二叉树各种基本运算与遍历算法
二叉树基本运算

二叉树基本运算二叉树基本运算二叉树是计算机科学中最基础的数据结构之一,它由节点和指向其左右子节点的指针组成。
在实际应用中,二叉树作为一种重要的数据结构,可以用于解决各种问题。
在进行二叉树的操作时,常见的有插入节点、删除节点、查找节点以及遍历。
这些操作都是二叉树的基本运算。
第一类运算是插入节点的操作。
插入节点到二叉树中,需要根据一定的规则将新节点放置在合适的位置。
例如,若新节点的值比当前节点的值小,则将其放在当前节点的左侧;若新节点的值大,则将其放在当前节点的右侧。
这样,可以保持二叉树的有序性。
插入节点的运算可以通过递归或迭代的方式实现。
无论是哪种方式,重要的是要保证插入后的二叉树仍然是一棵二叉树。
第二类运算是删除节点的操作。
删除节点的操作相对比较复杂,需要考虑被删除节点的子节点情况。
若被删除节点没有子节点,则直接删除即可;若被删除节点只有一个子节点,则将其子节点连接到被删除节点的父节点上即可;若被删除节点有两个子节点,则需找到其右子树的最小节点,用该最小节点替代被删除节点,并删除该最小节点。
删除节点的运算同样可以通过递归或迭代的方式实现。
第三类运算是查找节点的操作。
查找节点的操作可以用于判断二叉树中是否存在某个特定值的节点。
查找节点的运算可以通过递归或迭代的方式实现。
在递归实现中,从根节点开始,若当前节点的值等于目标值,则返回该节点,否则分别在左子节点和右子节点中进行查找。
在迭代实现中,可以借助栈或队列等数据结构来辅助查找。
最后一类运算是遍历二叉树的操作。
二叉树的遍历有三种方式:前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后依次遍历左子树和右子树;中序遍历先遍历左子树,然后访问根节点,最后遍历右子树;后序遍历先遍历左子树,然后遍历右子树,最后访问根节点。
这三种遍历方式均可以通过递归或迭代的方式实现。
在二叉树的基本运算中,不同的操作可以根据具体的需求进行选择。
其中,插入节点、删除节点和查找节点操作都涉及到对二叉树结构的修改,需要小心处理,以保证操作的正确性。
二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。
二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。
本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。
一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。
下面以使用链表的方式来建立二叉树为例。
1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。
```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。
```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。
1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。
```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。
实验三--二叉树的基本运算

实验三二叉树的基本运算一、实验目的1、使学生熟练掌握二叉树的逻辑结构和存储结构。
2、熟练掌握二叉树的各种遍历算法。
二、实验内容1、问题描述建立一棵二叉树,试编程实现二叉树的如下基本操作:(1). 按先序序列构造一棵二叉链表表示的二叉树T;(2). 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列;(3). 求二叉树的深度/结点数目/叶结点数目;(选做)(4). 将二叉树每个结点的左右子树交换位置。
(选做)2、基本要求从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立)。
3、测试数据如输入:abc00de0g00f000(其中ф表示空格字符)则输出结果为:先序:a->b->c->d->e->g->f中序:a->b->c->d->e->g->f后序:a->b->c->d->e->g->f三、程序代码#include<malloc.h>#include<iostream.h>#define OK 1#define ERROR -1typedef char TElemType;int i;typedef struct BiTNode{TElemType data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;int CreateBiTree(BiTree&T) //创建二叉树{char a;cin>>a;if(a=='0') T=NULL;else{if(!(T=(BiTNode*)malloc(sizeof(BiTNode)))) {return ERROR;}T->data=a;CreateBiTree(T->lchild);CreateBiTree(T->rchild);}return OK;}int PreOrderTraverse(BiTree&T) //先序遍历二叉树{if(T){//cout<<"此为先序遍历"<<endl;cout<<T->data<<"->";if(PreOrderTraverse(T->lchild))if(PreOrderTraverse(T->rchild))return OK;return ERROR;}else return OK;}int InOrderTraverse(BiTree&T) //中序遍历二叉树{if(T){//cout<<"此为中序遍历"<<endl;if(InOrderTraverse(T->lchild)){cout<<T->data<<"->";if(InOrderTraverse(T->rchild))return OK;}return ERROR;}else return OK;}int PostOrderTraverse(BiTree&T) //后序遍历二叉树{if(T){//cout<<"此为后序遍历"<<endl;if (PostOrderTraverse(T->lchild))if(PostOrderTraverse(T->rchild)){cout<<T->data<<"->";i++;return (OK);}return (ERROR);}elsereturn (OK);}int CountDepth(BiTree&T) //计算二叉树的深度{if(T==NULL){return 0;}else{int depl=CountDepth(T->lchild);int depr=CountDepth(T->lchild);if(depl>depr){return depl+1;}else{return depr+1;}}}void main() //主函数{BiTree T;cout<<"请输入二叉树节点的值以创建树"<<endl;CreateBiTree(T);cout<<"此为先序遍历";PreOrderTraverse(T);cout<<"end"<<endl;cout<<"此为中序遍历";InOrderTraverse(T);cout<<"end"<<endl;cout<<"此为后序遍历";PostOrderTraverse(T);cout<<"end"<<endl<<"此树节点数是"<<i<<endl<<"此树深度是"<<CountDepth(T)<<endl;}四、调试结果及运行界面:五、实验心得通过这次程序上机实验让我认识到了以前还不太了解的二叉树的性质和作用,这次实验的的确确的加深了我对它的理解。
二叉树的各种基本运算的实现实验报告

软件技术基础实验四--二叉树的各种基本运算的实现班级:电信0901学号:0703090106姓名:蒋玮珂实验四二叉树的各种基本运算的实现(1)实验题目:编写一个程序,实现二叉树的各种基本运算,并在此基础上设计一个主程序完成如下功能:(1)创建二叉树btree(2)求出二叉树btree的树高(3)中序遍历二叉树btree(4)统计二叉树btree的叶结点数(5)输出二叉树btree的所有叶结点(2)实验目的:(1)掌握二叉树的递归操作与运算;(2)加深对二叉树的建立,先序中序遍历方法以及树高的理解与应用(3)调试通过并正确执行给定功能要求的实验代码#include "stdafx.h"#include <fstream.h>struct bitree{char data;bitree *lchild;bitree *rchild;};bitree *createtree(char a[],char b[],int l1,int h1,int l2,int h2) {btree *root;int i,lhigh,rhigh;root=(btree*)malloc(sizeof(btree));root->data=a[l1];if(i=h1,(b[i]!=(root->data)),i++){lhigh=i-h1;rhigh=h2-i;if(lhigh)root->lchild=createtree(a,b,l1+1,l1+lhigh,h1,h1+lhigh-1);elseroot->lchild=NULL;if(rhigh)root->rchild=createtree(a,b,l2-rhigh+1,l2,h2-rhigh+1,h2);elseroot->rchild=NULL;}return root;}int treehigh(bitree *q)if(q==NULL)return 0;else{int lhigh,rhigh;lhigh=treehigh(q->lchild);rhigh=treehigh(q->rchild);if(lhigh>=rhigh)return lhigh+1;elsereturn rhigh+1;}}void inorder(bitree *q){j=0;if(q!=NULL){inorder(q->lchild,str1+(++j));*(str1+j)=q->data;inorder(q->rchild,str1+(++j));}}int countleaf(bitree *q, int count,int flag,char *str2) {k=0;if(q==0)return NULL;else if (q->lchild==NULL &&q->rchild==NULL){count ++;while (flag)*(str2+(k++))=q->data;return count;}else{countleaf(q->lchild ,count,flag,str2+(++k));countleaf(q->rchild ,count,flag,str2+(++k));if(!flag)return count;elsereturn NULL;}}void main()bitree *q;int high,flag,n=0,i=0;char x,y;ifstream infile("e:\\ProgramFiles\\MSDev98\\MyProjects\\jwk\\infile.txt");ofstream outfile("e:\\ProgramFiles\\MSDev98\\MyProjects\\jwk\\outfile.txt");char a[20],b[20],str2[20],str1[20];while(infile.get(x)){infile>>x;a[i++]=x;n++;}i=0;while(infile.get(y)){infile>>y;b[i++]=y;}q=createtree(a,b,1,n,1,n);high=treehigh(q);outfile<<"The height of the bitree is:"<<high<<endl;outfile<<"The sequence of the bitree by the way of inorder:"<<endl; inorder(q,str1);i=0;while(str1[i])outfile<<str1[i++];count=0;flag=0;count=countleaf(q,count,flag,str2);cout<<"The number of the leaves is:"<<endl<<count<<endl;flag=1;cout<<"The leaves of the bitree is:"<<endl;i=0;while(str2[i])outfile<<str2[i++];infile.close();outfile.close();}(4)实验结果截图。
树与二叉树h

SBNode nodes[MAXSIZE]; } SBTree;
举例
结点 左子
右子
1
26 34
1
2
6
2
3
4
3
0
4
4
0
0
4
4
0
0
特点:
6
0
0
找子方便,找父 结点不便.
