2020《新高考全案》高考数学 第2章 函数与基本的初等函数 第9讲 函数与方程课外学生练与悟 人教版
高三数学课件:第二章 函数的概念与基本初等函数 2-9

A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
计算各选项中区间端 确定所 [思路引导] (1) 点函数值的符号 → 在区间
[解析] (1)因为 f1e=-12+1e-e-2<0, f(1)=-2<0, f(2)=12 ln2-12<0, f(e)=12+e-1e-2>0,所以 f(2)f(e)<0,所以函数 f(x)=12 lnx+x-1x-2 的零点所在的区间是(2,e),故选 C.
(2)解法一:函数 f(x)的零点所在的区间转化为函数 g(x)=lnx, h(x)=-x+2 图象交点的横坐标所在的范围.作图如下:可知 f(x) 的零点所在的区间为(1,2).故选 B.
解法二:易知 f(x)=lnx+x-2 在(0,+∞)上为增函数,且 f(1) =1-2=-1<0,f(2)=ln2>0.
[答案] B
2.(2018·山西晋城期末)函数 f(x)=log3x-8+2x 的零点一定 位于区间( )
A.(5,6)
B.(3,4)
C.(2,3)
D.(1,2)
[解析] 当 x=3 时, f(3)=log33-8+2×3=-1<0,当 x=4 时,f(4)=log34-8+2×4=log34>0,即 f(3)·f(4)<0,又∵函数 f(x)
图象法 象,看其有几个交点,就有几个不同的零点.
[跟踪演练]
1.(2018·南宁模拟)函数 f(x)=lxn2x-,2xx>,0,x≤0 的零点个数为
() A.1
B.2
C.3
D.4
[解析] 当 x>0 时,由 lnx=0,得 x=1;当 x≤0 时,由 x2
(江苏专用)2020版高考数学大一轮复习 第二章 函数的概念与基本初等函数Ⅰ第9讲 函数与方程课件

由图象可知|f(x)+g(x)|=1的实根个数为4. 答案 (1)③ (2)4
规律方法 (1)零点存在性定理,要求函数在区间[a,b]上是连续不断的曲线,且 f(a)·f(b)<0,再结合函数的图象与性质确定函数零点个数. (2)确定函数零点所在区间,可利用零点存在性定理或数形结合法. (3)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质; ③数形结合法:转化为两个函数图象的交点个数.
Δ>0
Δ=0
二次函数y=ax2+ bx+c (a>0)的图象
与x轴的交点 零点个数
__(x_1_,__0_)_,__(x_2_,__0_)_ 两个
__(_x_1,__0_)___ 一个
Δ<0
无交点 零个
诊断自测
1.思考辨析(在括号内打“√”或“×”) (1)函数的零点就是函数的图象与x轴的交点.( ) (2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.( ) (3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.( ) (4)当x>0时,函数y=2x与y=x2的图象有两个交点.( ) 解析 (1)函数的零点是函数的图象与x轴交点的横坐标,故(1)错;(2)函数f(x)=x2在 区间(-1,1)内有零点,且函数图象连续,但f(-1)·f(1)>0. 答案 (1)× (2)× (3)√ (4)√
解析 (1)∵f(x)=ln x-12x-2在(0,+∞)为增函数,又 f(1)=ln 1-12-1=ln 1-2<0,f(2) =ln 2-120<0,f(3)=ln 3-121>0,∴x0∈(2,3).
2020高考数学复习(考试说明提点+基本脉络贯通+达标小题)第二章 函数概念与基本初等函数复习 理(pdf)

数与对数函数, 还有三角函数等, 也涉及了函数的所有性质,
本章概念多, 1 . 对本章的概念要特别重视理解和掌握. 具有较高的抽象性和严密性, 只有准确㊁ 深刻地理解它们, 才 的基础上进行概括, 深入理解概念的本质和来龙去脉, 并学 能用于解决问题. 要在结合具体函数㊁ 函数图象和实际应用
江苏卷有 1 道函数 大 题, 2 0 1 3 年 江 苏 卷 有 1 道 函 数 大 题,
会用适当的数学语言和形式加以准确表达.9高源自复习指导数学( 教师用书)
n 2 f( x) ( ) ; ( ) 1 4 . 已知下列三个函数: 2 x)( n为 y= ( ) y = f( gx ; ( ) 正整数) 3 .写出各个函数有意义时 o x) x) g y =l g( f(
系和函数思想方法的训练.
以理解, 因此要加强函数㊁ 不等式㊁ 数列等各章之间的知识联
始终, 代数式㊁ 方程㊁ 不等式㊁ 数列等, 都可以从函数的观点加
加强与其他各章知识的 4 . 深刻理解函数思想的价值, 联系, 才能灵活地加以运用. 函数的思想贯穿于中学代数的
研究函数的性质, 帮助解决问题.
强化思想方法的训练. 如数形结 3 . 以函数知识为依托, 合的思想方法是本章的一条主线, 即利用函数图象的直观性
第二章
函数概念与基本初等函数
第
二
章
函数概念与基本初等函数
其他省的高考试题中函数所 2 0 1 4年江苏卷有1道函数大题, ) , 占的分值也比较大 考查的热点之一是函数的定义域㊁ 值 域㊁ 单调性㊁ 奇偶性以及函数的图象及其变换; 在考查函数内 题, 能否充分理解并运用函数模型. 例如 2 0 0 8 年江苏高考第 容的同时也注重考查能否用函数的思想观察问题㊁ 解决问
2020高考数学第二章 函数的概念与基本初等函数Ⅰ

高考数学 第二章 函数的概念与基本初等函数Ⅰ考点1 函数的概念1.(2015·浙江,7)存在函数f (x )满足:对任意x ∈R 都有( )A.f (sin 2x )=sin xB.f (sin 2x )=x 2+xC.f (x 2+1)=|x +1|D.f (x 2+2x )=|x +1|1.D [排除法,A 中,当x 1=π2,x 2=-π2时,f (sin 2x 1)=f (sin 2x 2)=f (0),而sin x 1≠sin x 2,∴A 不对;B 同上;C 中,当x 1=-1,x 2=1时,f (x 21+1)=f (x 22+1)=f (2),而|x 1+1|≠|x 2+1|,∴C 不对,故选D.]2.(2015·新课标全国Ⅱ,5)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A.3B.6C.9D.122.C [因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=2log 212-1=2log 212×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C.]3.(2014·山东,3)函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12B.(2,+∞)C.⎝⎛⎭⎫0,12∪(2,+∞)D.⎝⎛⎦⎤0,12∪[2,+∞) 3.C [(log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求的定义域是⎝⎛⎭⎫0,12∪(2,+∞).]4.(2014·江西,2)函数f (x )=ln(x 2-x )的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)4.C [由题意可得x 2-x >0,解得x >1或x <0,所以所求函数的定义域为(-∞,0)∪(1,+∞).]5.(2014·江西,3)已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( ) A.1 B.2 C.3 D.-15.A [因为f [g (1)]=1,且f (x )=5|x |,所以g (1)=0,即a ·12-1=0,解得a =1.]6.(2014·安徽,9)若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A.5或8 B.-1或5 C.-1或-4 D.-4或86.D [当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1,x >-1,x +a -1,-a 2≤x ≤-1,-3x -a -1,x <-a 2,如图1可知,当x =-a2时,f (x )min =f ⎝⎛⎭⎫-a 2=a 2-1=3,可得a =8; 当a <2时,f (x )=⎩⎪⎨⎪⎧3x +a +1,x >-a2,-x -a +1,-1≤x ≤-a 2,-3x -a -1,x <-1,如图2可知,当x =-a 2时,f (x )min =f ⎝⎛⎭⎫-a 2=-a2+1=3,可得a =-4. 综上可知,答案为D.]图1 图27.(2014·上海,18)设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A.[-1,2]B.[-1,0]C.[1,2]D.[0,2] 7.D [∵当x ≤0时,f (x )=(x -a )2,又f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解之,得-1≤a ≤2,∴a 的取值范围是0≤a ≤2.选D.]8.(2016·江苏,5)函数y =3-2x -x 2的定义域是________.8. [-3,1] [要使原函数有意义,需且仅需3-2x -x 2≥0.解得-3≤x ≤1.故函数定义域为[-3,1].]9.(2015·浙江,10)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.9.0 22-3 [f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,∴f (x )的最小值为22-3.]考点2 函数的基本性质1.(2016·山东,9)已知函数f (x )的定义域为R ,当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A.-2B.-1C.0D.21.D [当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,即f (x )=f (x +1),∴T =1, ∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1,f (-x )=-f (x ), ∴f (2)=f (1)=-f (-1)=2,故选D.]2.(2015·天津,7)已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =(log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A.a <b <c B.a <c <b C.c <a <b D.c <b <a 2.C[因为函数f (x )=2|x-m |-1为偶函数可知,m =0,所以f (x )=2|x |-1,当x >0时,f (x )为增函数,log 0.53=-log 23, ∴log 25>|-log 0.53|>0,∴b =f (log 25)>a =f (log 0.53)>c =f (2m ),故选C.]3.(2015·福建,2)下列函数为奇函数的是( )A.y =xB.y =|sin x |C.y =cos xD.y =e x -e-x3.D [由奇函数定义易知y =e x -e -x 为奇函数,故选D.]4.(2015·广东,3)下列函数中,既不是奇函数,也不是偶函数的是( ) A.y =x +e x B.y =x +1x C.y =2x +12x D.y =1+x 24.A [令f (x )=x +e x ,则f (1)=1+e ,f (-1)=-1+e -1,即f (-1)≠f (1),f (-1)≠-f (1),所以y =x +e x 既不是奇函数也不是偶函数,而B 、C 、D 依次是奇函数、偶函数、偶函数,故选A.]5.(2015·安徽,2)下列函数中,既是偶函数又存在零点的是( )A.y =cos xB.y =sin xC.y =ln xD.y =x 2+15.A [由于y =sin x 是奇函数;y =ln x 是非奇非偶函数;y =x 2+1是偶函数但没有零点;只有y =cos x 是偶函数又有零点.]6.(2014·北京,2)下列函数中,在区间(0,+∞)上为增函数的是( ) A.y =x +1 B.y =(x -1)2 C.y =2-xD.y =log 0.5(x +1)6.A [显然y =x +1是(0,+∞)上的增函数;y =(x -1)2在(0,1)上是减函数,在(1,+∞)上是增函数;y =2-x=⎝⎛⎭⎫12x在x ∈R 上是减函数;y =log 0.5(x +1)在(-1,+∞)上是减函数.故选A.]7.(2014·陕西,7)下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A.f (x )=12x B.f (x )=x3C.f (x )=x ⎪⎭⎫ ⎝⎛21D.f (x )=3x7.D [根据各选项知,选项C 、D 中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x 是增函数,所以D 正确.]8.(2014·山东,5)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B.ln(x 2+1)>ln(y 2+1)C.sin x >sin yD.x 3>y 3 8.D [根据指数函数的性质得x >y ,此时x 2,y 2的大小不确定,故选项A 、B 中的不等式不恒成立;根据三角函数的性质,选项C 中的不等式也不恒成立;根据不等式的性质知,选项D 中的不等式恒成立.]9.(2014·湖南,3)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A.-3B.