+P {只有一个坏}

= 33C 3

+2

3C 2

(1–=.

30. 一射手对同一目标独立进行了四次射击,若至少命中一次的概率为81

80

, 求该射手的命中率.

解 4

4480121( 0 11), (1)8133P p p p ??=-=---=?= ???

命中次)(.

31. 某型号的高射炮,每门炮发射一发击中的概率为,现若干门炮同时发射一发,问欲以99%的把握击中来犯的一架敌机至少需要配置几门炮

解 设需要配置n 门高射炮

A =“高炮击中飞机”, 则 6.0=)(A P

P {飞机被击中}=P {n 门高射炮中至少有一门击中}

=1–P {n 门高射炮全不命中} %994.01|)|1(1≥-=--n n A P ?01.04.0≤n ?02654

0lg 01

0lg ?=??≥n 至少配备6门炮.

32. 设有三门火炮同时对某目标射击,命中概率分别为、、,目标命中一发被击毁的概率为,命中二发被击毁的概率为,三发均命中被击毁的概率为,求三门火炮在一次射击中击毁目标的概率.

解 设A ={目标一次射击中被击毁}i B ={目标被击中的发数},(=i 0,1,2,3,)

则28.05.07.08.0)(0=??=B P )(1B P =××+××+××=

)(2B P =××+××+××=

)(3B P =××=

2.0)|( 0)|(10==B A P B A P 9.0)|( 6. 0)|(32==B A P B A P

所以 ()()∑===3

)(i i i B A P B P A P ×+×+×=.

3.1随机事件的概率教案

3.1随机事件的概率教案 篇一:3.1.1随机事件的概率教案 3.1随机事件的概率(一) 教学目标 1.通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念及其意义; 2.根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键; 3.理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法,理解频率和概率的区别和联系; 4.通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识.教学重点 根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象,理解频率和概率的区别和联系. 教学难点 理解随机事件的频率定义及概率的统计定义及计算概率的方法,理解频率和概率的区别和联系. 教学过程 一、问题情景:

[设置情景]1名数学家=10个师 在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力。这句话有一个非同寻常的来历。 1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额。 为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性。一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大。 美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口。结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应。 在自然界和实际生活中,我们会遇到各种各样的现象。如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象。 确定性现象,一般有着较明显得内在规律,因此比较容易掌握它。而随机现象,由于它具有不确定性,因此它成为人们研究的重点。随机

人教初中数学九上 25.1 随机事件与概率教案

随机事件 教学时间课题随机事件课型新授课 教学目标知识 和 能力 通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根 据这些特点对有关事件作出准确判断。 过程 和 方法 历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学 概念。 情感 态度 价值观 体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。 教学重点随机事件的特点 教学难点对生活中的随机事件作出准确判断 教学准备教师多媒体课件学生“五个一” 课堂教学程序设计设计意图 一、创设情境,引入课题 1.问题情境 下列问题哪些是必然发生的?哪些是不可能发生的? (1)太阳从西边下山; (2)某人的体温是100℃; (3)a2+b2=-1(其中a,b都是实数); (4)水往低处流; (5)酸和碱反应生成盐和水; (6)三个人性别各不相同; (7)一元二次方程x2+2x+3=0无实数解。 2.引发思考 我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么? 二、引导两个活动,自主探索新知 活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。请考虑以下问题: (1)抽到的序号是0,可能吗?这是什么事件? (2)抽到的序号小于6,可能吗?这是什么事件?首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性。 概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。

