函数极限的十种求法

合集下载

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求函数极限的方法总结及例题

求函数极限的方法总结及例题

求函数极限的方法总结及例题一、求函数极限的方法总结。

1. 代入法。

当函数在极限点处连续时,直接将极限点代入函数求值。

例如,对于函数f(x)=x + 1,求lim_x→2(x + 1),直接将x = 2代入,得到lim_x→2(x+1)=2 + 1=3。

2. 因式分解法。

适用于(0)/(0)型的极限。

例如,求lim_x→1frac{x^2-1}{x 1},将分子因式分解为(x + 1)(x 1),则原式=lim_x→1((x + 1)(x 1))/(x 1)=lim_x→1(x + 1)=2。

3. 有理化法。

对于含有根式的函数,通过有理化来消除根式。

例如,求lim_x→0(√(x+1)-1)/(x),分子分母同时乘以√(x + 1)+1进行有理化,得到lim_x→0((√(x + 1)-1)(√(x + 1)+1))/(x(√(x + 1)+1))=lim_x→0(x)/(x(√(x + 1)+1))=lim_x→0(1)/(√(x + 1)+1)=(1)/(2)。

4. 等价无穷小替换法。

当x→0时,sin xsim x,tan xsim x,ln(1 + x)sim x,e^x-1sim x等。

例如,求lim_x→0(sin2x)/(x),因为sin2xsim2x(x→0),所以lim_x→0(sin2x)/(x)=lim_x→0(2x)/(x)=2。

5. 洛必达法则。

对于(0)/(0)型或(∞)/(∞)型的极限,可对分子分母分别求导再求极限。

例如,求lim_x→0frac{e^x-1}{x},这是(0)/(0)型,根据洛必达法则,lim_x→0frac{e^x-1}{x}=lim_x→0frac{(e^x-1)'}{x'}=lim_x→0frac{e^x}{1}=1。

二、例题。

1. 例1。

求lim_x→3frac{x^2-9}{x 3}解析:这是(0)/(0)型极限,可先对分子因式分解,x^2-9=(x + 3)(x 3)。

函数极限的十种求法

函数极限的十种求法

函数极限的十种求法信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。

掌握这类证明对初学者深刻理解运用极限定义大有裨益。

以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。

时的极限。

1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。

方能利用极限四则运算法则进行求之。

不满足条件者,不能直接利用极限四则运算法则求之。

但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。

而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。

例 1求lim( x 2 − 3x + 5).x→ 2解:lim( x 2 − 3x + 5) = lim x 2 − lim 3x + lim 5= (lim x) 2 − 3 lim x + lim 5= 2 2 − 3 ⋅ 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。

一般用在求导后为零比零或无穷比无穷的类型。

利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx)' = 1 / (cosx)^2(x)' = 1原式= lim 1/(cosx)^2当x --> 0 时,cosx ---> 1原式= 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:①分子、分母为无穷小,即极限为0 ;②分子上取正弦的角必须与分母一样。

求极限的普通10法

求极限的普通10法

求极限的普通10法1、利用定义求极限。

较难掌握,这里就不必写了!2、利用各种初等变形或消去零因子等来求!3、利用极限的运算性质及已知的极限来求!4、利用不等式即:夹挤定理!较难掌握,这里就不必写了!5、利用变量替换求极限!例如nmy y xy x x nm y nmx =--==--→→11lim 1:11lim 1111。

6、利用两个重要极限来求极限。

7、利用左、右极限来确定分段函数在分段点处的极限。

8、利用函数连续性质求极限。

9、用洛必达法则求,这是用得最多。

即,如果极限()lim()f xg x 为“00”型或“∞∞”未定式极限,且()lim()f xg x ''存在或为∞,则()lim()f x g x =()lim ()f xg x ''。

10、用泰勒公式来求,也就是等价量替换法求极限,这用得也很经常。

但要注意:若得到的值是0,则无效。

例如61)6(limsin lim 6;sin 330303=--=-⇒-≈→→x x x x x x x x x x x x x ,前者无效。

例题例1 求下列数列的极限 (1)lim )n n n →+∞;(2)12lim ()2n n nn →+∞+++- 。

解:(1)原式=limn=22limn=limnlimn n=12。

(2)原式=n +11lim ((1))22n n n n →∞+- =n +1lim ()222n n →∞+-=12。

例2 求下列函数的极限(1)cos limsin x x xx x→∞++;(2)322(1)(2)lim23x x x x x →∞+--+-;(3)201cos limx xx →-;(4)22sin(4)lim 2x x x →--。

解:(1)原式=cos 1lim1sin 1x xx x x→∞+=+;(2)原式=22999lim 923x x x x x →∞-+=+-; (3)方法一:利用洛必达法则,()lim()f x g x 为“00”型未定式极限,且()lim ()f xg x ''存在。