-1C.1D.39.C [用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1,故选C.]10.(2014·新课标全国Ⅰ,3)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A.f (x )g (x )是偶函数B.f (x )|g (x )|是奇函数C.|f (x )|g (x )是奇函数D.|f (x )g (x )|是奇函数 10.B [f (x )为奇函数,g (x )为偶函数,故f (x )g (x )为奇函数,f (x )|g (x )|为奇函数,|f (x )|g (x )为偶函数,|f (x )g (x )|为偶函数,故选B.]11.(2014·湖北,10)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( ) A.⎣⎡⎦⎤-16,16 B.⎣⎡⎦⎤-66,66 C.⎣⎡⎦⎤-13,13 D.⎣⎡⎦⎤-33,33 11.B [当x ≥0时,f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2-a 2,a 2<x ≤2a 2x -3a 2,x >2a 2,又f (x )为奇函数,可得f (x )的图象如图所示,由图象可得,当x ≤2a 2时,f (x )max =a 2,当x >2a 2时,令x -3a 2=a 2,得x =4a 2,又∀x ∈R ,f (x -1)≤f (x ),可知4a 2-(-2a 2)≤1⇒a ∈⎣⎡⎦⎤-66,66,选B.]12.(2016·四川,14)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (1)=________. 12.-2 [首先,f (x )是周期为2的函数,所以f (x )=f (x +2);而f (x )是奇函数,所以f (x )=-f (-x ),所以f (1)=f (-1),f (1)=-f (-1),即f (1)=0, 又f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12,f ⎝⎛⎭⎫12=412=2,故f ⎝⎛⎭⎫-52=-2,从而f ⎝⎛⎭⎫-52+f (1)=-2.]13.(2016·北京,14)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .(1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________.13.(1)2 (2)(-∞,-1) [ (1)当a =0时,f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤0,-2x ,x >0.若x ≤0,f ′(x )=3x 2-3=3(x 2-1).由f ′(x )>0得x <-1,由f ′(x )<0得-1<x ≤0. ∴f (x )在(-∞,-1)上单调递增;在(-1,0]上单调递减,∴f (x )最大值为f (-1)=2. 若x >0,f (x )=-2x 单调递减,所以f (x )<f (0)=0.所以f (x )最大值为2. (2)f (x )的两个函数在无限制条件时图象如图.由(1)知,当a ≥-1时,f (x )取得最大值2.当a <-1时,y =-2x 在x >a 时无最大值.且-2a >2.所以a <-1.]14.(2015·新课标全国Ⅰ,13)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 14.1 [f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,∴a =1.]15.(2014·新课标全国Ⅱ,15)已知偶函数f (x )在[0,+∞)上单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.15.(-1,3) [由题可知,当-2<x <2时,f (x )>0.f (x -1)的图象是由f (x )的图象向右平移1个单位长度得到的,若f (x -1)>0,则-1<x <3.]16.(2014·四川,12)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 16.1 [f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1.]考点3 二次函数与幂函数1.(2016·全国Ⅲ,6)已知a =243,b =323,c =2513,则( ) A.b <a <cB.a <b <cC.b <c <aD.c <a <b1.A[a =243=316,b =323=39,c =2513=325,所以b <a <c .]2.(2015·四川,9)如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎡⎦⎤12,2上单调递减,那么mn 的最大值为( )A .16B .18C .25 D.8122.B [令f ′(x )=(m -2)x +n -8=0,∴x =-n -8m -2,当m >2时,对称轴x 0=-n -8m -2,由题意,-n -8m -2≥2,∴2m +n ≤12,∵2mn ≤2m +n2≤6,∴mn ≤18,由2m +n =12且2m =n 知m =3,n =6,当m <2时,抛物线开口向下,由题意-n -8m -2≤12,即2n +m ≤18,∵2mn ≤2n +m 2≤9,∴mn ≤812,由2n +m =18且2n =m ,得m =9(舍去),∴mn 最大值为18,选B.]3.(2014·浙江,7)在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图象可能是( )3.D [当a >1时,函数f (x )=x a (x >0)单调递增,函数g (x )=log a x 单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当0<a <1时,函数f (x )=x a (x >0)单调递增,函数g (x )=log a x 单调递减,且过点(1,0),排除A ,因此选D.]4.(2014·辽宁,16)对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.4.-2 [设2a +b =t ,则2a =t -b ,因为4a 2-2ab +4b 2-c =0,所以将2a =t -b 代入整理可得6b 2-3tb +t 2-c =0①,由Δ≥0解得-85c ≤t ≤85c ,当|2a +b |取最大值时t =85c ,代入①式得b =c 10,再由2a =t -b 得a =32c 10,所以3a -4b +5c =210c -410c+5c =5c -210c =⎝ ⎛⎭⎪⎫5c -22-2≥-2,当且仅当c =52时等号成立.]考点4 指数与指数函数1.(2014·辽宁,3)已知a =132-,b =log 213,c =121log 3,则( )A.a >b >cB.a >c >bC.c >a >bD.c >b >a1.C[a =2-13∈(0,1),b =log 213∈(-∞,0),c =log 1213=log 23∈(1,+∞),所以c >a >b .]2.(2015·山东,14)已知函数f (x )=a x +b (a >0,a ≠1) 的定义域和值域都是[-1,0],则a +b =________.2.-32[当a >1时,f (x )=a x +b 在定义域上为增函数,∴⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,方程组无解; 当0<a <1时,f (x )=a x +b 在定义域上为减函数,∴⎩⎨⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2.∴a +b =-32.]3.(2014·上海,9)若f (x )=23x -12x -,则满足f (x )<0的x 的取值范围是________.3.(0,1) [令y 1=x 23,y 2=12x-,f (x )<0即为y 1<y 2,函数y 1=x 23,y 2=12x-的图象如图所示,由图象知:当0<x <1时,y 1<y 2,所以满足f (x )<0的x 的取值范围是(0,1).]考点5 对数与对数函数1.(2015·湖南,5)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A.奇函数,且在(0,1)上是增函数B. 奇函数,且在(0,1)上是减函数C. 偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数1.A[易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x1-x=ln ⎝⎛⎭⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数,故选A.]2.(2015·陕西,9)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.q =r >pC.p =r <qD.p =r >q 2.C[∵0<a <b ,∴a +b2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝⎛⎭⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=12ln a +12ln b =ln(ab )12=f (ab )=p .故p =r <q .选C.]3.(2014·福建,4)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )3.B [因为函数y =log a x 过点(3,1),所以1=log a 3,解得a =3,所以y =3-x 不可能过点(1,3),排除A ;y =(-x )3=-x 3不可能过点(1,1),排除C ;y =log 3(-x )不可能过点(-3,-1),排除D.故选B.]4.(2014·天津,4)函数f (x )=12log (x 2-4)的单调递增区间为( )A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)4.D [函数y =f (x )的定义域为(-∞,-2)∪(2,+∞),因为函数y =f (x )是由y =log 12t 与t =g (x )=x 2-4复合而成,又y =log 12t 在(0,+∞)上单调递减,g (x )在(-∞,-2)上单调递减,所以函数y =f (x )在(-∞,-2)上单调递增.选D.]5.(2014·四川,9)已知f (x )=ln(1+x )-ln(1-x ),x ∈(-1,1).现有下列命题: ①f (-x )=-f (x );②f ⎝⎛⎭⎫2x1+x 2=2f (x );③|f (x )|≥2|x |.其中的所有正确命题的序号是( )A.①②③B.②③C.①③D.①②5.A [f (-x )=ln(1-x )-ln(1+x )=-f (x ),故①正确;因为f (x )=ln(1+x )-ln(1-x )=ln1+x1-x,又当x ∈(-1,1)时,2x 1+x 2∈(-1,1),所以f ⎝⎛⎭⎫2x 1+x 2=ln 1+2x 1+x 21-2x 1+x 2=ln ⎝ ⎛⎭⎪⎫1+x 1-x 2=2ln 1+x 1-x =2f (x ),故②正确;当x ∈[0,1)时,|f (x )|≥2|x |⇔f (x )-2x ≥0,令g (x )=f (x )-2x =ln(1+x )-ln(1-x )-2x (x ∈[0,1)),因为g ′(x )=11+x +11-x -2=2x 21-x 2>0,所以g (x )在区间[0,1)上单调递增,g (x )=f (x )-2x ≥g (0)=0,即f (x )≥2x ,又f (x )与y =2x 都为奇函数,所以|f (x )|≥2|x |成立,故③正确,故选A.]6.(2016·浙江,12)已知a >b >1.若log a b +log b a =52,a b =b a ,则a =______,b =______.6.4 2 [设log b a =t ,则t >1,因为t +1t =52,解得t =2,所以a =b 2①,因此a b =b a ⇒a 2b=ab 2②,解得b =2,a =4.联立①②结合b >1,解得b =2,a =4.]7.(2015·浙江,12)若a =log 43,则2a +2-a =________.7.433 [2a +2-a =2log 43+2-log 43=2log23+2log 233=3+33=433.]8.(2015·福建,14)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.8.(1,2] [由题意f (x )的图象如图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2.]9.(2014·重庆,12)函数f (x )=log 2x ·log2(2x )的最小值为________.9.-14 [依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =12时等号成立,因此函数f (x )的最小值为-14.]考点6 函数与方程1.(2015·山东,10)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( )A.⎣⎡⎦⎤23,1B.[0,1]C.⎣⎡⎭⎫23,+∞ D.[1, +∞) 1.C[当a =2时,f (a )=f (2)=22=4>1,f (f (a ))=2f (a ),∴a =2满足题意,排除A ,B 选项;当a =23时,f (a )=f ⎝⎛⎭⎫23=3×23-1=1,f (f (a ))=2f (a ),∴a=23满足题意,排除D 选项,故答案为C.]2.