《随机事件发生的可能性》教案

《随机事件发生的可能性》教案 教学目标 知识与技能 理解随机事件发生的可能性大小. 过程与方法 通过举出生活中常见的例子,体会确定性事件和随机事件的概念,认识随机事件发生的可能性大小. 教学重点 不同的随机事件发生的可能性的大小有可能不同. 教学难点 理解随机事件发生的可能性的大小. 教学过程 一、随机事件发生的可能性大小 动脑筋: ①掷一枚均匀的硬币,是正面朝上的可能性大,还是反面朝上的可能性大? ②一个袋中有8个球,5红3白,球的大小和质地完全相同,搅均匀后从袋中任意取出一个球,是取出红球的可能性大,还是取出白球的可能性大? 【教学说明】教师引导学生讨论,分小组回答完成. 归纳:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性大小有可能不同,可能性的大小也就是概率的大小. 二、例题讲解 例1、如教材134页图13-1,是一个可以转动的转盘.盘面上有8个全等的扇形区域,其中1个是红色,2个是绿色,2个是白色,3个是黄色.用力转动转盘,当转盘停止后,指针对准哪种颜色区域的可能性最小?对准哪种颜色区域的可能性最大? 例2、任意掷一枚骰子,比较下列情况出现的可能性的大小. (1)面朝上的点数系小于2;(2)面朝上的点数是奇数 (3)面朝上的点数是偶数;(4)面朝上的点数大于2. 三、练一练 1、比较下列随机事件发生的可能性大小. (1)如图,转动一个能自由转动的转盘,指针指向红色区域和指向白色区域; (2)小明和小亮做掷硬币的游戏,他们商定:将一枚硬币掷两次,如果两次朝上的面相同,那么小明获胜;如果两次朝上的面不同,那么小亮获胜.谁获胜的可能性大?

2、10张扑克牌中有3张黑桃、2张方片、5张红桃.从中任意抽取一张,抽到哪一种花色牌的可能性最大?抽到哪一种花色牌的可能性最小? 四、师生互动,课堂小结 1.师生共同回顾事件的分类及概念,知道随机事件发生的可能性有大小. 2.通过这节课学习,你掌握了哪些知识?还有哪些疑问?请与同学们交流.

最新人教版九年级数学上册《随机事件与概率》教学设计(精品教案).docx

25.1 随机事件与概率 25.1.1 随机事件 教学目标 1.理解随机事件、必然事件和不可能事件的概念. 2.理解随机事件发生的可能性大小,分析随机事件与其他事件之间的关系. 3.由简单的试验或推理,对事件发生的可能性进行判断,从而培养学生逻辑推理能力. 教学重点 随机事件的特征. 教学难点 判断现实生活中哪些事件是随机事件. 教学设计一师一优课一课一名师(设计者:) 教学过程设计 一、创设情景明确目标 “向上抛出的篮球一定会掉下来”,“明天的太阳会从东方升起”,这都是必然会发生的事件;“抛掷一枚骰子,出现数字6朝

上”,“明天会下雨”,“打开电视正在播广告”这些事件我们事先都无法预测它们会不会发生,难怪人们总会发出“世事难料,天有不测风云”的感叹,那么这些事件的发生有无规律可循呢?可能性到底有多大呢? 二、自主学习指向目标 活动:1.自读教材第127页. 2.学习至此:请完成学生用书“课前预习”部分. 三、合作探究达成目标 探究点一事件定义及分类 活动一:出示教材第127页问题1、问题2中的每一个问题,师生共同分析每个事件发生的可能性. 【展示点评】判断事件是什么事件,主要看其发生的可能性:一定会发生的事件是必然事件;一定不会发生的事件是不可能事件;有可能发生也有可能不发生的事件是随机事件. 【小组讨论】如何理解以上三个概念中“在一定条件下” 【反思小结】“在一定条件下”是指试验在相同的条件下进行. 【针对训练】见学生用书“当堂练习”知识点一

探究点二随机事件发生的可能性的大小 2.出示教材第128页问题3,思考下列问题: (1)请和他人合作完成问题3的实验,填写教材中的表25-1,比较表中记录的数字的大小,结果与你原先的判断一样吗? (2)问题3中的“摸出白球”与“摸出黑球”是什么事件?它们发生的可能性相同吗?你认为哪个事件发生的可能性较大? 【展示点评】由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性. 【小组讨论】随机事件发生的可能性一样吗? 【反思小结】一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同. 【针对训练】见学生用书“当堂练习”知识点二 四、总结梳理内化目标 1.本节课一个重要数学思想是分类思想,例如事件可以分成:________、________、________. 2.在随机事件中,发生的可能性是有大小的. 五、达标检测反思目标

