华师大版数学九年级上册_教学设计:25。2。2_频率与概率

合集下载

25.2+频率与概率+第2课时课件2024-2025学年华东师大版数学九年级上册

25.2+频率与概率+第2课时课件2024-2025学年华东师大版数学九年级上册
(精确到0.01)
(3)如果要生产23 750个合格的排球,那么该厂估计要生产多少
个排球?
【解析】(1)471÷500=0.942,2 000×0.949=1 898.
答案:0.942
1 898
(2)由题意知,从这批排球中任意抽取一个是合格品的概率估计值是0.95.
答案:0.95
(3)23 750÷0.95=25 000(个).
试验最有可能的是( D )
A.袋中装有大小和质地都相同的3个红球和2个黄
球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点
数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.掷一枚质地均匀的正六面体骰子,向上的面的点数是3的倍数
【举一反三】
1.如图是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概
③连续投掷2次,向上一面的点数之和不可能等于13.
(2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明
3
说:“投掷正方体骰子,向上一面点数为6点的概率是 .”你同意他的说法吗?说说
10
你的理由.
(3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做试
验.如图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、
根据频率的稳定性,估计这名运动员射击一次时“射中8环以上”的概率是( B )
A.0.90
B.0.82
C.0.85
D.0.84
【技法点拨】
频率与概率的关系
1.联系:大量重复试验时,事件发生的频率稳定在它发生的概率附近.
2.区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试

25.2 第2课时 频率与概率 初中数学华东师大版九年级上册课件

25.2 第2课时 频率与概率 初中数学华东师大版九年级上册课件

则至少有两辆车向左转的概率为: .
2.如图,甲、乙用 4 张扑克牌玩游戏,他俩将扑克牌洗匀后 背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽, 抽出的牌不放回。甲、乙约定:只有甲抽到的牌面数字比乙 大时甲胜;否则乙胜。请你用树状图或列表法说明甲、乙获 胜的机会是否相同。
解:画树状图得:
∵共有 12 种等可能的结果,甲抽到的牌面数字比 乙大的有 5 种情况,小于等于乙的有 7 种情况, ∴P(甲胜) = ,P(乙胜) = . ∴甲、乙获胜的机会不相同。
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
解:由表中可以看出,在两堆牌中分别取一张,它可能出
现的结果有 36 个,它们出现的可能性相等,满足两张牌
的数字之积为奇数(记为事件 A)的有
(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5) 这 9 种情况,所以 P(A) = 9 1 .
Hale Waihona Puke 做做试验试验累计 次数
20 40 60 80 100 120 140 160 180 200
钉帽着地的次 数(频数)
9
19 36 50 61 68 77 84
95 109
钉帽着地的频 率( %)
45
47.5
60 62.5 61
57
55 52.5
53
54.5
试验累计次数 220 240 260 280 300 320 340 360 380 400
解:画树状图:
A



