运动学、动力学知识要点

合集下载

动力学知识点总结

动力学知识点总结

动力学知识点总结动力学知识点总结总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可以提升我们发现问题的能力,让我们一起认真地写一份总结吧。

但是总结有什么要求呢?下面是小编帮大家整理的动力学知识点总结,仅供参考,希望能够帮助到大家。

一、直线运动(1)匀变速直线运动1、平均速度V平=s/t(定义式)2、有用推论Vt2—Vo2=2as3、中间时刻速度Vt/2=V平=(Vt+Vo)/24、末速度Vt=Vo+at5、位移s=V平t=Vot+at2/2=Vt/2t6、加速度a=(Vt—Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}7、实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt—Vo)/t只是量度式,不是决定式;(2)自由落体运动1、初速度Vo=02、末速度Vt=gt3、下落高度h=gt2/2(从Vo位置向下计算)4、推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9、8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动位移s=Vot—gt2/22、末速度Vt=Vo—gt(g=9、8m/s2≈10m/s2)3、有用推论Vt2—Vo2=—2gs4、上升最大高度Hm=Vo2/2g(抛出点算起)5、往返时间t=2Vo/g(从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等性;二、曲线运动万有引力(1)平抛运动水平方向速度:Vx=Vo2、竖直方向速度:Vy=gt3、水平方向位移:x=Vot4、竖直方向位移:y=gt2/25、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V07、合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo8、水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

运动学和动力学的基本概念及其区别

运动学和动力学的基本概念及其区别

运动学和动力学的基本概念及其区别运动学和动力学是物理学中两个重要的概念,它们分别研究物体的运动和力学原理。

本文将探讨运动学和动力学的基本概念以及它们之间的区别。

一、运动学的基本概念运动学是研究物体运动状态的物理学分支,它关注物体的位置、速度、加速度等与运动相关的物理量。

运动学主要研究物体运动的几何性质和轨迹,在不考虑外部力的情况下研究物体的运动规律。

1. 位移:位移是指物体从初始位置到终止位置的位置变化,通常用Δx表示。

位移的大小和方向与路径有关,是一个矢量量。

2. 速度:速度是指物体单位时间内位移的变化率,通常用v表示。

速度可正可负,正表示正向运动,负表示反向运动。

平均速度的定义是位移与时间的比值,即v=Δx/Δt;瞬时速度则是极限过程中的速度。

3. 加速度:加速度是指物体单位时间内速度的变化率,通常用a表示。

加速度也可正可负,正表示加速运动,负表示减速运动。

平均加速度的定义是速度变化量与时间的比值,即a=Δv/Δt;瞬时加速度则是极限过程中的加速度。

二、动力学的基本概念动力学是研究物体运动中作用力和物体运动规律的物理学分支,它关注物体所受的力以及这些力对物体运动的影响。

动力学通过牛顿定律描述物体的运动规律,并研究力的产生和作用。

1. 牛顿第一定律:牛顿第一定律也被称为惯性定律,它表明物体在受力为零时保持静止或匀速直线运动的状态。

2. 牛顿第二定律:牛顿第二定律描述了物体运动时力与加速度的关系,它可以表达为F=ma,其中F是物体所受的合力,m是物体的质量,a是物体的加速度。

根据这个定律,物体的加速度与它所受的力成正比,与它的质量成反比。

3. 牛顿第三定律:牛顿第三定律表明作用力与反作用力大小相等、方向相反且作用于不同的物体上。

这个定律也被称为作用与反作用定律,它说明力是一对相互作用的力。

三、运动学和动力学的区别尽管运动学和动力学都研究物体的运动,但它们关注的角度和内容有所不同。

1. 角度不同:运动学主要从物体自身的运动状态出发,研究物体的位移、速度和加速度等几何性质;动力学则主要从力的作用和物体所受的力的影响出发,研究物体的加速度和受力情况。