(2015·天津,8)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( ) A.⎝⎛⎭⎫74,+∞ B.⎝⎛⎭⎫-∞,74 C.⎝⎛⎭⎫0,74 D.⎝⎛⎭⎫74,2 2.D [记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y =x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎪⎨⎪⎧y =x +b ′,y =(x -2)2,解得b ′=-94,-94-(-4)=74,所以曲线h (x )向上平移74个单位后,所得图象与f (x )的图象有四个公共点,平移2个单位后,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有四个不同的交点,即y =f (x )-g (x )恰有4个零点.选D.]3.(2014·湖南,10)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A.⎝⎛⎭⎫-∞,1e B.()-∞,e C.⎝⎛⎭⎫-1e ,e D.⎝⎛⎭⎫-e ,1e 3.B [由题意可得,当x >0时,y =f (-x )与y =g (x )的图象有交点,即g (x )=f (-x )有正解,即x 2+ln(x +a )=(-x )2+e -x -12有正解,即e -x -ln(x +a )-12=0有正解,令F (x )=e -x -ln(x+a )-12,则F ′(x )=-e -x -1x +a <0,故函数F (x )=e -x -ln(x +a )-12在(0,+∞)上是单调递减的,要使方程g (x )=f (-x )有正解,则存在正数x 使得F (x )≥0,即e -x -ln(x +a )-12≥0,所以a ≤1e 2e x x ---,又y =1e 2ex x ---在(0,+∞)上单调递减,所以a <1e 02e0---=12e ,选B.]4.(2016·山东,15)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.4.(3,+∞) [如图,当x ≤m 时,f (x )=|x |;当x >m 时,f (x )=x 2-2mx +4m ,在(m ,+∞)为增函数,若存在实数b ,使方程f (x )=b 有三个不同的根,则m 2-2m ·m +4m <|m |. ∵m >0,∴m 2-3m >0,解得m >3.5.(2015·湖南,15)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.5.(-∞,0)∪(1,+∞) [若0≤a ≤1时,函数f (x )=⎩⎪⎨⎪⎧x 3 (x ≤a ),x 2 (x >a )在R 上递增,若a >1或a<0时,由图象知y =f (x )-b 存在b 使之有两个零点,故a ∈(-∞,0)∪(1,+∞).]6.(2015·安徽,15)设x 3+ax +b =0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________(写出所有正确条件的编号).①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2;④a =0,b =2;⑤a =1,b =2. 6.①③④⑤ [令f (x )=x 3+ax +b ,f ′(x )=3x 2+a ,当a ≥0时,f ′(x )≥0,f (x )单调递增,必有一个实根,④⑤正确;当a <0时,由于选项当中a =-3,∴只考虑a =-3这一种情况,f ′(x )=3x 2-3=3(x +1)(x -1),∴f (x )极大=f (-1)=-1+3+b =b +2,f (x )极小=f (1)=1-3+b =b -2,要有一根,f (x )极大<0或f (x )极小>0,∴b <-2或b >2,①③正确,所有正确条件为①③④⑤.]7.(2015·江苏,13)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.7.4 [令h (x )=f (x )+g (x ),则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x +1x =1-2x 2x<0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4.]8.(2015·北京,14)设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,x -a x -2a ,x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________.8.(1)-1 (2)⎣⎡⎭⎫12,1∪[2,+∞)[(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x -1,x <1,4(x -1)(x -2),x ≥1. 当x <1时,2x -1>-1.当x ≥1时,且当x =32时,f (x )min =f ⎝⎛⎭⎫32=-1,∴f (x )最小值为-1. (2)1°当a ≤0时,2x -a >0,由4(x -a )(x -2a )=0得x =a 或x =2a .a ∉[1,+∞), 2a ∉[1,+∞), ∴此时f (x )无零点.2°当0<a <1时,若有2个零点,只须⎩⎪⎨⎪⎧a <1,2a ≥1,∴12≤a <1.3°当1≤a <2时,x <1,2x =a ,x =log 2a ∈[0,1), x ≥1时,由f (x )=0,得x =a 或2a ,a ∈[1,+∞). 2a ∈[1,+∞),有3个零点,不合题意. 4°当a ≥2时,x <1,则2x -a <0,x ≥1时,由f (x )=0,得x =a 或2a ,a ,2a ∈[1,+∞), 此时恰有2个零点,综上12≤a <1或a ≥2.]考点7 函数模型及其应用1.(2016·山东,10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( ) A.y =sin x B.y =ln x C.y =e x D.y =x 31.A[对函数y =sin x 求导,得y ′=cos x ,当x =0时,该点处切线l 1的斜率k 1=1,当x =π时,该点处切线l 2的斜率k 2=-1,∴k 1·k 2=-1,∴l 1⊥l 2;对函数y =ln x 求导,得y ′=1x 恒大于0,斜率之积不可能为-1;对函数y =e x 求导,得y ′=e x 恒大于0,斜率之积不可能为-1;对函数y =x 3,得y ′=2x 2恒大于等于0,斜率之积不可能为-1.故选A.]2.(2016·四川,5)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A.2018年B.2019年C.2020年D.2021年2.B[设x 年后该公司全年投入的研发资金为200万元,由题可知,130(1+12%)x =200,解得x =log 1.12200130=lg 2-lg 1.3lg 1.12≈3.80,因资金需超过200万,则x 取4,即2019年.选B.]3.(2015·北京,8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油3.D [汽车每消耗1升汽油行驶的里程为“燃油效率”,由此理解A 显然不对;B 应是甲车耗油最少;C 甲车以80千米/小时的速度行驶10 km,消耗1升汽油.故D 正确.]4.(2014·湖南,8)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-14.D[设年平均增长率为x ,原生产总值为a ,则(1+p )(1+q )a =a (1+x )2,解得x =(1+p )(1+q )-1,故选D.]5.(2014·辽宁,12)已知定义在[0,1]上的函数f (x )满足:①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有|f (x )-f (y )|<12|x -y |.若对所有x ,y ∈[0,1],|f (x )-f (y )|<k 恒成立,则k 的最小值为( ) A.12 B.14 C.12π D.185.B [不妨令0≤y <x ≤1,当0<x -y ≤12时,|f (x )-f (y )|<12|x -y |≤14;当12<x -y ≤1时,|f (x )-f (y )|=|[f (x )-f (1)]-[f (y )-f (0)]|≤|f (x )-f (1)|+|f (y )-f (0)|<12|x -1|+12|y -0|=12(1-x )+12y =12+12(y -x )<14.综上,|f (x )-f (y )|<14,所以k ≥14.]6.(2015·四川,13)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是________小时.6.24 [由题意⎩⎪⎨⎪⎧e b =192,e 22k +b =48,∴e 22k =48192=14,∴e 11k =12,∴x =33时,y =e 33k +b=(e 11k )3·e b=⎝⎛⎭⎫123·e b =18×192=24.]7.(2015·江苏,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b (其中a ,b为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度. 7.(1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5).将其分别代入y =ax 2+b ,得⎩⎨⎧a25+b =40,a 400+b =2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知,y =1 000x 2(5≤x ≤20),则点P 的坐标为⎝⎛⎭⎫t ,1 000t 2, 设在点P 处的切线l 交x ,y 轴分别于A ,B 点,y ′=-2 000x 3,则l 的方程为y -1 000t 2=-2 000t 3(x -t ),由此得A ⎝⎛⎭⎫3t 2,0,B ⎝⎛⎭⎫0,3 000t 2. 故f (t )=⎝⎛⎭⎫3t 22+⎝⎛⎭⎫3 000t 22=32t 2+4×106t4,t ∈[5,20].②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t 5.令g ′(t )=0,解得t =10 2.当t ∈(5,102)时,g ′(t )<0,g (t )是减函数; 当t ∈(102,20)时,g ′(t )>0,g (t )是增函数.从而,当t =102时,函数g (t )有极小值,也是最小值, 所以g (t )min =300,此时f (t )min =15 3.答:当t =102时,公路l 的长度最短,最短长度为153千米.8.(2014·湖北,14)设f (x )是定义在(0,+∞)上的函数,且f (x )>0,对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ).例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b2,即M f (a ,b )为a ,b 的算术平均数.(1)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的几何平均数. (2)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的调和平均数2aba +b .(以上两空各只需写出一个符合要求的函数即可)8.(1)x (2)x [过点(a ,f (a )),(b ,-f (b ))的直线的方程为y -f (a )=f (a )+f (b )a -b (x -a ),令y =0得c =af (b )+bf (a )f (a )+f (b ).(1)令几何平均数ab =af (b )+bf (a )f (a )+f (b )⇒abf (a )+abf (b )=bf (a )+af (b ),可取f (x )=x(x >0);(2)令调和平均数2ab a +b =af (b )+bf (a )f (a )+f (b )⇒ab +ba a +b =af (b )+bf (a )f (a )+f (b ),可取f (x )=x (x >0).]9.(2014·山东,15)已知函数y =f (x )(x ∈R ),对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________.9.(210,+∞) [函数g (x )的定义域是[-2,2],根据已知得h (x )+g (x )2=f (x ),所以h (x )=2f (x )-g (x )=6x +2b -4-x 2.h (x )>g (x )恒成立,即6x +2b -4-x 2>4-x 2恒成立,即3x +b >4-x 2恒成立,令y =3x +b ,y =4-x 2,则只要直线y =3x +b 在半圆x 2+y 2=4(y ≥0)上方即可,由|b |10>2,解得b >210(舍去负值),故实数b 的取值范围是(210,+∞).]。
高三数学课件:第二章 函数的概念与基本初等函数 2-10

如果小王某次停车 3 小时,缴费 24 元,请你判断小王该次停
车所在地区的类别是( )
A.一类
B.二类
C.三类
D.无法判断
[解析] 假设在一类区域,则停车 3 小时,应缴费 2.5×4+ 3.75×4×2=40(元),不符合;假设在二类区域,则应缴费 1.5×4 +2.25×4×2=24(元),符合;假设在三类区域,则应缴费 0.5×4 +0.75×4×2=8(元),不符合,故选 B.