B 酸 糖韭
酸糖 韭

2024-2025学年华师版初中数学九年级(上)教案第25章随机事件的概率25.2.2频率与概率

2024-2025学年华师版初中数学九年级(上)教案第25章随机事件的概率25.2.2频率与概率

第25章 随机事件的概率25.2 随机事件的概率2 频率与概率教学目标1.知道通过大量重复试验,可以用频率估计概率.2.掌握用列表法、画树状图法求简单事件概率的方法.3.运用频率估计概率解决实际问题.教学重难点重点:掌握用列表法、画树状图法求简单事件概率的方法. 难点:由试验得出的频率与理论分析得出的概率之间的关系.教学过程复习巩固概率:一个事件发生的可能性叫做该事件的概率. ()所有机会均等的结果关注结果发生数事件发生=P .导入新课【问题1】抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:一种是正面朝上,另一种是正面朝下.你认为正面朝上和正面朝下的可能性相同吗? 学生讨论,师归纳总结引出课题:25.2 随机事件的概率2 频率与概率探究新知探究点一 频率与概率的关系 活动1(学生互动,教师点评) 请同学们拿出准备好的硬币:(1)同桌两人做20次掷硬币的游戏,并将数据填在下表中:(2)各组分工合作,分别累计正面朝上的次数到20、40、60、80、100、120、140、160、180、200次,并完成下表:教学反思(3)请同学们根据已填的表格,完成下面的折线统计图(4)观察上面的折线统计图,你发现了什么规律? 结论:(学生回答,老师点评)当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就是频率的稳定性.【总结】(老师点评总结)1. 对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性.在大量重复进行同一试验时,事件A 发生的频率mn 总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记做P (A )=mn.一般地,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.2. 频率与概率的关系概率是频率的稳定值,而频率是概率的近似值. 【即学即练】(小组讨论,老师点评)某篮球队教练记录该队一名主力前锋练习罚篮的结果如下: (2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,估计这次他能罚中的概率.【解】(1)表格中从左往右依次为0.900,0.750,0.867,0.787,0.805,0.797,0.805,0.802教学反思(2)从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率为0.8.探究点二 列表法或树状图法求概率【问题2】小明、小凡和小颖周末都想去看电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续抛掷两枚均匀的硬币,若两枚硬币都正面朝上,则小明获胜;若都反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?活动2(学生互动,教师点评)让学生每人抛掷硬币(课前准备好)20次,并记录每次的试验结果,通过观察自己的结果说明游戏是否公平.5个学生为一个小组,把5个人的试验结果数据汇总,得到小组试验数据100次,依次累计各组的试验数据,得到试验200次、300次、400次、500次…时的试验结果,全班一起填写上表.通过做试验让学生思考从试验中有哪些发现. (学生总结,教师点评) 从试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上,一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,它对小凡比较有利.【合作探究】议一议:在上面抛掷硬币的试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?问题1:上述问题中一次试验涉及几个因素?你是用什么方法不重复、不遗漏地列出所有可能结果的?先让学生讨论,然后找学生代表叙述自己的解答过程,最后教师给出标准答案.总共有 4 种结果,每种结果出现的可能性相同.其中, 小明获胜的结果有 1 种:(正,正).所以小明获胜的概率是14.教学反思小颖获胜的结果有 1 种:(反,反).所以小颖获胜的概率是14.小凡获胜的结果有 2 种:(正,反),(反,正).所以小凡获胜的概率是24=12. 因此,这个游戏对三人是不公平的. 问题2:利用树状图或表格的优点是什么?什么时候用树状图比较方便?什么时候用表格比较方便?(学生总结,教师点评)当试验包含两步时,列表和画树状图都可以,当试验包含三步或三步以上时,画树状图比较方便.典例讲解(学生交流,老师点评)例1 如图,甲为三等分数字转盘,乙为四等分数字转盘.同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.【解】列表如下:乙甲 1 2 3 41 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4) 3(3,1) (3,2) (3,3) (3,4)由表格可知,一共有12种等可能的结果.其中两个转盘指针指向的数字均为奇数的有4种,故P (均为奇数)=412=13. 【总结】1.列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.2.当一次试验要涉及两个以上的元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.例2 准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次试验.(1)一次试验中两张牌的牌面数字之和可能有哪些值? (2)两张牌的牌面数字之和等于3的概率是多少?【探索思路】 (引发学生思考)一张牌有几种结果?一次试验涉及几个元素? 【解】通过画树状图的方法表示出所有可能的结果:教学反思(1)由树状图可知,两张牌的牌面数字之和可能是2,3,4. (2)总共有4种等可能的结果,两张牌的牌面数字之和为3的结果有2种,因此P (两张牌的牌面数字之和等于3)=24=12.【题后总结】在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性相等,那么我们可以利用树状图或表格不重复、不遗漏地列出所有可能的结果,从而求出某些事件发生的概率.【即学即练】 【互动】(小组讨论)经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是( )A.19B.16C.13D.12由表格知,一共有9种等可能的情况,其中两辆汽车经过这个十字路口全部继续直行的有一种,所以两辆汽车经过这个十字路口全部继续直行的概率是19.【答案】A课堂练习1.“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展抽奖活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:教学反思A.当n很大时,指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2 000次,指针落在“文具盒”区域的次数大约有600次D.如果转动转盘10次,一定有3次获得文具盒2.两个正四面体骰子的各面上分别标有数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )A.14B.316C.34D.383.把1枚质地均匀的普通硬币重复掷两次,落地后两次都是正面朝上的概率是( )A.1B.12C.13D.144.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A.0B.13C.23D.15.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其他均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是( )A.12B.13C.14D.16参考答案1.D【解析】A.由题意知A选项不符合题意;由A可知,转动转盘一次,获得铅笔的概率大约是0.70,故B选项不符合题意;C.指针落在“文具盒”区域的概率大约为0.30,转动转盘2 000次,指针落在“文具盒”区域的次数大约有2 000×0.3=600(次),故C选项不符合题意;D.随机事件,结果不确定,故D选项符合题意.2.A【解析】同时投掷两个正四面体骰子,有(1,1) , (1,2) , (1,3) , (1,4) , (2,1) , (2,2) , (2,3) , (2,4) , (3,1) , (3,2) ,(3,3) , (3,4) , (4,1) , (4,2) , (4,3),(4,4)共16种结果,点数之和等于5的有(1,4) , (2,3) , (3,2) , (4,1)共4种情况,所以P(点数之和等于5)=416=14.3.D【解析】画树状图如图所示.∴P(两次都是正面朝上)=1 4 .4.B【解析】随机从1,2,-3中抽取两个数相乘,积的结果共有1×2=2,1×(-3)= -3,2×(-3)=-6三种,所以积为正数的概率是1 3 .5.D【解析】画树状图,如图所示.教学反思由图可知共有6种等可能结果,其中标号相同的只有1种,所以两球标号恰好相同的概率是1 6 .课堂小结(学生总结,老师点评)一、频率与概率的关系概率是频率的稳定值,而频率是概率的近似值.二、用列表法或树状图法求概率(1)列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.(3)当一次试验要涉及两个以上元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.布置作业教材第147页练习题,第153页习题25.2第3,4题.板书设计课题25.2 随机事件的概率2 频率与概率【问题1】一、频率与概率的关系例1【问题2】二、用列表法或树状图法求概率例2教学反思。