物理汽车知识点总结

物理汽车知识点总结

物理汽车知识点总结汽车作为现代社会中使用最广泛的交通工具之一,其原理和物理知识是很重要的。

了解汽车的物理知识可以帮助我们更好地理解汽车的工作原理,从而更好地驾驶和维护汽车。

本文将从汽车的运动学、动力学、热力学和电磁学等方面来总结汽车的物理知识点。

一、运动学1. 速度和加速度速度和加速度是汽车运动中最基本的物理概念。

速度是指单位时间内汽车行驶的距离,通常用公里/小时或米/秒来表示。

加速度则是指单位时间内速度的变化率,通常用米/秒²来表示。

2. 质量和惯性汽车的质量影响着它的惯性,即汽车在运动或停止时所表现出来的惰性。

质量越大的汽车,其惯性越大,所需的外力也越大。

3. 惯性原理根据惯性原理,汽车在运动或停止时会保持直线匀速运动的状态,直到受到外力的作用而改变状态。

这就解释了汽车在行驶中不断改变方向时需要受到转向力的作用。

4. 转弯半径汽车在转弯时,其运动轨迹为一圆弧,其圆心到车辆中心的距离就是转弯半径。

转弯半径的大小影响着汽车的转弯性能和稳定性。

二、动力学1. 动能和力汽车在行驶时需要克服空气阻力、摩擦阻力等外力的作用,这就需要汽车具备足够的动能。

同时,汽车的动力来源于发动机所提供的驱动力。

2. 牵引力和牵引力系数汽车在行驶时需要产生足够的牵引力才能顺利前进,而牵引力是由汽车轮胎和地面之间的摩擦力所产生的。

而牵引力系数则是指地面材质对摩擦力的影响,通常被表示为0~1的数值。

3. 发动机功率和扭矩发动机功率和扭矩直接影响着汽车的动力性能。

发动机功率越大,汽车的加速性能和最高车速就越高。

而扭矩则是指发动机在转速下产生的驱动力,也是影响汽车加速性能的重要因素。

4. 液压制动原理汽车使用液压制动系统进行制动时,通过制动液传递压力,使制动器产生摩擦力来实现制动。

其中,制动盘和制动片之间的摩擦力就是制动的关键。

三、热力学1. 发动机燃烧原理汽车内燃机是通过内燃烧来释放能量,从而驱动汽车。

内燃机内的燃料在受到点火后会产生爆炸,从而推动活塞做功。

(完整版)高中物理力学讲解与归纳

(完整版)高中物理力学讲解与归纳

(完整版)高中物理力学讲解与归纳引言物理力学作为物理学的一个重要分支,研究物体的运动和相互作用。

高中物理力学作为中学阶段的学科,是建立基础物理知识的重要一环。

本文将对高中物理力学的重要内容进行讲解与归纳。

第一部分:运动学运动学研究物体在空间中的运动,包括位置、速度、加速度等概念。

具体内容如下:1. 位置位置是物体在空间中所处的位置,可以通过坐标来描述。

2. 位移位移是物体从一个位置到另一个位置的变化量,用矢量表示。

3. 速度速度是物体单位时间内位移的变化量,是位移的导数。

速度可以分为平均速度和瞬时速度两种。

4. 加速度加速度是物体单位时间内速度的变化量,是速度的导数。

加速度可以分为平均加速度和瞬时加速度两种。

第二部分:动力学动力学研究物体的运动原因和运动规律,包括力、质量、牛顿三定律等概念。

具体内容如下:1. 力力是物体相互作用的结果,可以改变物体的运动状态。

力的大小用牛顿为单位。

2. 质量质量是物体所具有的物质量度,是衡量物体惯性大小的一种物理量。

3. 牛顿三定律牛顿三定律是描述物体运动规律的基本原理,分别是惯性定律、动量定律和作用反作用定律。

第三部分:万有引力万有引力是物体之间的一种特殊相互作用,可以解释天体运动和地球上物体的运动。

具体内容如下:1. 引力定律引力定律是描述万有引力的定律,它说明了两个物体之间引力的大小与质量和距离的关系。

2. 地球上物体的自由落体地球上的物体在没有其他力作用下,会以一定的加速度自由落体。

自由落体过程中,物体的速度和位移会随时间变化。

结论高中物理力学作为物理学的重要分支,研究物体的运动和相互作用,具有重要的科学意义和实际应用价值。

通过对运动学、动力学和万有引力的讲解与归纳,可以帮助学生更好地理解和应用物理力学知识,为今后的研究打下坚实基础。

以上是对高中物理力学的讲解与归纳,希望对大家有所帮助!。

动力学基础知识总结

动力学基础知识总结

动力学基础知识总结动力学是物体运动的研究,主要研究物体的运动规律和力的作用。

在学习动力学的过程中,我们需要了解一些基础知识,包括质点、牛顿三定律、动力学方程等内容。

下面将对这些基础知识进行总结。

一、质点质点是研究物体运动的一种理想化模型,它忽略了物体的形状和大小,仅考虑了物体的质量以及物体所受到的外力。

质点的运动可用一个点来表示,该点称为质点的“质心”。

二、牛顿三定律1. 第一定律:也称为惯性定律,它指出:如果物体上没有合外力作用,或者合外力的矢量和为零,则物体将保持静止状态或匀速直线运动状态,也就是“物体的运动状态不会自发改变”。