三、二叉链表存储结构
第一层 第二层
( A ( B ( E (K,L),F),C(G),D( H (M),I,J )))
第四层 第三层
二、基本术语
结点:包括一个数据元素及若干个指向其它子树 的分支;例如,A,B,C,D等。
叶结点:无后件结点为叶结点;如K,L,M。 根结点:无前件的结点为根;例如,A结点。
子结点:某结点后件为该结点的子结点;例如,
方法描述: 从根结点a开始访问, 接着访问左子结点b, 最后访问右子结点c。
即:
根
A 访问根结点 B 先序遍历左子树 C 先序遍历右子树
a
左子 右子
bc
二、中序法(InOrder)
方法描述:
从左子结点b开始访问,
接着访问根结点a,
最后访问右子结点c。
即:
根
A 中序遍历左子树 B 访问根结点 C 中序遍历右子树
计算机学院
自动化学院
各种社会组织机构;
在计算机领域中,用树表示源
程序的语法结构;
2101 2102
2103
在OS中,文件系统、目录等组
织结构也是用树来表示的。
实现二叉树的各种遍历算法实验报告

if(a[i]>kmax) kmax = a[i]; return kmax; } /** 求二叉树的节点个数 **/ int Nodes(BTNode *b) { if(b==NULL)
2.2:( 1 )实现二叉树的先序遍历 ( 2)实现二叉树的中序遍历 ( 3)实现二叉树的后序遍历
三 实验内容 :
3.1 树的抽象数据类型 : ADT Tree{
.专业 .整理 .
下载可编辑
数据对象 D: D 是具有相同特性的数据元素的集合 。 数据关系 R: 若 D 为空集 , 则称为空树 ;
若 D 仅含有一个数据元素 ,则 R 为空集 , 否则 R={H} , H 是如 下二元关系 :
if(b!=NULL) {
printf("%c",b->data); if(b->lchild!=NULL || b->rchild!=NULL) {
printf(" ("); DispBTNode(b->lchild); if(b->rchild != NULL)printf(" , "); DispBTNode(b->rchild); printf(" )"); } } } /** 深度 **/ int BTNodeDepth(BTNode *b)
下载可编辑
实现二叉树的各种遍历算法实验报告
一 实验题目 : 实现二叉树的各种遍历算法 二 实验要求 :
2.1:(1 ) 输出二叉树 b ( 2)输出 H 节点的左右孩子节点值 ( 3)输出二叉树 b 的深度 ( 4)输出二叉树 b 的宽度 ( 5)输出二叉树 b 的节点个数 ( 6)输出二叉树 b 的叶子节点个数 ( 7)释放二叉树 b
树-二叉树

信息学奥赛培训之『树——二叉树』树——二叉树为何要重点研究二叉树? 引 : 为何要重点研究二叉树 ? (1)二叉树的结构最简单,规律性最强; (2)可以证明,所有树都能转为唯一对应的二叉树,不失一般性。
一、二叉树基础1. 二叉树的定义 二叉树是一类非常重要的树形结构,它可以递归地定义如下: 二叉树 T 是有限个结点的集合,它或者是空集,或者由一个根结点以及分别称为左 子树和右子树的两棵互不相交的二叉树。
因此,二叉树的根可以有空的左子树或空的右子树,或者左、右子树均为空。
二叉树有 5 种基本形态,如图 1 所示。
图1 二叉树的 5 种基本形态在二叉树中,每个结点至多有两个儿子,并且有左、右之分。
因此任一结点的儿子 不外 4 种情况:没有儿子;只有一个左儿子;只有一个右儿子;有一个左儿子并且有一 个右儿子。
注意:二叉树与树和有序树 的区别 二叉树与度数不超过 2 的树不同,与度数不超过 2 的有序树也不同。
在有序树中,11如果将树中结点的各子树看成从左至右是有次序的,则称该树为有序树,否则称为无序树。
-1-信息学奥赛培训之『树——二叉树』虽然一个结点的儿子之间是有左右次序的,但若该结点只有一个儿子时,就无须区分其 左右次序。
而在二叉树中,即使是一个儿子也有左右之分。
例如图 2-1 中(a)和(b)是两棵 不同的二叉树。
虽然它们与图 2-2 中的普通树(作为无序树或有序树)很相似,但它们却 不能等同于这棵普通的树。
若将这 3 棵树均看作是有序树,则它们就是相同的了。
图2-1 两棵不同的二叉树图2-2 一棵普通的树由此可见,尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。
不是 ..2. 二叉树的性质图3 二叉树性质1: 在二叉树的第 i 层上至多有 2 i −1 结点(i>=1)。