25.2.2 频率与概率 华师大版数学九年级上册教学课件

25.2.2 频率与概率 华师大版数学九年级上册教学课件

解 从上表可以看出,同时抛掷两枚骰子一次,所有可能出现的结果有 36种.由于骰子是均匀的,所以每个结果出现的可能性相等.
(1)抛出点数相同(记为事件A)的结果有(1,1),(2,2),(3,3),(4,4),(5,5)和(6,6)
这6种,所以抛出的点数之和等于8的这个事件发生的概率为
P(A)=
6 36
(1)抛出的点数相同; (2)抛出的点数之和等于9; (3)抛出的点数至少有一个为2.
提示:两枚骰子分别记作第一 枚和第二枚,可以用表格列举 出所以可能的结果.
课程讲授
2 用列表法求概率
1
2
3
4
5
6
1
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
1
2
3
4
5
6
抛掷30次
抛掷60次
抛掷90次
课程讲授
1 频率与概率的关系
实验1:把全班同学分成10组,每组同学抛掷一枚硬币 50次,将实验数据记录在下表中:
抛掷次数n
50 100 150 200 250 300 350 400 450 500
“正面向上”的次数m
22 46 79 102 123 150 172 205 234 254
形状、大小、质地等完全相同,小新从布袋中随机摸出一个球,记下
颜色后放回布袋中,摇匀后再随机摸出一个球,记下颜色如此大量摸
课程讲授
1 频率与概率的关系
频率与概率的关系
“正面向上”的概率
1
频率逐渐稳定
0.5
事件发生的概率
在实际问题中,若事件的概率未知,常用频率作为它的估计值.