《随机事件及其概率》教学设计

《随机事件及其概率》教学设计 【教学目标】 知识与技能: 1.了解必然事件、不可能事件、随机事件的概念以及随机事件的发生存在规律性. 2.理解随机事件的概率的统计定义. 过程与方法: 通过概率统计定义的形成过程,提高探究问题、分析问题的能力,体会归纳过程,掌握对实验数据进行有效的分析和处理的方式和方法. 情感态度价值观: 通过概念的形成过程,渗透归纳思想,优化思维品质,体会“实践出真知”的含义,了解偶然性寓于必然性之中的辩证唯物主义思想. 教学重点:了解随机现象及其概率的意义. 教学难点:概率定义的形成过程. 【教学方法】 教学方法:引导发现法直观演示法 学习指导:学会学习 【教学手段】通过多媒体辅助教学 【教学过程】 一、问题情境: (1)、生活中到处充斥着随机现象,大到国计民生,小到日常生活,如08春节雪灾、四川地震、前不久英法核潜艇相撞事故;我们身边的出行、考试合格率、掷硬币、投骰子、摸彩票等等。随机事件的结果虽然无法预知,但是如果能够通

过数据加以衡量其发生可能性的大小,就可以采取有针对性的措施,做好预案,兴利除弊。那么,可以通过什么加以衡量随机事件发生可能性的大小呢? (2)、物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映. 引入课题:《随机事件及其概率》 例1试判断以下事件发生的可能性(必然发生?不可能发生?有可能发生?)(1)木柴燃烧,产生热量; (2)明天,地球仍会转动; (3)实心铁块丢入水中,铁块浮; (4)在标准大气压00C以下,雪融化; (5)转动转盘后,指针指向黄色区域; (6)两人各买1张彩票,均中奖. 二、概念提炼 我们将(1)(2)称作必然事件.(3)(4)称作不可能事件.(5)(6)称作随机事件.请学生归纳出这三种事件的定义.强调“在一定条件下”. 必然事件:在一定条件下必然要发生的事件叫必然事件. 不可能事件:在一定条件下不可能发生的事件叫不可能事件. 随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件. 分析事件(5)的条件和结果,给出试验的定义:在数学里对于某个事件让它的条件实现一次就称为做了一次试验. 引导学生分析随机事件和试验结果的关系:一个随机事件包括试验结果的一个或多个但不是全部. 三、试验研究随机事件发生的频率

教案.1随机事件与概率(公开课)

第二十五章概率初步 25.1随机事件与概率 学习目标: 1.了解随机事件、必然事件、不可能事件的概念。 2.理解概率的概念和意义。 学习重点与难点:对概率定义的初步理解。 学习过程:自学指导1:看课本125页到127页问题3上面的内容。 自学检测(1): 1、在一定条件下,有些事件____________________, 这样的事件称为必然事件。 2、在一定条件下,有些事件____________________, 这样的事件称为不可能事件。___________和____________统称为确定事件。 3、在一定条件下,有些事件__________________________________的事件,称为随机事件。 4.必然事件发生的可能性是,不可能事件发生的可能性是________,随机事件发生的可能性. 学习过程:自学指导2:看课本127页到131页问题3上面的内容 自学检测(2): 1、对于一个随机事件A,我们把刻画其发生可能性大小的_________,称为随机事 件A发生的概率。 2、一般地,如果在一次试验中,有______种可能的结果,并且它们发生的可能 性都相等,事件A包含其中的种结果,那么事件A发生的概率 P(A)= 。 达标测试 1.(梅州)下列事件中,必然事件是() A.任意掷一枚均匀的硬币,正面朝上 B.黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门 C.通常情况下,水往低处流 D.上学的路上一定能遇到同班同学 2.(台州市)下列事件是随机事件的是()

A .台州今年国庆节当天的最高气温是35℃ B .在一个装着白球和黑球的袋中摸球,摸出红球 C .抛掷一石头,石头终将落地 D .有一名运动员奔跑的速度是20米/秒 3.(甘肃省白银市)如图,小红和小丽在操场上做游戏,她们先在地上画出一个 圆圈,然后蒙上眼在一定距离外向圆圈内投小石子,则投一次就正好投到圆圈内是( ) A .必然事件(必然发生的事件) B .不可能事件(不可能发生的事件) C .确定事件(必然发生或不可能发生的事件) D .不确定事件(随机事件) 4.(湘潭) 将五张分别印有北京2008年奥运会吉祥物 “贝贝,晶晶,欢欢,迎 迎,妮妮”的卡片(卡片的形状、大小一样,质地相同)放入盒中,从中随机抽取一张卡片印有“妮妮”的概率为( ) A. 1 2 B. 13 C. 14 D. 15 5、(宜宾市)一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是 ( ) A. 9 4 B. 92 C. 3 1 D. 3 2 6.(广东湛江市)从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是 12 ,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 7.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 8. ( 宁夏回族自治区)从-1,1,2三个数中任取一个,作为一次函数y=kx+3的