性质2: 深度为 k 的二叉树至多有 2 k − 1 个结点(k>=1)。
性质3: 对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则 n0=n2+1。
二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告
一、实验目的
实验目的为了深入学习二叉树的各种基本运算,通过操作实现二叉树的建立、存储、查找、删除、遍历等各种基本运算操作。
二、实验内容
1、构造一个二叉树。
我们首先用一定的节点来构建一棵二叉树,包括节点的左子节点和右子节点。
2、实现查找二叉树中的节点。
在查找二叉树中的节点时,我们根据二叉树的特点,从根节点开始查找,根据要查找的节点的值与根节点的值的大小的关系,来决定接下来查找的方向,直到找到要查找的节点为止。
3、实现删除二叉树中的节点。
在删除二叉树节点时,我们要做的是找到要删除节点的父节点,然后让父节点的链接指向要删除节点的子节点,有可能要删除节点有一个子节点,有可能有两个极点,有可能没有子节点,我们要根据每种情况进行处理,来保持二叉树的结构不变。
4、对二叉树进行遍历操作。
二叉树的遍历有多种方法,本实验使用的是先序遍历。
首先从根节点出发,根据先序遍历的顺序,先访问左子树,然后再访问右子树,最后访问根节点。
三、实验步骤
1、构建二叉树:
我们用一个数组代表要构建的二叉树,第一项为根节点,第二项和第三项是根节点的子节点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
}
int LeafNodes(BTNode*b)
{
int num1,num2;
if(b==NULL)
return 0;
else if(b->lchild==NULL&&b->rchild==NULL)
return 1;
else
{
num1=LeafNodes(b->lchild);
{
return p->lchild;
}
BTNode *RchildNode(BTNode *p)
{
return p->rchild;
}
int BTNodeDepth(BTNode *b)
{
int lchilddep,rchilddep;
if(b==NULL)
return(0);
else
{
lchilddep=BT}
int Nodes(BTNode*b)
{
int num1,num2;
if(b==NULL)
return 0;
else if(b->lchild==NULL&&b->rchild==NULL)
return 1;
else
{
num1=Nodes(b->lchild);
num2=Nodes(b->rchild);
St[top].pt=p->rchild;
St[top].tag=1;
top++;
St[top].pt=p->lchild;
St[top].tag=1;
top++;
St[top].pt=p;
St[top].tag=0;
}
}
if(St[top].tag==0)
{
printf("%c",St[top].pt->data);
b=NULL;
ch=str[j];
while (ch!='\0')
{
switch(ch)
{
case '(':top++;St[top]=p;k=1;break;
case')':top--;break;
case ',':k=2;break;
default:p=(BTNode *)malloc(sizeof(BTNode));
int top=-1,k,j=0;
char ch ;
b=NULL;
ch=str[j];
while (ch!='\0')
{
switch(ch)
{
case '(':top++;St[top]=p;k=1;break;
case')':top--;break;
case ',':k=2;break;
default:p=(BTNode *)malloc(sizeof(BTNode));
if(b->lchild!=NULL||b->rchild!=NULL)
{
printf("(");
DispBTNode(b->lchild);
if(b->rchild!=NULL)printf(",");
DispBTNode(b->rchild);
printf(")");
}
}
}
int BTWidth(BTNode *b)
printf("(2)'H'结点:");
p=FindNode(b,'H');