25.2.2+频率与概率++课件+2023—2024学年华东师大版数学九年级上册

25.2.2+频率与概率++课件+2023—2024学年华东师大版数学九年级上册

能结果的试验转化为有限个基本结果的试验,且每个基本结果
是等可能的.
预习导学
频率与概率的关系
阅读课本本课时“问题4”及相关内容,回答下列问题.
1.讨论:抛掷一枚图钉,结果有哪几种?这几种结果的可能
性相等吗?
两种,钉尖触地和钉尖朝上;这两种结果的可能性不相等.
预习导学
2.思考:(1)观察“图25.2.5”,抛掷一枚形状、重量不同的
预习导学
较复杂的概率模型
阅读课本本课时“问题2”,回答下列问题.
1.讨论:(1)抛掷两枚硬币,一共有几种不同的结果?
三种,两正,两反,一正一反.
(2)上述几种不同的结果出现的可能性相等吗?等可能的结
果有哪几种?
可能性不相等,一正一反出现的可能性更大.等可能的结果
共有两正,两反,正反,反正四种.
预习导学
个结果更能反应真实的情况?
结果相差较大.抛掷图钉1040次得到的试验结果更能反应真
实的情况.
预习导学
归纳总结
率,需要用
在一些实际问题中,要计算某个事件发生的概
频率 估计概率.在进行重复独立试验时,应保证
每次试验都在
相同
试验的次数.
合作探究
概率计算
1.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装
第25章 随机事件的概率
25.2 随机事件的概率
25.2.2 频率与概率
素养目标
1.认识树状图,会求较复杂概率模型的概率.
2.了解几何概型,会用面积的比例关系,计算几何概型事件
的概率.
3.进一步理解等可能事件的概率模型,体会频率与概率之间
的联系.
◎重点:体会频率与概率之间的联系.

频率与概率课件华东师大版九年级数学上册

频率与概率课件华东师大版九年级数学上册

故选:C. 解题密码: 用列表法或画树状图法列出所有均等结果求概率是解题的关键.
课堂小结
Classroom summary
谈一谈本节课自己的收获和感受?
1.频率是在试验的基础上得出的,概率从数量上刻画了一个随机事件发生
的可能性的大小,它是可以通过计算得出的理论值.频率和概率可能非常
接近,大量重复试验所得到的随机事件发生的频率的稳定值来估计这个事
件发生概率.但并不意味着完全相同.
2.当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重
不漏的列出所有可能的结果,用理论分析法求概率时通常用列表法或画树
状图法.
自我探究
Self-inquiry
和同学一起做重复试验,将结果填入教材143页表,并在图中用不同颜 色的笔画出相应的两条折线.
观察两个转盘,我们可以发现:两个转盘蓝色区域所对的圆心角都为
90°,说明它们都是各占整个转盘的四分之一.
结合重复试验与理论分析的结果,我们发现 1
P(小转盘指针停在蓝色区域)=___4______ 1
思维提升
Thinking promotion
归纳:
随机事件“同时”与“先后”的关系:
“两个相同的随机事件同时发生”与“一个随机事件先
后两次发生”的结果是一样的.
当一次试验涉及两个因素时,并且可能出现的结果数目较
多时,为了不重不漏的列出所有可能的结果,通常采用列
表或画树状图的办法列举所有结果.
思维提升
25.2.2 频 率 与 概 率
学习目标
learning target
1.会用直接列举法和画树状图或列表法列举所有的等可能结果. 2.体会频率与概率之间的关系,会灵活运用列举法求实际生活中随机事 件的概率. 3.发现猜想试验、收集数据、分析结果等过程,体会概率是描述不确定 现象规律的数学模型.