第25章概率初步教案全章教案

25.1.1 随机事件(第一课时) 郁昌云 知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。 过程与方法:历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。 情感态度和价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。 重点:随机事件的特点 难点:对生活中的随机事件作出准确判断教学程序设计 一、创设情境,引入课题 1.问题情境下列问题哪些是必然发生的?哪些是不可能发生的? (1)太阳从西边下山; (2)某人的体温是100 C; (3)a2+b2=—1(其中a,b都是实数); (4)水往低处流; (5)酸和碱反应生成盐和水; (6)三个人性别各不相同; 2 (7)一元二次方程x2+2x+3=0 无实数解。 【设计意图:首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性。】 2.引发思考 我们把上面的事件(1 )、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么? 【设计意图:概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。】 二、引导两个活动,自主探索新知 活动1:5 名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。签筒中有5根形 状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。小军首先抽签,他在看不到 的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。请考虑以下问题: (1 )抽到的序号是0,可能吗?这是什么事件? (2)抽到的序号小于6,可能吗?这是什么事件? (3)抽到的序号是1,可能吗?这是什么事件? (4)你能列举与事件(3)相似的事件吗?根据学生回答的具体情况,教师适当地加点拔和引导。 【设计意图:“抽签”这个活动是学生容易理解或亲身经历过的,操作简单省时,又具有很好的经济性,最主要的是活动中含有丰富的随机事件,事件(3)就是一个典型的事件, 它的提出,让学生产生新的认知冲突,从而引发探究欲望】

《随机事件与可能性》教案

《随机事件与可能性》教案 教学目标 知识与技能 1.了解必然事件,不可能事件和随机事件的概念. 2.理解随机事件发生的可能性大小. 过程与方法 通过举出生活中常见的例子,体会确定性事件和随机事件的概念,认识随机事件发生的可能性大小. 教学重点 不同的随机事件发生的可能性的大小有可能不同. 教学难点 理解随机事件发生的可能性的大小. 教学过程 一、情境导入,初步认识 动脑筋:下列事件中,哪些一定发生,哪些不可能发生,哪些可能发生. ①晴天的早晨,太阳从东方升起. ②通常,在1个标准大气压下,水加热到100℃沸腾. ③a是实数,a2<0. ④种瓜得豆. ⑤买一张福利彩票,中奖. ⑥掷一枚均匀的硬币,出现正面朝上. 【教学说明】要求同学们凭生活经验或已学过知识,对上述问题分组讨论,然后回答. 二、思考探究,获取新知 1.必然事件、不可能事件、随机事件的概念 在一定条件下,必然发生的事件称为必然事件,如动脑筋中的①和②. 在一定条件下,一定不发生的事件称为不可能事件,如动脑筋中的③和④. 在一定条件下,可能发生也可能不发生的事件,称为随机事件,如动脑筋中的⑤和⑥. 必然事件和不可能事件统称为确定性事件,确定性事件和随机事件统称为事件. 请同学们举出日常生活中见到的必然事件,不可能事件,随机事件的例子. 例1掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6的点数,试问,下列哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)出现的点数大于0.