在建立二次函数模型解决实际问题中的最值问题时,一定要 注意自变量的取值范围,需根据函数图象的对称轴与函数定义域 在坐标系中对应区间之间的位置关系讨论求解.
[跟踪演练] 某企业采用新工艺,把生产中排放的二氧化碳转化为一种可 利用的化工产品.已知该企业每月的处理量最少为 400 吨,最多 为 600 吨,月处理成本 y(元)与月处理量 x(吨)之间的函数关系可 近似地表示为 y=12x2-200x+80000,且每处理一吨二氧化碳得到 的化工产品的价值为 100 元. (1)该企业每月处理量为多少吨时,才能使每吨的平均处理成 本最低? (2)该企业每月能否获利?如果获利,求出最大利润;如果不 获利,则国家每月至少需要补贴多少元才能使该企业不亏损?
→
比较大小
→
下结论
[解] (1)当 x≤6 时,y=50x-115, 令 50x-115>0,解得 x≥2.3, ∵x 为整数,∴3≤x≤6. 当 x>6 时,y=[50-3(x-6)]x-115=-3x2+68x-115. 令-3x2+68x-115>0,有 3x2-68x+115<0,结合 x 为整数 得 6<x≤20.
考点三 分段函数模型——热考点 (2017·山西孝义二轮模考)为了迎接世博会,某旅游 区提倡低碳生活,在景区提供自行车出租,该景区有 50 辆自行车 供游客租赁使用,管理这些自行车的费用是每日 115 元.根据经 验,若每辆自行车的日租金不超过 6 元,则自行车可以全部租出; 若超出 6 元,则每超过 1 元,租不出的自行车就增加 3 辆.为了 便于结算,每辆自行车的日租金 x(元)只取整数,并且要求租自行 车一日的总收入必须高于这一日的管理费用,用 y(元)表示出租自 行车的日净收入(即一日中出租自行车的总收入减去管理费用后 得到的部分).
2020高考全国一轮数学理科 第二章 函数与基本初等函数

. - . - $!%若*$$%在
# !
"!
上的值域是
# !
"!
"求)的值(
! $# 函数*$$%% 123# !$"$&#"的值域为""""( !$"$'#
! %# 已知函数*$$%% $#!"$/'#""$"&""则满足不等式*$#&$!%*
*$!$%的$ 的取值范围是""""(
! &# 已知函数*$$%% ;!)&$$&&!#""$$+*"""$)是常数且)*"%"对于
&# 设*$$%是定义在-上的周期为,的周期函数"如图是该函 数在区间$&!"#-上的图象"则*$!"#8%/*$!"!"%等于 $""%
*$#/$%%*$#&$%"当&#+$+"时"*$$%%&$( $#%判断*$$%的奇偶性( $!%试求出函数*$$%在.&#"!-上的表达式(
'(," *(#"
区
间
$""#-上"*$$%%
# $
"求
*
#/
# #
/
$ % $ % *
!/
# !
/0/*
$/
# $
的值(
*$$%的解析式(
高考数学知识点总结 第二章函数概念与基本初等函数
第二章函数概念与基本初等函数知识点与方法1.函数解析式的求法主要有换元法和待定系数法等:利用函数的解析式研究问题时要特别注意分析自变量x与函数值y的关系,尤其要注意分段函数各段的自变量所对ƒ的解析式.已知函数解析式,计算有限个函数值的和.fl类问题一般都具有明显的规律,或者函数具有周期性,或者函数具有对称性(自变量具有某种关系,其函数值和fi定值).如£(x)=,求+的值(这$£(x)+£(1—x)=).².确定函数定义域的基本原则.(1)分式函数y=中,满足分母g(x)≠0.(²)偶次式y=(n∈N*)中,满足被开方式£(x)≥0.(3)对数函数y=log£(x)g(x)中,满足且£(x)≠1.(4)幂函数y=[£(x)]0中,满足£(x)≠0.(±)fl切函数y=tanx中,满足x≠kπ+(k∈Z).(6)在实际问题中考虑自变量的实际意义.3.函数值域(最值)的求法.(1)二次型函数——配方法.(²)©曲函数——均值н等式.(3)利用换元法转化fi二次型函数或©曲函数.(4)函数单调性法.(±)导数法.对于н等式恒成立、fl在性问题h要通过求函数最值的方法解决.4.判断函数单调性的方法.(1)定义法:一般地,设函数y=£(x)的定义域fiA,区间W⊆A,∀x1,x²∈W,(x1—x²)[£(x1)—£(x²)]>0⇔>0⇔£(x)在区间W L是增函数.若£(x)在区间W L fi增函数,x1, x²∈W,则有x1<x²⇔£(x1)<£(x²),减函数有类似结论.(注意:在涉þ到н等式的求解、证明等有关问题时可以考虑构造函数,利用函数单调性求解).(²)用已知函数单调性判断(下列函数都在¿共单调区间L): ķ增函数+增函数=增函数:ĸ减函数+减函数=减函数:③复合函数单调性:④奇(偶)函数在对称区间L的单调性相¼(相反).(3)借助图像判断函数单调性.(4)导数法:对可导函数£(x),x∈(a,b ),£′(x)≥0⇔£(x)在(a,b)L是增函数:£′(x)≤0⇔£(x)在(a,b)L 是减函数(其中导致导数fi0的点是孤立的).±.函数的奇偶性.(1)判定函数奇偶性的方法.函数具有奇偶性的必要条fl是定义域fi 关于原点对称的区间.判断函数奇偶性首先确定函数定义域.ķ定义法:∀x∈D£,£(x)±£(—x)=0: ĸ用已知函数奇偶性判定:(i)奇±奇=奇:偶±偶=偶:奇±偶=非奇非偶(非零函数): 奇×偶=奇:奇×奇=偶:偶×偶=偶.(ii)复合函数奇偶性,内偶则偶,两奇fi奇.③借助图像确定奇偶性.(²)奇偶函数的性质.ķ定义域含0的奇函数图像必过原点: ĸ奇函数若fl在最大(小)值,则它们的和fi0:③£(x)是偶函数,则有£(—x)=£(x)=£(|x|):④既奇又偶的函数的解析式必fi£(x)=0:⑤对于奇(偶)函数,已知y轴一侧的图像、解析式、单调性,能够确定y轴另一侧的图像、解析式、单调性.题目中出现x与—x的函数值问题,需考虑函数的奇偶性.(3)奇偶函数性质推广(对称性问题).已知函数£(x),x∈D.ķ满足£(a+x)=£(b—x)⇔£(x)关于直线x=对称, 特别地,£(—x)=£(x)⇔£(x)关于y轴(x=0)对称: ĸ满足£(a+x)=—£(b—x)⇔£(x)关于点,0 对称, 特别地,£(—x)=—£(x)⇔£(x)关于原点(0,0)中心对称:③函数y=£(x)与y=£(—x)的图像关于y轴对称:④函数y=£(x)与y=—£(x)的图像关于x轴对称:⑤函数y=£(a+x)与y=£(b—x)的图像关于x=对称. 6.函数的周期性.(1)定义:已知函数y=£(x),x∈D,若对任意x∈D,fl在非零fl 常数T,满足:ķ£(x+T)=£(x),周期fiT:ĸ£(x+T)=—£(x),周期fi²T:£(x+T)+£(x)=G,周期fi²T:③£(x+T)=±,周期fi²T:£(x+T)·£(x)=G(G≠0),周期FI²T:④£(x+T)=—£(x—T),周期fi4T:⑤£(x+T)+£(x—T)=£(x),周期fi6T.(²)对称性与周期性关系:若函数£(x)具有两个对称性(中心、轴)þ周期性三个性质中的两个,则必定具有第三个性质.例如:ķ若£(x)的图像关于直线x=a和x=b对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.ĸ若£(x)的图像关于点(a,0)和(b,0)对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.③若£(x)的图像关于直线x=aþ点(b,0)对称(a≠b),则£(x)是周期fi4|a—b|的周期函数.7.三个二次(一元二次方程、二次н等式、二次函数)间的问题可相互转化.如二次函数零点是相ƒ二次方程的,二次н等式的求解依赖于二次方程与二次函数的图像等.(1)一元二次方程.ķ判别式,求¿式, 与系数关系:ĸ的分布问题,要由判别式、对称轴、端点值三者确定.例如:(i)二次方程ax²+BX+G=0(A>0)两都大于k⇔(ii)一大于k,一小于k⇔£(k)<0.(²)二次函数的三种表现形式. y=ax²+bx+G=a(x—m)²+n=a (x—x1)(x—x²)(a≠0),其中(m,n)是顶点,x1,x²fi零点.对于限定区间L的二次函数最值要注意对称轴与区间的ƒ置关系.(3)一元二次н等式解法依赖于相ƒ方程与二次函数图像.(4)对于二次函数£(x)=ax²+bx+G,若£(x1 )=£(x²), x1≠x²,则x1+x²=—.8.关于幂、指数、对数函数问题.(1)幂函数£(x)=xα在第一象限的图像如图1—3所示,单调性fi:当α>0时,函数£(x)在(0,+∞)Lfi增函数:当α<0时,函数£(x)在(0,+∞)Lfi减函数.图1-3(²)指数与对数.a b=N⇔b=log a N(a>0,a≠1),a log a N=N,log a a b=b,=,log a m b n=log a b.(3)指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0, a≠1).ķ互fi反函数: ĸ定义域、值域之间的关系fl好相反:③单调性:在各自定义域L,当0<a<1时,均fi减函数:当a>1 时,均fi增函数.(4)以各自的䘀算规则fi模型的抽象函数的表示法.ķ幂函数:£(xy)=£(x)£(y),£=(y≠0,£(y)≠0),£(1)=1:ĸ指数函数:£(x+y)=£(x)·£(y),£(x—y)=,£(0)=1:③对数函数:£(x y)=£(x)+£(y),£=£(x)—£(y),£(1)=0.(±)会画y=a|x|,y=log a|x|,y=|log a x|(a>0,a≠1)的图像.9.图像问题.(1)注意以下两个函数图像.ķ形如y=的函数能变fi形如y=n±的函数,其图像是关于点(m,n)对称的反比例函数图像:ĸ形如y=ax+ 的“©曲函数”,若ab>0,则fi“对勾函数”: 若ab<0,则fi单调函数.(²)图像变换.ķᒣ移变换:ĸ伸缩变换:③对称变换:函数y=£(—x)的图像与函数y=£(x)的图像关于y轴对称.函数y=—£(x)的图像与函数y=£(x)的图像关于x轴对称.函数y=—£(—x)的图像与函数y=£(x)的图像关于原点对称.④翻折变换:y=£(|x|)与y=£(x)之间的关系,y=£(x)与y=£(x)之间的关系.(3)研究问题方法.会由图像特征研究函数性质,能用性质描函数图像,养成用图像、性质分析思考问题,即数形结合思想解题的习惯.查漏补缺1. 函数是数集到数集的特殊映射,其对应法则必须满足自变量在定义域内的任意性,函数值的唯一性例8 已知集合A=(1,²,3,…,²3),求证:нfl在这fi的函数£:A→(1,²,3),使得对任意的整数x1,x²∈A,若|x1—x²|∈(1,²,3),则£(x1)≠£(x²).变式1 函数y=£(x)的图像与直线x=a(a∈R)的交点个数fi ().A.0B.1 C.0或 1 D.可多于12. 结合函数图像研究函数性质如图1—4所示,以函数fi核心,其核心内容包括函数的图像与性质,函数的图像包括基本初等函数的图像的作法þ图像变换,函数的性质主要包括函数的定义域、解析式、值域、奇偶性、单调性、周期性, 对称性þ特殊点.函数知识的外延主要体现在函数与方程(函数零点)þ函数与н等式的结合.而函数与方程(函数零点)þ函数与н等式问题可通过转化思想,利用函数图像与性质求解.图1-4例9 关于x的方程(x—a)(x—b)=²(a<b)的两实fiα, β,且α<β,试比较α,β,a,b的大小.变式1 已知函数£(x)=,若£(²—a²)>£(a),则实数a的ᒣ值范围是().(—1,²)A.(—∞,—1)∪(²,+∞) B.C.(—²,1)D.(—∞,—²)∪(1,+∞)3. 已知函数的解析式研究函数的性质给出函数的解析式,常常需要¼学们能够有意识地通过函数的解析式来研究函数的性质,如函数的奇偶性、单调性、周期性þ函数值的分布等,进而解决函数的有关问题.已知函数£(x)=x²—GOSX,对于L的任意x1 ,x²,有如下条fl:ķx1>x²:ĸ>:③|x1|>x²,其中能使£(x1 )>£(x²)恒成立的条fl序号是.4. 构造函数的解析式研究函数的性质看似与函数无关的问题,如果我们能够分析其本质特点,引入变量并根据其模型构造函数,利用函数性质求解.这才是函数的真正魅力例10 若α,β∈,且αsinα—βsinβ>0,则下列结论fl确的是().A.α>βB.α+β>0C.α<βD.α²>β²变式1 比较, ,ln 这三个实数的大小,并说明理由.变式2 比较, , 的大小.。
2020版高考数学一轮复习第2章函数概念与基本初等函数9第9讲函数模型及其应用教案理
第9讲函数模型及其应用1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同判断正误(正确的打“√”,错误的打“×”)(1)幂函数增长比一次函数增长更快.( )(2)在(0,+∞)内,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=xα(α>0)的增长速度.( )(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.( )(4)不存在x0,使ax0<x n0<log a x0.( )答案:(1)×(2)√(3)√(4)×(教材习题改编)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的( )答案:B生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( ) A .36万件 B .18万件 C .22万件D .9万件解析:选B.设利润为L (x ),则利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18 时,L (x )有最大值.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行驶千米数x (km)之间的函数关系式是________. 解析:由题意可得y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100.答案:y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100(教材习题改编)某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x 为8万元时,奖励1万元.销售额x 为64万元时,奖励4万元.若公司拟定的奖励模型为y =a log 4x +b .某业务员要得到8万元奖励,则他的销售额应为________万元.解析:依题意得⎩⎪⎨⎪⎧a log 48+b =1a log 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4.解得a =2,b =-2. 所以y =2log 4x -2,当y =8时,即2log 4x -2=8.x =1 024(万元).答案:1 024一次函数与二次函数模型(高频考点)高考对函数应用的考查,常与二次函数、基本不等式及导数等知识交汇,以解答题为主要形式出现.