2. 第二定律:也称为加速度定律,它指出:物体受到的合外力等于物体的质量乘以其加速度,即F = ma。

其中,F为物体所受合外力的矢量和,m为物体的质量,a为物体的加速度。

该定律说明了力是引起物体加速度变化的原因。

3. 第三定律:也称为作用-反作用定律,它指出:任何两个物体之间的相互作用力,其大小相等、方向相反,且作用在两个物体上。

简单来说,作用力与反作用力是一对相互作用力。

三、动力学方程动力学方程是描述物体运动规律的方程。

对于质点运动来说,它的动力学方程可以用牛顿第二定律来表示,即F = ma。

这里的F是物体所受合外力的矢量和,m是物体的质量,a是物体的加速度。

通过对动力学方程的求解,我们可以得到物体的运动轨迹和速度变化情况。

在实际问题中,动力学方程的求解可以采用不同的方法,比如分析法、数值法等。

四、运动学和动力学的关系运动学研究的是物体的运动规律,而动力学研究的是物体运动的原因。

可以说,动力学是运动学的基础。

通过运动学我们可以了解物体的位置、速度和加速度等信息,而动力学可以告诉我们物体之所以如此运动的原因。

总结:动力学是物体运动的研究,它包括了质点、牛顿三定律和动力学方程等基础知识。

质点是物体运动的理想化模型,忽略了物体的形状和大小。

牛顿三定律包括了惯性定律、加速度定律和作用-反作用定律,它们描述了物体运动的规律。

动力学知识点

动力学知识点

动力学知识点动力学是研究物体运动、相互作用、改变运动状态的学科,它运用数学和物理原理来描述物体的运动规律。

在日常生活中,各种运动现象都与动力学相关,例如浆棒、自行车、电梯等等。

本文将介绍一些动力学知识点,帮助读者更好地理解运动学的重要性。

一、牛顿第一定律——惯性定律牛顿第一定律也称为惯性定律,指的是物体在没有受到力的作用时,将始终保持静止或匀速运动的状态。

在实际生活中,这个定律可以举出很多例子,例如在一辆自行车刹车时,人仍然会匀速前行;或者是在一个物体上施加力时,物体仅在力的作用下发生运动。

二、牛顿第二定律——动力学定律牛顿第二定律也称为动力学定律,它描述了物体所受合力与物体运动状态之间的关系。

具体而言,物体所受的合力等于物体的质量乘上加速度,即F=ma。

这个定律可以用来计算物体所受的力和加速度,并帮助我们了解物体如何受到力的影响来改变运动状态。

例如,在我们熟知的地球引力的作用下,苹果从树上落下的速度就可以用牛顿第二定律来解释。

三、牛顿第三定律——作用反作用定律牛顿第三定律也称为作用反作用定律,指的是两个物体之间相互作用的力具有同等大小、方向相反的特性。

例如,当一个人在地上跳时,他会将地面向下推一定程度,地面也会向他反推同等力的距离。

在这种情况下,如果人和地面的质量相等,则两个物体以相等的速度和力互相推离。

四、动量守恒定律动量守恒定律描述了在相互作用过程中动量守恒的现象。

其意义在于,当两个物体之间相互作用时,它们的总动量将始终保持不变。

具体而言,在碰撞或爆炸时,动量的总和是相等的,因此一个物体的动量增加,另一个物体的动量必然会减小。

例如,在日常生活中,汽车的碰撞就是不能违反动量守恒定律的经典案例。

五、角动量守恒定律角动量守恒定律描述了在相互作用过程中角动量守恒的现象。

其中“角动量”指的是物体旋转时的动量,是一个向量,并且旋转轴和速度之间的乘积。

在不受外部力矩影响的情况下,一个物体的角动量将始终保持不变。

动力学知识点总结

动力学知识点总结

动力学知识点总结动力学是物理学的一个重要分支,主要研究物体的运动与所受的力之间的关系。

它在我们理解自然界和解决实际问题中都有着广泛的应用。

接下来,让我们一起深入了解动力学的一些关键知识点。

一、牛顿运动定律牛顿运动定律是动力学的基础,包括牛顿第一定律、牛顿第二定律和牛顿第三定律。

牛顿第一定律指出,任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。

这一定律揭示了物体具有惯性,即保持原有运动状态的性质。

牛顿第二定律是动力学的核心,其表达式为 F = ma,其中 F 表示物体所受的合力,m 是物体的质量,a 是物体的加速度。

这意味着力是改变物体运动状态的原因,力越大,加速度越大;质量越大,相同的力产生的加速度越小。

牛顿第三定律则阐明,两个物体之间的作用力和反作用力总是大小相等、方向相反,且作用在同一条直线上。

比如,当你推桌子时,桌子也在以同样大小的力推你。

二、常见的力在动力学中,我们会遇到各种各样的力。