(2)出现的点数为7. (3)出现的点数为5. 【教学说明】本例比较简单,要求学生独立完成作答. 2.随机事件发生的可能性大小 动脑筋: ①掷一枚均匀的硬币,是正面朝上的可能性大,还是反面朝上的可能性大? ②一个袋中有8个球,5红3白,球的大小和质地完全相同,搅均匀后从袋中任意取出一个球,是取出红球的可能性大,还是取出白球的可能性大? 【教学说明】教师引导学生讨论,分小组回答完成. 归纳:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性大小有可能不同. 例1如课本图,一个质地均匀的小立方体有6面,其中1个涂成红色,2个面涂成黄色,3个面涂成蓝色.在桌面扔这个小立方体,正面朝上的颜色可能出现哪些结果?这些结果发生的可能性一样大吗? 3.教师引导学生完成教材P121的议一议. 练习1:1下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)掷一枚6面上分别刻有1,2,…6点的均匀骰子,朝上一面的点数是偶数; (2)在全是红球的袋中任意摸出一球,结果是白球; (3)地球绕着太阳转. 练习2:1、比较下列随机事件发生的可能性大小. (1)如图,转动一个能自由转动的转盘,指针指向红色区域和指向白色区域; (2)小明和小亮做掷硬币的游戏,他们商定:将一枚硬币掷两次,如果两次朝上的面相同,那么小明获胜;如果两次朝上的面不同,那么小亮获胜.谁获胜的可能性大? 2、10张扑克牌中有3张黑桃、2张方片、5张红桃.从中任意抽取一张,抽到哪一种花色牌的可能性最大?抽到哪一种花色牌的可能性最小? 四、师生互动,课堂小结 1.师生共同回顾事件的分类及概念,知道随机事件发生的可能性有大小. 2.通过这节课学习,你掌握了哪些知识?还有哪些疑问?请与同学们交流. 课后作业 1.完成教材P122第1、2题. 2.完成同步练习册中本课时的练习.

随机事件的概率知识点总结

随机事件的概率 一、事件 1.在条件S下,一定会发生的事件,叫做相对于条件S的必然事件. 2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件. 3.在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件. 二、概率和频率 1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据. 2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现 的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n A n 为事件A出现的频率. 3.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A). 三、事件的关系与运算

四、概率的几个基本性质 1.概率的取值范围:0≤P(A)≤1. 2.必然事件的概率P(E)=1. 3.不可能事件的概率P(F)=0. 4.概率的加法公式: 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). 5.对立事件的概率: 若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1-P(B). 1.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.则下列结果正确的是( ) A.P(M)=1 3 P(N)= 1 2 B.P(M)=1 2 P(N)= 1 2 C.P(M)=1 3 P(N)= 3 4 D.P(M)=1 2 P(N)= 3 4 解析:选D 由条件知事件M包含:(正、反)、(反、正).事件N包含:(正、正)、(正、反)、(反、正). 故P(M)=1 2 ,P(N)= 3 4 . 2.(2012·)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球 D.恰有一个红球与恰有二个红球 解析:选D A中的两个事件不互斥,B中两事件互斥且对立,C中的两个事件不互斥,D

随机事件及其概率教案(精)

<随机事件及其概率>教案 (一)教学目标: 1、知识目标: 使学生掌握必然事件,不可能事件,随机事件的概念及概率的统计定义,并了解实际生活中的随机现象,能用概率的知识初步解释这些现象 2、能力目标: 通过自主探究,动手实践的方法使学生理解相关概念,使学生学会主动探究问题,自主实践,分析问题,总结问题。 3、德育目标: 1.培养学生的辩证唯物主义观点. 2.增强学生的科学意识 (二)教学重点与难点: 重点:理解概率统计定义。 难点:认识频率与概率之间的联系与区别。 (三)教学过程: 一、引入新课: 试验1:扔钥匙,钥匙下落。 试验2:掷色子,数字几朝上。 讨论:下列事件能否发生? (1)“导体通电时,发热”---------------必然发生(2)“抛一石块,下 落”---------------必然发生 (3)“在常温下,铁熔化” -------------不可能发生 (4)“某人射击一次,中靶” -----可能发生也可能不发生(5)“掷一枚硬币,国徽朝上” -----可能发生也可能不发生(6)“在标准大气压下且温度低于0℃时,冰融化” ---不可能发生思考: 1、“结果”是否发生与“一定条件”有无直接关系? 2、按事件发生的结果,事件可以如何来分类? 二、新授: (一)随机事件: 定义1、在一定条件下必然要发生的事件叫必然事件。 定义2、在一定条件下不可能发生的事件叫不可能事件。 定义3、在一定条件下可能发生也可能不发生的事件叫随机事件。 例1、指出下列事件是必然事件,不可能事件,还是随机事件: (1)扬中明年1月1日刮西北风; x (2)当x是实数时,20 (3)手电筒的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%。 (5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。讨论:各举一个你生活或学习中的必然事件、不可能事件、随机事件的例子 做一做:(投币实验)抛掷一枚硬币,观察它落地时哪一面朝上?(两人一组) 1.你的结果和其他同学一致吗?为什么会出现这样的情况? 2.重复试验10次并记录结果(正面朝上的次数)。(一人试验,一人记录)