25.2.2频率与概率课件华东师大版九年级数学上册(1)

解:(2)②30 000×0.4=12 000(人), ∴估计参加“迷你马拉松”的人数是12 000人.
树状图
在图中,从上至下每条路径就是一个

可能的结果,我们把它称为树状图.



1. 通过重复试验用频率估计概率,必须要求试验是

频率估
在相同条件下进行的;
计概率
2.在相同条件下",验次数越多,就越有可能得到 较好的估计值,但不同小组试验所得的估计值也
从上面的问题可以看出:
1.通过重复试验用频率估计概率,必须要求试验是在 相同条件下进行的,比如,以同样的方式抛掷同一种 图钉;
2.在相同条件下,试验次数越多,就越有可能得到 较好的估计值,但不同小组试验所得的估计值也并不 一 定相同.
总共要做多少次试验才能认为 得出的结果比较可靠呢?
从图表可以看出,当试验进行到720次以后,所得频率值就在46%上下浮 动,且浮动的幅度不超过0.5%,我们可以取46%作为这个事件发生概率的 估计值,即P(钉尖触地)≈ 46%.
如果随着试验次数的增加,两个转盘的指针停在蓝色区域的 频率都逐渐稳定下来,那么就容易选择了.
观察两个转盘,我们可以发现,转盘甲中的蓝色区域所对的圆心 角为90°,说明它占整个转盘的四分之一(转盘乙尽管大一些,但 蓝色区域所对的圆心角仍为90°,说明它还是占整个转盘的四分 之一.
结合重复试验与理论分析的结果,我们发现
2.某口袋中有红色、黄色、蓝色玻璃球共100个,小明通过多次摸
球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,
则估计红、黄、蓝球的个数分别为
(A

A.35,25,40
B.40,25,35

华师大版数学九年级上册《25.2 随机事件的概率》说课稿

华师大版数学九年级上册《25.2 随机事件的概率》说课稿一. 教材分析华师大版数学九年级上册《25.2 随机事件的概率》这一节的内容,是在学生已经掌握了概率的基本概念和等可能性原理的基础上进行讲解的。

本节内容主要向学生介绍随机事件的概率,以及如何通过实验来估计事件的概率。

教材通过具体的例子,引导学生理解概率的意义,并学会如何计算简单事件的概率。

同时,本节内容还涉及到互斥事件和独立事件的概率计算,为学生以后学习更复杂的概率问题打下基础。

二. 学情分析在进入九年级的学生中,大部分学生已经对概率有了初步的认识,知道概率是衡量事件发生可能性大小的量。

然而,对于如何通过实验来估计概率,以及如何计算复杂事件的概率,部分学生可能还存在一定的困难。

因此,在教学过程中,需要关注学生的认知水平,引导学生通过实验和计算来深入理解概率的内涵。

三. 说教学目标1.知识与技能目标:使学生理解随机事件的概率的意义,学会计算简单事件的概率,并掌握互斥事件和独立事件的概率计算方法。

2.过程与方法目标:通过实验和计算,培养学生估计和判断事件概率的能力,提高学生的逻辑思维和解决问题的能力。

3.情感态度与价值观目标:激发学生对概率学科的兴趣,培养学生在实际生活中运用概率知识解决问题的意识。

四. 说教学重难点1.教学重点:随机事件的概率的意义,简单事件的概率计算,互斥事件和独立事件的概率计算。

2.教学难点:如何引导学生理解概率的内涵,以及如何计算复杂事件的概率。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生通过实验、观察和计算来理解概率的内涵。