高考对一次函数、二次函数模型的考查主要有以下两个命题角度:(1)单一考查一次函数或二次函数模型的建立及最值问题;(2)以分段函数的形式考查一次函数和二次函数.[典例引领]角度一单一考查一次函数或二次函数模型的建立及最值问题某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A.10.5万元B.11万元C.43万元D.43.025万元【解析】该公司在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1(x-212)2+0.1×2124+32.因为x∈[0,16]且x∈N,所以当x=10或11时,总利润取得最大值43万元,故选C.【答案】 C角度二以分段函数的形式考查一次函数和二次函数(2018·山西孝义二轮模考)为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?【解】(1)当x≤6时,y=50x-115,令50x-115>0,解得x≥2.3,因为x为整数,所以3≤x≤6.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x2+68x-115>0,有3x2-68x+115<0,结合x为整数得6<x≤20.故y =⎩⎪⎨⎪⎧50x -115(3≤x ≤6,x ∈Z )-3x 2+68x -115(6<x ≤20,x ∈Z ). (2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185,对于y =-3x 2+68x -115=-3⎝⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.一次函数、二次函数及分段函数模型的选取与应用策略(1)在实际问题中,若两个变量之间的关系是直线上升或直线下降或图象为直线(或其一部分),一般构建一次函数模型,利用一次函数的图象与性质求解.(2)实际问题中的如面积问题、利润问题、产量问题或其图象为抛物线(或抛物线的一部分)等一般选用二次函数模型,根据已知条件确定二次函数解析式.结合二次函数的图象、最值求法、单调性、零点等知识将实际问题解决.(3)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.但应关注以下两点: ①构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏; ②分段函数的最值是各段的最大(或最小)值中的最大(或最小)值. [提醒] (1)构建函数模型时不要忘记考虑函数的定义域.(2)对构建的较复杂的函数模型,要适时地用换元法转化为熟悉的函数问题求解.[通关练习]1.某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A .上午10:00B .中午12:00C .下午4:00D .下午6:00解析:选C.当x ∈[0,4]时,设y =k 1x , 把(4,320)代入,得k 1=80,所以y =80x .当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)分别代入可得⎩⎪⎨⎪⎧k 2=-20,b =400.所以y =400-20x .所以y =f (x )=⎩⎪⎨⎪⎧80x ,0≤x ≤4,400-20x ,4<x ≤20.由y ≥240,得⎩⎪⎨⎪⎧0≤x ≤4,80x ≥240或⎩⎪⎨⎪⎧4<x ≤20,400-20x ≥240. 解得3≤x ≤4或4<x ≤8,所以3≤x ≤8. 故第二次服药最迟应在当日下午4:00.2.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段.已知跳水板AB 的长为2 m ,跳水板距水面CD 的高BC 为3 m .为安全和空中姿态优美,训练时跳水曲线应在离起跳点A 处水平距离h m(h ≥1)时达到距水面最大高度4 m .规定:以CD 为横轴,BC 为纵轴建立直角坐标系.(1)当h =1时,求跳水曲线所在抛物线的方程;(2)若跳水运动员在区域EF 内入水时才能达到比较好的训练效果,求此时h 的取值范围. 解:由题意知抛物线的最高点为(2+h ,4),h ≥1,故设抛物线的方程为y =a [x -(2+h )]2+4.(1)当h =1时,最高点为(3,4),方程为y =a (x -3)2+4.将A (2,3)代入,得3=a (2-3)2+4,解得a =-1.所以当h =1时,跳水曲线所在抛物线的方程为y =-(x -3)2+4.(2)将A (2,3)代入y =a [x -(2+h )]2+4,整理得ah 2=-1.① 由题意,方程a [x -(2+h )]2+4=0在区间[5,6]内有一解. 由①得,y =f (x )=a [x -(2+h )]2+4=-1h2[x -(2+h )]2+4,则⎩⎪⎨⎪⎧f (5)=-1h 2(3-h )2+4≥0,f (6)=-1h2(4-h )2+4≤0,解得1≤h ≤43.故达到较好的训练效果时h 的取值范围是[1,43].函数y =x +a x(a >0)模型[典例引领]小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? 【解】 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝⎛⎭⎪⎫6x +100x-38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值L (6)=9万元,当x ≥8时,L (x )=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15,此时,当且仅当x =100x,即x =10时,L (x )取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.应用函数y =x +a x(a >0)模型的关键点(1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的.(2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数解析式转化为f (x )=ax +b x的形式.[提醒] (1)解决此类问题时一定要关注函数的定义域.(2)利用模型f (x )=ax +b x求解最值时,注意取得最值时等号成立的条件.某村计划建造一个室内面积为800 m 2的矩形蔬菜温室,在矩形温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少? 解:设矩形温室的左侧边长为x m ,则后侧边长为800xm ,所以蔬菜种植面积y =(x -4)⎝ ⎛⎭⎪⎫800x -2=808-2⎝ ⎛⎭⎪⎫x +1 600x (4<x <400).因为x +1 600x≥2x ·1 600x=80,所以y ≤808-2×80=648.当且仅当x =1 600x ,即x =40时取等号,此时800x=20,y max =648 m 2.即当矩形温室的边长各为40 m ,20 m 时,蔬菜的种植面积最大,最大面积是648 m 2.指数、对数函数模型[典例引领](1)(2016·高考四川卷)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元.在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年D .2021年(2)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.【解析】 (1)设经过x 年后该公司全年投入的研发资金开始超过200万元,则130(1+12%)x >200,即1.12x>21.3⇒x >lg21.3lg 1.12=lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,所以该公司全年投入的研发资金开始超过200万元的年份是2019年. (2)M =lg 1 000-lg 0.001=3-(-3)=6.设9级地震的最大振幅和5级地震的最大振幅分别为A 1,A 2,则9=lg A 1-lg A 0=lg A 1A 0,则A 1A 0=109, 5=lg A 2-lg A 0=lg A 2A 0,则A 2A 0=105,所以A 1A 2=104. 即9级地震的最大振幅是5级地震最大振幅的10 000倍. 【答案】 (1)B (2)6 10 000指数型、对数型函数模型(1)在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N (1+p )x(其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.(2)有关对数型函数的应用题,一般都会给出函数解析式,要求根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据值回答其实际意义.(2018·湛江模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一. 解析:当t =0时,y =a ; 当t =8时,y =ae-8b=12a ,故e -8b=12. 当容器中的沙子只有开始时的八分之一时,即y =ae-bt=18a ,e -bt =18=(e -8b )3=e -24b,则t =24,所以再经过16 min 容器中的沙子只有开始时的八分之一. 答案:16解决实际应用问题的四大步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:“对勾”函数的性质 函数f (x )=x +a x(a >0).(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.(2)当x >0时,x =a 时取最小值2a ; 当x <0时,x =-a 时取最大值-2a . 易错防范(1)易忽视实际问题的自变量的取值范围,需合理确定函数的定义域.(2)注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.1.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把图形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( )解析:选D.因为左侧部分面积为y ,随x 的变化而变化,最初面积增加得快,后来均匀增加,最后缓慢增加,只有D 选项适合.2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如表:x 0.50 0.99 2.01 3.98 y-0.99-0.010.982.00A .y =2xB .y =x 2-1 C .y =2x -2D .y =log 2x解析:选D.根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量为( )A .240吨B .200吨C .180吨D .160吨解析:选B.依题意,得每吨的成本为y x =x 10+4 000x -30,则yx ≥2x10·4 000x-30=10, 当且仅当x 10=4 000x, 即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.(2018·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( ) A .8 B .9 C .10D .11解析:选C.设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n<11 000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油 解析:选D.根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A 错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B 错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C 错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D 对. 6.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成矩形的最大面积为________.(围墙厚度不计) 解析:设矩形的长为x m ,宽为200-x4m ,则S =x ·200-x 4=14(-x 2+200x ).当x =100时,S max =2 500 m 2. 答案:2 500 m 27.(2018·上海宝山区模拟)王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地话费以分为计费单位,长途话费以秒为计费单位)网络 月租费 本地话费 长途话费 甲:联通130 12元 0.36元/分 0.06元/秒 乙:移动“神州行”无0.60元/分0.07元/秒________秒长途电话才合算.解析:设王先生每月拨打长途电话的时间为x 分钟,所需话费为y 元,若使用联通130,则所需话费y 元与通话时间x 分钟的函数关系式为y =12+0.36×5x +3.6x =5.4x +12;若使用移动“神州行”,则所需话费y 元与通话时间x 分钟的函数关系式为y =0.6×5x +4.2x =7.2x .若用联通130合算,则5.4x +12≤7.2x ,解得x ≥203(分钟)=400(秒).答案:4008.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).解析:当0<x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *).当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润.答案:y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *) 169.A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度. (1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)x 的取值范围为10≤x ≤90. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝ ⎛⎭⎪⎫x -10032+50 0003,所以当x =1003时,y min =50 0003.故核电站建在距A 城1003km 处,能使供电总费用y 最少.10.