随机事件及其概率(知识点总结)Word版

随机事件及其概率 一、随机事件 1、必然事件 在一定条件下,必然会发生的事件叫作必然事件. 2、不可能事件 在一定条件下,一定不会发生的事件叫作不可能事件. 3、随机事件 在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件. 4、确定事件 必然事件和不可能事件统称为相对于随机事件的确定事件. 5、试验 为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验. 【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.

(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象. (3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件. 二、基本事件空间 1、基本事件 在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件. 2、基本事件空间 所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件. 【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏. 三、频率与概率 1、频数与频率 在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n =为事件A 出现的频率.

随机事件的概率教案(绝对经典)

§12.1 随机事件的概率 会这样考 1.考查随机事件的概率,以选择或填空题形式出现;2.考查互斥事件、对立事件的概率;3.和统计知识相结合,考查概率与统计的综合应用. 1.随机事件和确定事件 (1)在条件S 下,一定会发生的事件,叫作相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件,叫作相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件. (4)在条件S 下可能发生也可能不发生的事件,叫作相对于条件S 的随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母A ,B ,C …表示. 2.频率与概率 (1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n 为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率. 3. 4.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式 ①如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ).

②若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). ③事件A 的对立事件一般记为A , 则P (A )=1-P (A ) [难点正本 疑点清源] 1.频率和概率 (1)频率与概率有本质的区别,不可混为一谈.频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次 数足够多,所得频率就可以近似地当作随机事件的概率. (2)概率从数量上反映了一个事件发生的可能性的大小;概率的定义实际上也是求一个事件的概率的基本方法. 2.互斥事件与对立事件 互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件. 1.给出下列三个命题,其中正确命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验, 结果3次出现正面,因此正面出现的概率是3 7 ;③随机事件发生的频率就是这个随机事件发生的概率. 答案 0解析 ①错,不一定是10件次品;②错,3 7 是频率而非概率;③错,频率不等于概率,这是两 个不同的概念. 2.在n 次重复进行的试验中,事件A 发生的频率为m n ,当n 很大时,P (A )与m n 的关系是( ) A .P (A )≈m n B .P (A )m n D .P (A )=m n 答案 A 解析 在n 次重复进行的试验中,试验次数很大时,频率可近似当作随机事件的概率. 3.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球 C .至少有一个红球与至少有一个白球 D .恰有一个红球与恰有两个红球 答案 D 4.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________. 答案 0.5. 题型一 事件的关系及运算 例1 判断下列给出的每对事件,是互斥事件还是对立事件,并说明理由.从40张扑克牌(红桃、黑桃、 方块、梅花点数从1~10各10张)中,任取一张. (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”. 解 (1)是互斥事件,不是对立事件. (2)既是互斥事件,又是对立事件.

4.1随机事件与可能性 教案

4.1 随机事件与可能性教案 【知识与技能】 1.了解必然事件,不可能事件和随机事件的概念. 2.理解随机事件发生的可能性大小. 【过程与方法】 通过举出生活中常见的例子,体会确定性事件和随机事件的概念,认识随机事件发生的可能性大小. 【教学重点】 不同的随机事件发生的可能性的大小有可能不同. 【教学难点】 理解随机事件发生的可能性的大小. 一、情境导入,初步认识 动脑筋:下列事件中,哪些一定发生,哪些不可能发生,哪些可能发生. ①晴天的早晨,太阳从东方升起. ②通常,在1个标准大气压下,水加热到100℃沸腾. ③a是实数,a2<0. ④种瓜得豆. ⑤买一张福利彩票,中奖. ⑥掷一枚均匀的硬币,出现正面朝上. 【教学说明】要求同学们凭生活经验或已学过知识,对上述问题分组讨论,然后回答. 二、思考探究,获取新知 1.必然事件、不可能事件、随机事件的概念 在一定条件下,必然发生的事件称为必然事件,如动脑筋中的①和②. 在一定条件下,一定不发生的事件称为不可能事件,如动脑筋中的③和④. 在一定条件下,可能发生也可能不发生的事件,称为随机事件,如动脑筋中的⑤和⑥. 必然事件和不可能事件统称为确定性事件,确定性事件和随机事件统称为事件.