if(p!=NULL)
{
lp=LchildNode(p);
if(lp!=NULL)
printf("左孩子为%c",lp->data);
else
printf("无左孩子");
rp=RchildNode(p);
if(rp!=NULL)
2.用c语言实现二叉树的基本运算算法和遍历算法。
3.调试程序,编译运行并用数据测试程序
4.熟悉c语言编程
二、实验环境:
1.PC机一台(带有VS 6.0软件)
三、实验内容和要求:
1、用c语言实现二叉树的基本运算算法(包括二叉树的创建、节点访问、求二叉树的深度);
2、用c语言实现二叉树的三种遍历算法(先根遍历、中根遍历、后根遍历),其中中根遍历算法用递归和非递归两种方式实现,加深理解栈在非递归实现中的应用;
{
if(b!=NULL)
{
printf("%c",b->data);
if(b->lchild!=NULL||b->rchild!=NULL)
{
printf("(");
DispBTNode(b->lchild);
if(b->rchild!=NULL)printf(",");
DispBTNode(b->rchild);
p->data=ch;p->lchild=p->rchild=NULL;
if(b==NULL)
b=p;
else
{
switch(k)
{
case 1:St[top]->lchild=p;break;
case 2:St[top]->rchild=p;break;
}
}
}
j++;
ch=str[j];
}
}
void DispBTNode(BTNode *b)
printf("右孩子为%c",rp->data);
else
printf("无右孩子");
}
printf("\n");
printf("(3)二叉树b的深度:%d\n",BTNodeDepth(b));
printf("(4)二叉树b的宽度:%d\n",BTWidth(b));
printf("(5)二叉树b的结点个数:%d\n",Nodes(b));
struct
{
BTNode *pt;
int tag;
}St[MaxSize];
int top=-1;
top++;
St[top].pt=b;
St[top].tag=1;
while(top>-1)
{
if(St[top].tag==1)
{
p=St[top].pt;
top--;
if(p!=NULL)
{
top++;
Qu[rear].lno=lnum+1;
}
}
max=0;lnum=1;i=1;
while(i<=rear)
{
n=0;
while(i<=rear&&Qu[i].lno==lnum)
{
n++;i++;
}
lnum=Qu[i].lno;
if(n>max) max=n;
}
return max;
}
else
return 0;
{
ElemType data;
struct node *lchild;
struct node *rchild;
}BTNode;
void CreateBTNode(BTNode *&b,char *str)
{
BTNode *St[MaxSize],*p=NULL;
int top=-1,k,j=0;
char ch ;
printf("(6)二叉树b的叶子结点个数:%d\n",LeafNodes(b));
printf("\n");
}
实验结果:
实验7.2实现二叉树各种遍历算法,代码如下所示:
#include "stdio.h"
#include "malloc.h"
#define MaxSize 100
typedef char ElemType;
num2=LeafNodes(b->rchild);
return(num1+num2);
}
}
void main()
{
BTNode*b,*p,*lp,*rp;
CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
printf("\n");
printf("(1)输出二叉树:");DispBTNode(b);printf("\n");
{
BTNode *p;
if(b==NULL)
return NULL;
else if(b->data==x)
return b;
else
{
p=FindNode(b->lchild,x);
if(p!=NULL)
return p;
else
return FindNode(b->rchild,x);
}
}
BTNode *LchildNode(BTNode *p)