2.教学手段:利用多媒体课件、实物模型和数学软件,辅助学生直观地理解概率概念,提高教学效果。

六. 说教学过程1.导入新课:通过抛硬币实验,引导学生思考硬币正反面出现的概率,激发学生的学习兴趣。

2.讲解概念:讲解随机事件的概率的意义,以及如何计算简单事件的概率。

华师大版数学九年级上册《25.2 随机事件的概率》说课稿2

华师大版数学九年级上册《25.2 随机事件的概率》说课稿2一. 教材分析华师大版数学九年级上册《25.2 随机事件的概率》是学生在学习了概率的基本概念和等可能事件的概率之后,进一步深入研究随机事件的概率。

本节课的主要内容有:必然事件的概率、不可能事件的概率、随机事件的概率,以及如何利用概率来描述和判断随机事件的性质。

教材通过丰富的例题和习题,帮助学生巩固随机事件的概率知识,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的基本概念和等可能事件的概率已有了一定的了解。

但是,对于随机事件的概率,学生可能还存在一定的困惑,不易理解。

因此,在教学过程中,教师需要关注学生的认知水平,通过生动的实例和贴近生活的问题,激发学生的学习兴趣,引导学生理解和掌握随机事件的概率。

三. 说教学目标1.知识与技能目标:使学生理解必然事件、不可能事件、随机事件的概念,掌握随机事件的概率计算方法。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生分析问题和解决问题的能力。

3.情感态度与价值观目标:激发学生学习概率的兴趣,体验数学在生活中的应用,培养学生的数学素养。

四. 说教学重难点1.教学重点:必然事件、不可能事件、随机事件的概念,随机事件的概率计算方法。

2.教学难点:随机事件的概率的理解和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极参与。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过一个简单的实例,引出必然事件、不可能事件、随机事件的概念,激发学生的学习兴趣。

2.自主学习:学生通过阅读教材,了解必然事件、不可能事件、随机事件的定义,学会判断各类事件。

3.合作交流:学生分组讨论,总结必然事件、不可能事件、随机事件的性质,分享学习心得。

4.案例分析:分析具体案例,引导学生运用随机事件的概率知识解决问题。

华师大版数学九年级上册《25.2 随机事件的概率》教学设计

华师大版数学九年级上册《25.2 随机事件的概率》教学设计一. 教材分析《25.2 随机事件的概率》是华师大版数学九年级上册的一部分,主要介绍了随机事件的概率及其计算方法。

本节课的内容是学生学习概率的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

教材通过具体的案例和练习题,帮助学生理解和掌握概率的基本概念和计算方法。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于事件的分类和条件概率有一定的了解。

但是,对于随机事件的概率计算方法和更复杂事件的概率计算仍然存在一定的困难。

因此,在教学过程中需要注重学生的参与和实践,通过具体的例子和练习题,帮助学生理解和掌握概率的计算方法。

三. 教学目标1.了解随机事件的定义和特点,能够正确判断一个事件是否为随机事件。

2.掌握必然事件、不可能事件和随机事件的概念,能够区分不同类型的事件。

3.学会使用频率来估计事件的概率,并能够计算简单事件的概率。

4.能够应用概率的基本性质和计算方法,解决实际问题。

四. 教学重难点1.随机事件的定义和特点,以及与必然事件和不可能事件的区分。

2.频率与概率的关系,以及如何利用频率来估计概率。

3.简单事件的概率计算方法,包括互斥事件和独立事件的概率计算。

五. 教学方法1.讲授法:通过讲解和解释随机事件的定义和概率的计算方法,帮助学生理解和掌握相关概念。

2.案例分析法:通过具体的案例和例子,让学生亲身体验和观察事件的随机性,加深对随机事件的理解。

3.练习法:通过布置练习题和解答疑问,帮助学生巩固所学知识和提高解题能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,包括教材内容的展示、案例的分析、练习题的呈现等。