事件的分类 请同学们举出日常生活中见到的必然事件,不可能事件,随机事件的例子. 例1 掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6的点数,试问,下列哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)出现的点数大于0. (2)出现的点数为7. (3)出现的点数为5. 【教学说明】本例比较简单,要求学生独立完成作答. 2.随机事件发生的可能性大小 动脑筋: ①掷一枚均匀的硬币,是正面朝上的可能性大,还是反面朝上的可能性大? ②一个袋中有8个球,5红3白,球的大小和质地完全相同,搅均匀后从袋中任意取出一个球,是取出红球的可能性大,还是取出白球的可能性大? 【教学说明】教师引导学生讨论,分小组回答完成. 归纳:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性大小有可能不同. 例1 教材P121例题 3.教师引导学生完成教材P121的议一议. 三、运用新知,深化理解 1.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( ) A.事件A,B都是随机事件 B.事件A,B都是必然事件 C.事件A是随机事件,事件B是必然事件 D.事件A是必然事件,事件B是随机事件 2.下列事件:①在足球赛中,弱队战胜强队;②抛掷1枚硬币,硬币落地时正面朝上; ③任取两个正整数,其和大于1;④长为3cm,5cm,9cm的三条线段能围成一个三角形,其

《事件的概率》资料:随机事件的概率知识点总结

随机事件的概率知识点总结 事件的分类 1、确定事件 必然发生的事件:当A 是必然发生的事件时,P (A )=1 不可能发生的事件:当A 是不可能发生的事件时,P (A )=0 2、随机事件:当A 是可能发生的事件时,0<P (A )<1 概率的意义 一般地,在大量重复试验中,如果事件A 发生的频率m n 会稳定在某个常数p 附近 那么这个常数p 就叫做事件A 的概率。 概率的表示方法 一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P 概率的求解方法 1.利用频率估算法:大量重复试验中,事件A 发生的频率 m n 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(有些时候用计算出A发生的所有频率的平均值作为其概率). 2.狭义定义法:如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,考察事件A 包含其中的m 中结果,那么事件A 发生的概率为P (A )= n m 3.列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标. 特别注意放回去与不放回去的列表法的不同.如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少? 放回去P (1和2)=9 2不放回去P (1和2)=62

4.树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 注意:求概率的一个重要技巧:求某一事件的概率较难时,可先求其余事件的概率或考虑其反面的概率再用1减——即正难则反易. 概率的实际意义 对随机事件发生的可能性的大小即计算其概率.一方面要评判一些游戏规则对参与游戏者是否公平,就是要看各事件发生概率.另一方面通过对概率的学习让我们更加理智的对待一些买彩票抽奖活动. (3,3) (3,2) (3,1) 3 (2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次 结果3 2 1 第二次(3,2) (3,1) 3 (2,3) (2,1)2(1,3)(1,2) 1第一次 结果3 2 1第二次

高中数学教案——随机事件的概率 第四课时

课 题: 11.1随机事件的概率 (四) 教学目的: 1 掌握求解等可能性事件的概率的基本方法; 2.能正确地对一些较复杂的等可能性事件进行分析 教学重点:等可能性事件及其概率的分析和求解 教学难点:对事件的“等可能性”的准确理解 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5 基本事件: 一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件 例如:投掷硬币出现2种结果叫2个基本事件,通常试验中的某一事件A 由几个基本事件组成(例如:投掷一枚骰子出现正面是3的倍数这一事件由“正面是3”、“正面是6”这两个基本事件组成). 6.等可能性事件: 如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率: 如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如