重力是我们最熟悉的力之一,它的大小为G =mg,方向竖直向下,其中 g 是重力加速度。

摩擦力分为静摩擦力和滑动摩擦力。

静摩擦力在物体未发生相对运动时产生,其大小取决于外力,有一个最大值;滑动摩擦力的大小与接触面的粗糙程度和正压力有关,其表达式为 f =μN,μ 是动摩擦因数,N 是正压力。

弹力产生于物体的形变,例如弹簧的弹力遵循胡克定律 F = kx,k是弹簧的劲度系数,x 是弹簧的形变量。

还有拉力、推力、压力等,它们都可以通过具体的情境进行分析和计算。

三、直线运动中的动力学问题对于匀变速直线运动,我们可以利用速度公式 v = v₀+ at、位移公式 x = v₀t + ½at²以及速度位移公式 v² v₀²= 2ax 来解决问题。

在这些公式中,加速度 a 往往与所受的合力相关。

例如,一个物体在水平面上受到一个恒定的水平拉力,如果知道物体的质量和摩擦力,就可以通过牛顿第二定律求出加速度,然后再利用上述直线运动公式求出物体的速度和位移随时间的变化。

动力学知识点总结

动力学知识点总结

动力学知识点总结要想学好物理,必须掌握物理知识点,那么,下面是给大家整理收集的动力学知识点总结,供大家阅读参考。

动力学知识点总结:一、直线运动(1)匀变速直线运动1、平均速度V平=s/t(定义式)2、有用推论Vt2—V o2=2as3、中间时刻速度Vt/2=V平=(Vt+V o)/24、末速度Vt=V o+at5、位移s=V平t=V ot+at2/2=Vt/2t6、加速度a=(Vt—V o)/t {以V o为正方向,a与V o同向(加速)a&gt;0;反向则a&lt;0}7、实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt—V o)/t只是量度式,不是决定式;(2)自由落体运动1、初速度V o=02、末速度Vt=gt3、下落高度h=gt2/2(从V o位置向下计算)4、推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9、8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动位移s=V ot—gt2/22、末速度Vt=V o—gt (g=9、8m/s2≈10m/s2)3、有用推论Vt2—V o2=—2gs4、上升最大高度Hm=V o2/2g(抛出点算起)5、往返时间t=2V o/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等性;二、曲线运动万有引力(1)平抛运动水平方向速度:Vx=V o2、竖直方向速度:Vy=gt3、水平方向位移:x=V ot4、竖直方向位移:y=gt2/25、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6、合速度Vt=(Vx2+Vy2)1/2=1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V07、合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2V o8、水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线运动》知识要点
一、基本概念:时间、位移、速度、加速度
位移x ∆——路程l
速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t
v a ∆∆= ,物理意义 二、基本模型
质点
匀速直线运动
匀变速直线运动(自由落体运动、竖直抛体运动)
三、基本规律(模型草图)
1.匀速直线运动:vt x =
2.匀变速直线运动:
at v v ±=0,202
1at t v x ±=,ax v v 2202±=-,220
t v v v v =+=,2aT x =∆ 3.t v -图象、t x -图象(点、线、面积、斜率、截距)
四、基本方法(过程草图)
比例法——相等时间、相等位移
逆向运动法——末速度为零的匀减速运动,其它
对称法——往返运动(竖直上抛运动)
平均速度法
逐差法
图象法
五、基本实验
打点计时器
纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法)
六、难点题型
1.刹车问题——刹车时间
2.追击、相遇问题(草图、图象)
(1)相遇问题——同一时刻、同一地点
(2)追击问题——关键:速度相等;
分析:速度相等前后;
结果:相距最近、最远,或能否追上。