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1)每套丛书售价定为100元时,书商所获得的总利润是多少万元?(2)每套丛书售价定为多少元时,单套丛书的利润最大?解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),所以每套丛书的供货价格为30+105=32(元),故书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0,得0<x <150.设单套丛书的利润为P 元,则P =x -(30+1015-0.1x )=x -100150-x-30,因为0<x <150,所以150-x >0,所以P =-[(150-x )+100150-x]+120,又(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x ,即x =140时等号成立,所以P max =-20+120=100.故每套丛书售价定为140元时,单套丛书的利润最大,为100元.1.已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( )A .40万元B .60万元C .120万元D .140万元解析:选C.甲6元时该商人全部买入甲商品,可以买120÷6=20(万份),在t 2时刻全部卖出,此时获利20×2=40(万元),乙4元时该商人买入乙商品,可以买(120+40)÷4=40(万份),在t 4时刻全部卖出,此时获利40×2=80(万元),共获利40+80=120(万元),故选C. 2.我们定义函数y =[x ]([x ]表示不大于x 的最大整数)为“下整函数”;定义y ={x }({x }表示不小于x 的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x 小时,则李刚应付费为(单位:元)( )A .2[x +1]B .2([x ]+1)C .2{x }D .{2x }解析:选C.如x =1时,应付费2元,此时2[x +1]=4,2([x ]+1)=4,排除A ,B ;当x =0.5时,付费为2元,此时{2x }=1排除D ,故选C.3.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =ekx +b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在 0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时. 解析:由已知条件,得192=e b, 所以b =ln 192.又因为 48=e22k +b=e22k +ln 192=192e 22k =192(e 11k )2,所以e 11k=(48192)12=(14)12=12.设该食品在33 ℃的保鲜时间是t 小时,则t =e 33k +ln 192=192e 33k =192(e 11k )3=192×(12)3=24.答案:244.某超市2017年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型.①f (x )=p ·q x(q >0,q ≠1); ②f (x )=log p x +q (p >0,p ≠1); ③f (x )=x 2+px +q .(1)能较准确反映超市月销售额f (x )与月份x 关系的函数模型为________. (2)若所选函数满足f (1)=10,f (3)=2,则f (x )min =________.解析:(1)因为f (x )=pq x ,f (x )=log p x +q 是单调函数,f (x )=x 2+px +q 中,f ′(x )=2x +p ,令f ′(x )=0,得x =-12p ,f (x )有一个零点,可以出现一个递增区间和一个递减区间,所以应选③f (x )=x 2+px +q 模拟函数. (2)因为f (1)=10,f (3)=2,所以⎩⎪⎨⎪⎧1+p +q =10,9+3p +q =2,解得,p =-8,q =17,所以f (x )=x 2-8x +17=(x -4)2+1,所以f (x )min =f (4)=1. 答案:(1)③ (2)15.声强级Y (单位:分贝)由公式Y =10lg ⎝⎛⎭⎪⎫I 10-12给出,其中I 为声强(单位:W/m 2). (1)平常人交谈时的声强约为10-6W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7W/m 2,问这两位同学是否会影响其他同学休息?解:(1)当声强为10-6W/m 2时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得Y =10lg ⎝ ⎛⎭⎪⎫10-610-12=10lg 106=60(分贝).(2)当Y =0时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得10lg ⎝⎛⎭⎪⎫I 10-12=0.所以I10-12=1,即I =10-12W/m 2,则最低声强为10-12W/m 2.(3)当声强为5×10-7W/m 2时,声强级Y =10lg ⎝ ⎛⎭⎪⎫5×10-710-12=10lg (5×105)=50+10lg 5,因为50+10lg 5>50,所以这两位同学会影响其他同学休息.6.某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是[10,100](单位:万元).现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加且资金不超过5万元,同时资金不超过投资收益的20%. (1)若建立函数模型y =f (x )制定奖励方案,请你根据题意,写出奖励函数模型应满足的条件;(2)现有两个奖励函数模型:(ⅰ)y =120x +1;(ⅱ)y =log 2x -2.试分析这两个函数模型是否符合公司要求. 解:(1)设奖励函数模型为y =f (x ), 则该函数模型满足的条件是:①当x ∈[10,100]时,f (x )是增函数; ②当x ∈[10,100]时,f (x )≤5恒成立. ③当x ∈[10,100]时,f (x )≤x5恒成立.(2)(a)对于函数模型(ⅰ)y =120x +1, 它在[10,100]上是增函数,满足条件①;但当x =80时,y =5,因此,当x >80时,y >5,不满足条件②; 故该函数模型不符合公司要求.(b)对于函数模型(ⅱ)y =log 2x -2,它在[10,100]上是增函数,满足条件①,x =100时,y max =log 2100-2=2log 25<5,即f (x )≤5恒成立.满足条件②,设h (x )=log 2x -2-15x ,则h ′(x )=log 2e x -15,又x ∈[10,100], 所以1100≤1x ≤110,所以h ′(x )<log 2e 10-15<210-15=0,所以h (x )在[10,100]上是递减的,因此h (x )<h (10)=log 210-4<0,即f (x )≤x5恒成立,满足条件③,故该函数模型符合公司要求.综上所述,函数模型(ⅱ)y =log 2x -2符合公司要求.关于函数y =ax +b x(a ≠0,b ≠0)性质的推广 关于函数y =ax +b x(a ≠0且b ≠0)性质的讨论.当a >0,b >0时[特例] 当a =b =1时,函数化为f (x )=x +1x.①定义域为(-∞,0)∪(0,+∞).②奇偶性:f (-x )=-x +1-x=-⎝⎛⎭⎪⎫x +1x =-f (x ),函数为奇函数.之后只需讨论x >0时的情况.当x >0时,③单调性:Δy =x 2-x 1x 1x 2(x 1x 2-1),令x 1=x 2=x ,x 1x 2-1=0,解得x =1,当0<x 1<x 2<1时,f (x )为减函数;当1<x 1<x 2时,f (x )为增函数.④渐近线:当x →0+时,y →1x;当x →+∞时,y →x +.⑤作出函数图象,如图1.⑥值域:当x =1时,f (x )有最小值2,值域为(2,+∞).[推广] y =ax +bx.①定义域为(-∞,0)∪(0,+∞).②奇偶性:f (-x )=-⎝ ⎛⎭⎪⎫ax +b x =-f (x ),函数为奇函数.当x >0时,③单调性:Δy =ax 2+b x 2-ax 1-b x 1=x 2-x 1x 1x 2·(ax 1x 2-b ),令x 1=x 2=x ,ax 1x 2-b =0解得x =ab a ,当0<x 1<x 2<ab a 时,f (x )为减函数;当aba<x 1<x 2时,f (x )为增函数.④渐近线:当x →0+时,y →bx;当x →+∞时,y →ax +.⑤图象略.⑥值域:当x =ab a 时,f (x )=a ab a +ab ab=2ab ,即为最小值2ab ,值域为()2ab ,+∞.当a <0,b <0时此情况与情况1基本相同,作出函数图象,如图2.设函数为f (x )=-ax -bx(此时a >0,b >0)①定义域为(-∞,0)∪(0,+∞).②奇偶性:f (-x )=-f (x ),函数为奇函数.当x >0时,③单调性:Δy =x 1-x 2x 1x 2(ax 1x 2-b ),同情况1,x =ab a ,得f (x )在⎝⎛⎭⎪⎫0,ab a 上为增函数,在⎝⎛⎭⎪⎫ab a ,+∞上为减函数.④渐近线:当x →0+时,y →-b x ;当x →+∞时,y →-ax +.⑤图象略.⑥值域:当x =ab a 时,f (x )=-a ab a -abab=-2ab ,即为最大值-2ab ,值域为()-∞,-2ab . 当a >0,b <0时[特例] 当a =1,b =-1时,函数化为f (x )=x -1x.①定义域为(-∞,0)∪(0,+∞).②奇偶性:f (-x )=-⎝ ⎛⎭⎪⎫x -1x =-f (x ),函数为奇函数.当x >0时,③单调性:Δy =x 2-x 1x 1x 2(x 1x 2+1),得Δy >0,f (x )为增函数.④渐近线:当x →0+时,y →-1x;当x →+∞时y →x +.⑤作出函数图象,如图3.⑥值域为(-∞,+∞).[推广] 改函数为f (x )=ax -b x(此时b >0).①定义域为(-∞,0)∪(0,+∞).②奇偶性:f (-x )=-⎝⎛⎭⎪⎫ax -b x=-f (x ),函数为奇函数.当x >0时,③单调性:Δy =x 2-x 1x 1x 2(ax 1x 2+b ),得Δy >0,f (x )为增函数.④渐近线:当x →0+时,y →-b x;当x →+∞时,y →ax +.⑤图象略.⑥值域为(-∞,+∞).当a <0,b >0时此情况与情况3基本相同,作出函数图象,如图4.设函数为f (x )=-ax +bx(此时a >0).①定义域为(-∞,0)∪(0,+∞).②奇偶性:f (-x )=-f (x ),函数为奇函数.③单调性:Δy =x 1-x 2x 1x 2·(ax 1x 2+b )(x >0),得Δy <0,f (x )为减函数.④渐近线:当x →0+时,y →bx;当x →+∞时,y →-ax +.⑤图象略.⑥值域为()-∞,+∞.1.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把图形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( )解析:选D.因为左侧部分面积为y ,随x 的变化而变化,最初面积增加得快,后来均匀增加,最后缓慢增加,只有D 选项适合.2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如表:x 0.50 0.99 2.01 3.98 y-0.99-0.010.982.00A .y =2xB .y =x 2-1 C .y =2x -2D .y =log 2x解析:选D .根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量为( )A .240吨B .200吨C .180吨D .160吨解析:选B.依题意,得每吨的成本为y x =x 10+4 000x -30,则yx ≥2x10·4 000x-30=10, 当且仅当x 10=4 000x, 即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.(2018·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( ) A .8 B .9 C .10D .11解析:选C.设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n<11 000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油 解析:选D .根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A 错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B 错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C 错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D 对. 6.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成矩形的最大面积为________.(围墙厚度不计) 解析:设矩形的长为x m ,宽为200-x 4m ,则S =x ·200-x 4=14(-x 2+200x ).当x =100时,S max =2 500 m 2. 答案:2 500 m 27.(2018·上海宝山区模拟)王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地话费以分为计费单位,长途话费以秒为计费单位)。
2019-2020年高考数学总复习 第二章 函数概念与基本初等函数 第9讲 函数模型及其应用