事件A 事件I 果事件A 包含m 个结果,那么事件A 的概率()m P A n =. ①一个基本事件是一次试验的结果,且每个基本事件的概率都是1n ,即是等可能的; ②公式()m P A n =是求解公式,也是等可能性事件的概率的定义,它与随机事件的频率有本质区别; ③可以从集合的观点来考察事件A 的概率:()()()card A P A card I =8.等可能性事件的概率公式及一般求解方法 二、讲解范例: 例1.4个球投入5个盒子中,求: (1)每个盒子最多1个球的概率; (2)恰有一个盒子放2个球,其余盒子最多放1个球的概率 解:4个球投入5个盒子中,每个球有5个选法,4个球有4 5种不同选择结果, (1)相当于从5个盒子中选4个盒子,每个盒子放1个球,有45A 种不同选择结果, ∴所求概率为454245125 A =. (2)先从5个盒子中选1个,从4个球中选2个放入其中,其余2个球放入剩 余的4个盒子中的2个中,有122544 C C A ??个不同结果, ∴所求概率为1225444725125 C C A ??=. 点评:本题属于古典概率的另一基本题型——盒子投球问题,所投的球可以是真实的球,还可以是学生、旅客等,盒子可以是房间、教室、座位等例2.袋中有4个白球和5个黑球,连续从中取出3个球,计算: (1)“取后放回,且顺序为黑白黑”的概率; (2)“取后不放回,且取出2黑1白”的概率 解:(1)每一次取球都有9种方法,共有3 9种结果,

数学随机事件与概率知识点归纳

数学随机事件与概率知识点归纳 一、随机事件 主要掌握好(三四五) (1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。 (2)四种运算律:交换律、结合律、分配律、德莫根律。 (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。 二、概率定义 (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率; (2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率; (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算; (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。 三、概率性质与公式 (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B); (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则 P(A-B)=P(A)-P(B); (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B); (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果, 贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式. (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n. 当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.

随机事件的概率教学设计(全国一等奖)分析

江西省高安二中龙跃文

2012年11月【随机事件的概率】教学设计 江西省高安二中龙跃文 【教学内容解析】 《随机事件的概率》是北师大版数学必修3中第三章第一节的第一课时,是一节与生活实际联系紧密的概念课。本节课在旨在通过理解概率的定义的基础上理解其核心思想——随机思想。生活中存在着大量的随机现象,如天气、保险、彩票等。随机思想在当今社会有着广泛的应用,在概率成为普通生活常识的今天,对随机现象有一个较清楚的认识,成为每一个公民文化素质的基本要求。研究随机性有助于探究大自然和生活中事件发生的规律,从而方便人们的生活和生产。在初中阶段,同学们已经初步学习了随机事件和概率,对随机现象有了一定的了解。在高中阶段我们进一步学习概率的知识,从而为以后的概率论和数理统计知识打好基础。本节是高中概率的起始内容,理解好本节知识是学习本章后续古典概型和几何概型的重要前提。此外,随机思想是自然辩证法的重要思想,理解随机思想有助于培养学生用一分为二、对立统一的辩证唯物主义观点分析问题和认识世界。 教学重点:概率概念的提出以及频率与概率的区别和联系; 教学难点:利用概率的统计意义解释生活中的一些随机现象。 【教学目标设置】 知识与技能目标: (1)了解随机事件,必然事件,不可能事件的概念,能列举一些生活中的随机事件; (2)能通过正确理解随机事件发生的不确定性和稳定性,进一步认识随机现象; (3)能正确理解概率的概念和意义,明确事件发生的频率与事件发生的概率的区别与联系. 过程与方法目标: (1)能够通过在抛硬币的试验获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高. (2)能利用概率知识正确理解一些现实生活中的随机现象和实际问题。 情感态度与价值观目标: (1) 能通过亲身试验和感受来理解知识,体会数学知识与现实世界的联系。 (2) 通过发现随机事件的发生既有随机性,又存在着统计规律性的过程,体会偶然性和 必然性的对立统一的辩证唯物主义思想。 【学生学情分析】 (1)随机事件广泛存在于生活中,学生对随机事件和概率在生活中都有感性的体验,比如天气、彩票等问题,但是学生在高中学习阶段对随机思想的认识比较少,对随机现象理论也没有形成系统的认识。 (2)要正确理解本节内容中所蕴含的随机思想,需要学生有一定的生活经历,能自己动

相关文档
最新文档