*3.相对运动:相对参考系绝对v v v +=
七、易错点汇集
1.纸带处理:2naT x x m n m =-+,21234569)()(T
x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向)
3.图象问题:用图象解决追击相遇问题
4.答题技巧:抓关键词,统一单位,字母区别
画过程草图,灵活选取公式——平均速度法
《动力学》知识要点
一、分析基础
1.受力分析
物质性 力的概念 相互性——牛顿第三定律
作用效果——静力学效果:形变;动力学效果:加速度
(1)力 重力——重心
三种性质力 弹力——产生、方向、胡克定律、轻绳轻弹簧中的弹力
摩擦力——产生、方向、静摩擦与滑动摩擦、作用效果(阻碍)
(2)受力的分析
①研究对象的选取——整体法与隔离法
②受力分析的顺序——先主动力,后被动力(重力→弹力→摩擦力) 从受力较为简单的分析起
③产生条件法、假设法、平衡条件或动力学条件
(3)受力的计算——平行四边形定则、三角形定则、正交分解法
2.运动分析
(1)分析:过程草图——各阶段特点、各转折点状态
(2)计算(矢量性)
at v v ±=0,202
1at t v x ±=,ax v v 2202±=-,220
t v v v v =+=,2aT x =∆ (3)方法:比例法、逆向运动法、对称法、平均速度法、逐差法、图象法
二、分析依据
1.牛顿第一定律:惯性——无力,保持速度不变;有力,使速度只能渐变,不能突变
2.牛顿第二定律:ma F =合
(1)瞬时性——力变,加速度变
(2)矢量性——a 的方向与合F 方向相同 ——分解式 x x ma F =
(力的独立作用原理) y y
ma F = *(3)系统的牛顿第二定律:x x x x a m a m a m F 332211++=
(整体法) y y y y a m a m a m F 332211++=
3.牛顿第三定律:转换研究对象;区别一对作用力反作用力和一对平衡力
三、基本思路
力←——
物体牛顿运动定律——→运动
受力分析←—→a m F •=合←———→运动分析
四、典型问题
1.平衡问题
(1)平衡状态:a =0,v =C ——静止平衡、动态平衡(抓住不变,讨论变化——三角形)
(2)平衡条件:0=合F
①二力平衡:21F F -=
②多力平衡:一个力与其他力的合力等大反向; 闭合多边形(三力平衡,闭合三角形)
(3)某一个方向上的平衡条件:a x =0,0=x F ——正交分解法
2.超重失重问题
(1)超重:a 向上,F N >mg ,F N =m (g+a )=mg ’
(2)失重:a 向下,F N <mg ,F N =m (g- a )=mg ’
*理解:重力产生两个效果——提供加速度和产生挤压拉伸效果
(3)完全失重:a=g ,F N =0,g ’=0 3.整体法与隔离法
整体法:“系统外力——整体法”——系统的牛顿第二定律 隔离法:“系统内力——隔离法”
4.传送带问题
关键:速度相等
分析:第二阶段的运动性质
注意:过程草图
5.临界问题
(1)临界状态——极端分析法
临界条件——受力条件
——运动特点
(2)解析法——“假设法+受力条件分析”
6.动态问题——收尾速度模型、竖直弹簧碰撞问题
五、重要实验
1.探究求合力的方法——等效法
2.探究加速度与力、质量的关系——控制变量法、图象法、加速度和力的测量
3.探究作用力与反作用力的关系——传感器、图象
六、易错点汇集
1.力学单位制——统一单位
2.弹簧弹力与绳杆弹力突变问题
3.答题规范问题
明确交代研究对象
画好受力分析图和过程草图
设置字母(注意区别不同物理量)
写原始方程(不写连等式)
牛顿第三定律、方向交代、单位检查。

相关文档
最新文档