2019-2020年高考数学总复习第二章函数概念与基本初等函数第9讲函数模型及其应用最新考纲 1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.知识梳理几类函数模型及其增长差异(1)几类函数模型函数模型函数解析式一次函数型f(x)=ax+b(a,b为常数,a≠0)反比例函数型f(x)=kx+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数型f(x)=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数型f(x)=b log a x+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数型f(x)=ax n+b(a,b为常数,a≠0)函数性质Y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞) 上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)函数y=2x的函数值比y=x2的函数值大.(×)(2)“指数爆炸”是指数型函数y=ab x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.(×)(3)幂函数增长比直线增长更快.(×)(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g (x ).(√)2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( )解析 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除 A.因交通堵塞停留了一段时间,与学校的距离不变,排除D.后来为了赶时间加快速度行驶,排除B.故选C.答案 C3.(xx·深圳模拟)用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A .3B .4C .6D .12解析 设隔墙的长为x (0<x <6),矩形面积为y ,则y =x ×24-4x 2=2x (6-x )=-2(x -3)2+18,∴当x =3时,y 最大.答案 A4.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1 个病毒能繁殖为________个.解析 当t =0.5时,y =2,∴2=e 12k ,∴k =2ln 2, ∴y =e 2t ln 2,当t =5时,y =e 10ln 2=210=1 024. 答案 2ln 2 1 0245.(人教A 必修1P104例5改编)某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表所示:销售单价/元 6 7 8 9 10 11 12 日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部为获得最大利润,定价应为________元. 解析 设在进价基础上增加x 元后,日均销售利润为y 元, 日均销售量为480-40(x -1)=520-40x (桶), 则y =(520-40x )x -200=-40x 2+520x -200,0<x <13.当x =6.5时,y 有最大值.所以只需将销售单价定为11.5元,就可获得最大的利润. 答案 11.5考点一 二次函数模型【例1】 A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解 (1)x 的取值范围为10≤x ≤90. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003,所以当x =1003时,y min =50 0003.故核电站建在距A 城1003km 处,能使供电总费用y 最少. 规律方法 在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域的位置关系讨论求解.【训练1】 (xx·武汉高三检测)某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+0.1×2124+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.答案 C考点二 指数函数、对数函数模型【例2】 (xx·青岛模拟)世界人口在过去40年翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( )A .1.5%B .1.6%C .1.7%D .1.8%解析 设每年人口平均增长率为x ,则(1+x )40=2,两边取以10为底的对数,则40 lg(1+x )=lg 2,所以lg(1+x )=lg 240≈0.007 5,所以100.007 5=1+x ,得1+x =1.017,所以x =1.7%.答案 C规律方法 在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N (1+p )x (其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.【训练2】 某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况解析 设该股民购这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.答案 B考点三 分段函数模型【例3】 某旅游景点预计xx 年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x x ∈N *,且1≤x ≤6,160xx ∈N *,且7≤x ≤12. (1)写出xx 年第x 个月的旅游人数f (x )(单位:人)与x 的函数关系式; (2)试问xx 年第几个月旅游消费总额最大?最大月旅游消费总额为多少元? 解 (1)当x =1时,f (1)=p (1)=37, 当2≤x ≤12,且x ∈N *时, f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x )=-3x 2+40x , 验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12). (2)第x 个月旅游消费总额为g (x )=⎩⎪⎨⎪⎧-3x 2+40x 35-2x x ∈N *,且1≤x ≤6,-3x 2+40x ·160x x ∈N *,且7≤x ≤12, 即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x x ∈N *,且1≤x ≤6,-480x +6 400 x ∈N *,且7≤x ≤12.①当1≤x ≤6,且x ∈N *时, g ′(x )=18x 2-370x +1 400, 令g ′(x )=0,解得x =5或x =1409(舍去). 当1≤x <5时,g ′(x )>0, 当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125(万元).②当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数,∴当x =7时,g (x )max =g (7)=3 040(万元).综上,xx 年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.规律方法 (1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.【训练3】 某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.可以享受折扣优惠金额 折扣率 不超过500元的部分 5% 超过500元的部分10%某人在此商场购物总金额为x 元,可以获得的折扣金额为y 元,则y 关于x 的解析式为 y =⎩⎪⎨⎪⎧0,0<x ≤800,5%x -800,800<x ≤1 300,10%x -1 300+25,x >1 300.若y =30元,则他购物实际所付金额为________元.解析若x=1 300元,则y=5%(1 300-800)=25(元)<30(元),因此x>1 300.∴由10%(x-1 300)+25=30,得x=1 350(元).答案 1 350[思想方法]解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题的意义.以上过程用框图表示如下:[易错防范]1.解应用题思路的关键是审题,不仅要明白、理解问题讲的是什么,还要特别注意一些关键的字眼(如“几年后”与“第几年后”),学生常常由于读题不谨慎而漏读和错读,导致题目不会做或函数解析式写错,故建议复习时务必养成良好的审题习惯.2.在解应用题建模后一定要注意定义域,建模的关键是注意寻找量与量之间的相互依赖关系.3.解决完数学模型后,注意转化为实际问题写出总结答案.基础巩固题组(建议用时:40分钟)一、选择题1.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是()x45678910y15171921232527A.幂函数模型C.指数函数模型D.对数函数模型解析根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.答案A2.(xx·合肥调研)某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t (年)的函数关系图象正确的是( )解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图象符合要求,而后3年年产量保持不变,故选A.答案 A3.(xx·北京东城期末)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为( )A .10B .11C .13D .21解析 设该企业需要更新设备的年数为x ,设备年平均费用为y ,则x 年后的设备维护费用为2+4+…+2x =x (x +1),所以x 年的平均费用为y =100+0.5x +x x +1x =x +100x +1.5,由基本不等式得y =x +100x+1.5≥2 x ·100x +1.5=21.5,当且仅当x =100x,即x =10时取等号,所以选A.答案 A4.(xx·孝感模拟)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )解析 由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应逐渐增大,故函数的图象应一直是下凹的,故选B.答案 B5.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元D .403元解析 设A 种方式对应的函数解析式为s =k 1t +20, B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10.答案 A 二、填空题6.(xx·江西六校联考)A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km h ,B 的速度是 16 km h ,经过________小时,AB 间的距离最短.解析 设经过x h ,A ,B 相距为y km , 则y =145-40x 2+16x 2(0≤x ≤298),求得函数的最小值时x 的值为258. 答案2587.(xx·长春模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为 y =a e-bt(cm 3),经过 8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.解析 当t =0时,y =a ,当t =8时,y =a e -8b=12a , ∴e-8b=12,容器中的沙子只有开始时的八分之一时, 即y =a e-bt=18a ,e -bt =18=(e -8b )3=e -24b , 则t =24,所以再经过16 min. 答案 168.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400.答案 20三、解答题9.(xx·郑州模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解 (1)每吨平均成本为y x(万元). 则y x =x 5+8 000x -48≥2 x 5·8 000x-48=32, 当且仅当x 5=8 000x,即x =200时取等号. ∴年产量为200吨时,每吨平均成本最低为32万元.(2)设年获得总利润为R (x )万元.则R (x )=40x -y =40x -x 25+48x -8 000 =-x 25+88x -8 000 =-15(x -220)2+1 680(0≤x ≤210). ∵R (x )在[0,210]上是增函数,∴x =210时,R (x )有最大值为-15(210-220)2+1 680=1 660. ∴年产量为210吨时,可获得最大利润1 660万元.10.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P (元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?解 设该店月利润余额为L 元,则由题设得L =Q (P -14)×100-3 600-2 000,由销量图易得Q =⎩⎪⎨⎪⎧ -2P +50 14≤P ≤20,-32P +40 20<P ≤26, 代入①式得L =⎩⎪⎨⎪⎧-2P +50P -14×100-5 600 14≤P ≤20,⎝⎛⎭⎫-32P +40P -14×100-5 60020<P ≤26, (1)当14≤P ≤20时,L max =450元,此时P =19.5元;当20<P ≤26时,L max =1 2503元,此时P =613元. 故当P =19.5元时,月利润余额最大,为450元.(2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20.即最早可望在20年后脱贫.能力提升题组(建议用时:25分钟)11.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种为加密密钥密码系统(Private Key Cryptosystem),其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文(解密).现在加密密钥为y =kx 3,如“4”通过加密后得到密文“2”,若接受方接到密文“1256”,则解密后得到的明文是( ) A.12 B .14 C .2 D .18解析 由题目可知加密密钥y =kx 3是一个幂函数型,由已知可得,当x =4时,y =2,即2=k ×43,解得k =243=132.故y =132x 3,显然令y =1256,则1256=132x 3,即x 3=18,解得x =12. 答案 A12.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14解析 由三角形相似得24-y 24-8=x 20.得x =54(24-y ), ∴S =xy =-54(y -12)2+180, ∴当y =12时,S 有最大值,此时x =15.答案 A 13.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤ 20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).解析 当0<x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *). 当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润.答案 y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *) 16 14.已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律:θ=m ·2t +21-t (t ≥0,并且m >0).(1)如果m =2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m 的取值范围.解 (1)若m =2,则θ=2·2t +21-t =2⎝⎛⎭⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x ≥1,则x +1x =52, 即2x 2-5x +2=0,解得x =2或x =12(舍去), 此时t =1.所以经过1分钟,物体的温度为5摄氏度.(2)物体的温度总不低于2摄氏度,即θ≥2恒成立.亦m ·2t +22t ≥2恒成立,亦即m ≥2⎝⎛⎭⎫12t -122t 恒成立. 令12t =x ,则0<x ≤1,∴m ≥2(x -x 2),由于x -x 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎡⎭⎫12,+∞. .。