2.案例材料:准备一些具体的案例和例子,用于讲解和分析随机事件的概率。

3.练习题:准备一些练习题,包括简单事件的概率计算和实际问题的解决。

七. 教学过程1.导入(5分钟)通过一个简单的抽奖游戏,引起学生的兴趣,引入随机事件的定义和概率的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华师大版数学九年级上25.2.2频率与概率教学设计
师:因为硬币质地均匀,所以这两种结果发生的可能性相等,各占50%的机会。

生:从表和图中可以看出,抛掷两枚硬币共有4个机会均等的结果:“出现两正”、“出现两反”、“出现一正一反”、“出现一反一正”,因此
P(出现两个正面)=1
4
师:由此,我们可以看到:理论分析与重复试验得到的结论是一致的.
生:从上至下每条路径就是一个可能的结果,我们把它称为树状图
课件展示:
问题3
用力旋转图所示的转盘甲和转盘乙的指针,如果想让指针停在蓝色区域,那么选哪个转盘成功的概率比较大?
师:有同学说:转盘乙大,相应地,蓝色区域的面积也大,所以选转盘乙成功的概率比较大.你同意吗?
生:不同意
师:还有同学说:每个转盘只有两种颜色,指针不是停在红色区域就是停在蓝色区域,成功的概率都是50%,所以随便选哪个转盘都可以.你同意吗?生:同意
师:结合重复试验与理论分析的结果,我们发现:P(小转盘指针停在蓝色区域)= 。

P(大转盘指针停在蓝色区域)= 。

生:1
4
师:从重复试验结果中你得出了哪些结论?
生:试验次数越多,约接近事件发生的概率.
师:如果不做试验,你能预言图中所示的转盘指针停在红色区域的概率吗?
生:可以,根据随机概率的计算方法得出:
P
(指针停在红色区域)=4
8
=1
2
师:对于这些问题,既可以通过分析用计算的方法预测概率,也可以通过重复试验用频率来估计概率
课件展示:
问题4
将一枚图钉随意向上抛起,求图钉落定后钉尖触地的概率.
师:虽然一枚图钉被抛起后落定的结果只有两种:“钉尖朝上”“钉尖触地”,但由于图钉的形状比较特殊,我们无法用分析的方法预测P(钉尖朝上)与P(钉尖触地)的数值,因此,只能让重复试验来帮忙.
师:思考,如果你和同伴使用的图钉形状分别是如图所示的两种,那么这两种图钉钉尖触地的概率相同吗?能把你们两个人的试验数据合起来进行统计吗?
师:从上面的问题可以看出什么?
生:1、通过重复试验用频率估计概率,必须要求试验是在相同条件下进行的.
2、在相同条件下,试验次数越多,就越有可能得到较好的估计值,但不同小组试验所得的估计值也并不一定相同
师:那么,总共要做多少次试验才能认为得出的结果比较可靠呢?
生:从上图可知,当试验进行到720次以后,所得频率值就在46%上下浮动,且浮动的幅度不超过0.5%,我们可以取46%作为这个事件发生概率的估计值,即P_((钉尖触地))≈46%.
每个球除颜色不同外,其他都相同)的袋中,随机摸1个球,摸到1个红球就得到1个玩具.已知参加这种游戏的儿童有40000人,公园游乐场发放玩具8000个.
(1)求参加此次活动得到玩具的频率;
(2)请你估计袋中白球的数量接近多少.
答案:
解:(1)参加此次活动得到玩具的频率为
8000 40000

0.2.
(2)设袋中共有m个球,则P(摸到1个球是红球)
=8 m ,
∴8
m
=0.2,解得m=40,
经检验,m=40是原方程的解,且符合题意.
∴袋中白球的数量接近40-8=32(个).
拓展提升
甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其中乙的第5次成绩的个位数字被污损则乙的平均成绩高于甲的平均成绩的概率是。

答案:
解:(1)4, 2或3;
(2)解:依题意,得6+m
10=4
5
解得:m=2
中考链接
1.【甘孜州中考】在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回地随机抽取30次,有。

相关文档
最新文档