2020年高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数(附解析)
第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发. (2)如果函数y =f (x )是用表格给出,则表格中x 的集合即为定义域.(3)如果函数y =f (x )是用图象给出,则图象在x 轴上的投影所覆盖的x 的集合即为定义域. (2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. (3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出; (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5,所以⎩⎪⎨⎪⎧ 4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式. (4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________. 解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).答案:lg 2x -1(x >1)3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值; (2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________. 解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0;若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x>1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1,解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f(x)单调递减,g(x)单调递减,则f(x)+g(x)是减函数;(3)函数f(x)单调递增,g(x)单调递减,则f(x)-g(x)是增函数;(4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反; (7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.考点一 确定函数的单调性(区间))[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性. (3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax(a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值))[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52(3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4,即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________. 解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减, 所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3, 又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数.所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2=(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; (2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( ) A .(2,+∞) B .(-∞,2) C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数, 所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性偶函数奇函数定义如果对于函数f (x )的定义域内任意一个x都有f (-x )=f (x )❷,那么函数f (x )是偶函数都有f (-x )=-f (x )❷,那么函数f (x )是奇函数 图象特征关于y 轴对称关于原点对称函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次. (2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |). (2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性. (3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0).(2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称. (2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称. (3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( ) A .-2x B .2-x C .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x +1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( ) A .2 B .4 C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________. 解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1. 答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________.解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14. 答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x =-ln 1-x1+x =-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y 轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章第9讲
一、选择题
1.已知函数f(x)=x2-ax-b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是( )
A.-1和-2 B.1和2
C.1
2
和
1
3
D.-
1
2
和-
1
3
[解析] 方程f(x)=0的解为2和3,由根与系数关系(或直接代入)求得a=5,b=-6,
∴g(x)=-6x2-5x-1,由g(x)=0解得x的值为-1
2
和-
1
3
.故选D.
[答案] D
2.函数f(x)=x3-2x2-x+2的零点个数为( )
A.0 B.1
C.2 D.3
[解析] f(x)=x2(x-2)-(x-2)
=(x-2)(x2-1),
∴f(x)有三个零点1,-1,2,故选D.
[答案] D
3.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:
f(1)=-2f(1.5)=0.625f(1.25)=-0.984 f(1.375)=-0.260f(1.4375)=0.162f(1.40625)=-0.054 32
A.1.2 B.1.3
C.1.4 D.1.5
[解析] ∵f(1.40625)·f(1.4375)<0.
且|1.40265-1.4375|=0.03485<0.1
∴方程x3+x2-2x-2=0的一个近似根为1.4,故选C.
[答案] C
4.函数f (x )=x 2-2x
的零点个数是( ) A .3个 B .2个 C .1个
D .0个
[解析] 由于f (-1)=1-2-1
=12>0,又f (0)=0-1<0,则在区间(-1,0)内有1个零
点;又f (2)=22
-22
=0,f (4)=42
-24
=0,故有3个零点.
[答案] A
5.方程2x +x -4=0的解所在区间为( ) A .(-1,0) B .(0,1) C .(1,2)
D .(2,3)
[解析] 设f (x )=2x
+x -4,将各选项分别代入f (x ),只有f (1)·f (2)=(-1)·(2)=-2<0,所以方程的解所在的区间为(1,2),选C.
[答案] C
6.若函数f (x )=x 3
-3x +a 有3个不同的零点,则实数a 的取值范围是( ) A .(-2,2) B .[-2,2] C .(-∞,-1)
D .(1,+∞)
[解] 特值法.当a =0时,f (x )=x 3
-3x 有3个不同的零点,0,-3,3,可排除C 、D ;当a =2时,f (x )=x 3
-3x +2=(x -1)2
·(x +2)只有2个零点-2和1,可排除B ,故选A.
[答案] A 二、填空题
7.函数f (x )=1-x
21+x
的零点是________.
[解析] 由1-x
2
1+x =0,可得1-x =0,且1+x ≠0,∴x =1.
[答案] 1
8.方程x 2
+(m -2)x +5-m =0的两根都大于2,则m 的取值范围为________. [解析] 令f (x )=x 2
+(m -2)x +5-m 要使f (x )=0的两根都大于2.
则⎩⎪⎨⎪⎧
Δ=m -2
2
-45-m ≥0
f 2>02-m 2>2
解得:-5<m ≤-4 [答案] (-5,-4]
9.(2020·广东高考题)已知a ∈R ,若关于x 的方程x 2
+x +|a -14
|+
|a |=0有实根,则
a 的取值范围是__________________________________________.
[解析] 要使方程有实数根,则Δ=1-4(|a -14|+|a |)≥0,即|a -14|+|a |≤1
4,解得
0≤a ≤1
4
.
[答案] [0,1
4
]
10.(2020·山东卷)若函数f (x )=a x
-x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________.
[解析] 设函数y =a x
(a >0,且a ≠1)和函数y =x +a ,则函数f (x )=a x
-x -a (a >0且
a ≠1)有两个零点,就是函数y =a x (a >0,且a ≠1)与函数y =x +a 有两个交点,由图象可知
当0<a <1时两函数只有一个交点,不符合,当a >1时,因为函数y =a x
(a >1)的图象过点(0,1),而直线y =x +a 所过的点(0,a )一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是{a |a >1}.
[答案] {a |a >1} 三、解答题
11.已知关于x 的二次方程x 2
+2mx +2m +1=0的两根,一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.
[解] 条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得
⎩⎪⎨⎪⎧
f 0=2m +1<0,
f -1=2>0,f 1=4m +2<0,
f
2=6m +5>0⇔⎩⎪⎨⎪⎧
m <-
12
m ∈R ,m <-1
2
,
m >-56
∴-56<m <-12
.
12.(2020·广州一模)函数f (x )=2x
和g (x )=x 3
的图象的示意图如图所示,设两函数的
图象交于点A(x1,y1),B(x2,y2),且x1<x2.
(1)请指出示意图中曲线C1,C2分别对应哪一个函数?
(2)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},指出a,b的值,并说明理由;
(3)结合函数图象的示意图,判断f(6),g(6),f(2020),g(2020)的大小,并按从小到大的顺序排列.
[解] (1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.
(2)a=1,b=9.
理由如下:
令φ(x)=f(x)-g(x)=2x-x3,则x1,x2为函数φ(x)的零点.
∵φ(1)=1>0,φ(2)=-4<0,φ(9)=29-93<0,φ(10)=210-103>0,
∴方程φ(x)=f(x)-g(x)的两个零点x1∈(1,2),x2∈(9,10),因此整数a=1,b=9.
(3)从图象上可以看出,当x1<x<x2时,f(x)<g(x),
∴f(6)<g(6).
当x>x2时,f(x)>g(x),∴g(2020)<f(2020),
∵g(6)<g(2020),∴f(6)<g(6)<g(2020)<f(2020).
亲爱的同学请写上你的学习心得。