16种求极限的方法

16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。

求极限的方法有很多种,下面将介绍16种常见的求极限方法。

1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。

2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。

例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。

3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。

4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。

5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。

反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。

6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。

利用无穷小量和无穷大量的性质,可以简化极限的求解过程。

7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。

8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。

9.取对数法:将函数取对数后,利用对数的性质进行极限计算。

10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。

11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。

12.导数法则:利用导数的性质,对函数进行极限计算。

例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。

13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。

14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

求函数极限的若干方法及其应用

求函数极限的若干方法及其应用1.定义法2.利用极限四则运算法则3.利用夹挤性定理求极限4.利用两个重要极限求极限5.利迫敛性来求极限6.用洛必达法则求极限7.利用定积分求极限8.利用无穷小量的性质和无穷小量和无穷大量之间的关系求极限9.利用变量替换求极限10.利用递推公式计算或证明序列求极限11.利用等价无穷小量代换来求极限12.利用函数的连续性求极限13.利用泰勒公式求极限14.利用两个准则求极限15.利用级数收敛的必要条件求极限16.利用单侧极限求极限总结参考文献外文摘要目录1 引言函数极限的定义及作用函数极限的计算及多种求法2 3.1利用左、右极限求极限2 3.2 利用极限运算法则求极限3 3.3 利用初等变形求函数极限3.3.1 约分法3.3.2 有理化法3.3.3比较最高次幂法3.4 利用迫敛性求函数极限3.5 利用两个重要极限公式求函数极限3.6 利用变量替换求函数极限3.6.1利用等价无穷小量替换来求极限3.6.2 利用其他替换来求极限3.7 利用无穷小量的性质求函数极限3.8 利用初等函数的连续性质求函数极限3.9利用导数的定义求函数极限3.10 利用洛必达法则求函数极限3.10.1 00型不定式极限3.10.2 型不定式极限3.10.3 其它类型不定式极限3.11幂指函数求函数极限3.11.1 )(xf,)(xg的极限均为有限常数,即BA型的极限求法3.11.2型未定式极限问题3.11.33.12利用泰勒公式求函数极限3.11.43.13 利用中值定理求函数极限3.11.5参考文献。

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限是微积分中的重要概念,在解决实际问题和进行理论推导时经常需要用到。

在计算函数极限时,常常使用一些方法和技巧可以简化计算过程。

下面将介绍一些常用的函数极限计算方法和技巧。

一、代数运算法则1. 乘积运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)g(x)]=AB。

2. 商运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B且B≠0,则lim(x->a)[f(x)/g(x)]=A/B。

3. 加法运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)+g(x)]=A+B。

4. 减法运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)-g(x)]=A-B。

以上的代数运算法则可以简化函数极限的计算过程,通过运用这些法则可以将一个复杂的函数极限问题转化为多个简单的函数极限问题。

二、夹逼准则夹逼准则也是常用的一种函数极限计算方法。

如果存在函数g(x)和h(x),使得对于x 在a的某个去心邻域内,有g(x)≤f(x)≤h(x),并且lim(x->a)g(x)=lim(x->a)h(x)=L,则lim(x->a)f(x)=L。

夹逼准则利用了三个函数之间的大小关系,将复杂的函数极限问题转化为两个较为简单的函数极限问题。

三、分子有理化和分母有理化在计算函数极限时,有时候分子或分母不是有理式,而是含有根号、分数等形式。

这时可以利用分子有理化和分母有理化的方法将其化简为有理式,再进行运算。

当计算lim(x->0)(sinx/x)时,可以将其改写为lim(x->0)(sinx)/(x/x)的形式,然后再利用等式lim(x->0)(sinx)/x=1来计算极限。

函数极限的十种求法

函数极限的十种求法设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求: 当a ,b 为何值时,f (x )在x=0处的极限存在? 当a ,b 为何值时,f (x )在x=0处连续? 注:f (x )=xsin 1/x +a, x< 0 b+1, x=0 X^2-1, x>0 解:f(0)=b+1左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a 左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0), 所以a =-1=b+1, 所以a =-1,b =-27.利用等价无穷小量代换求极限例 8 求极限30tan sin lim sin x x xx→-. 解 由于()s i n t a ns i n 1c os c o s xx x x x-=-,而 ()sin ~0x x x →,()21cos ~02x x x -→,()33sin ~0x x x →故有23300tan sin 112lim lim sin cos 2x x x x x x x x x →→⋅-=⋅=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()t a n ~0x x x →,()s i n ~0x x x →,而推出 3300tan sin limlim 0sin sin x x x x x xx x→→--==, 则得到的式错误的结果.附 常见等价无穷小量()sin ~0x x x →,()tan ~0x x x →,()21cos ~02x x x -→,()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→, ()()ln 1~0x x x +→,()()11~0x x x αα+-⋅→. 8 利用洛比达法则求极限洛比达法则一般被用来求00型不定式极限及∞∞型不定式极限.用此种方法求极限要求在点0x 的空心领域()00U x 内两者都可导,且作分母的函数的导数不为零.例1 求极限21cos limtan x xxπ→+.解 由于()2l i m 1c o s l i m t a n 0x x x x ππ→→+==,且有()1cos 'sin x x +=-,()22tan '2tan sec 0x x x =≠,由洛比达法则可得21cos lim tan x xxπ→+2s i nl i m 2t a n s e cx x x x π→-=3cos lim 2x x π→⎛⎫=- ⎪⎝⎭12=. 8.利用定义求极限1.()()()000'limx x f x f x f x x x →-=-,2.()()()0000'limh f x h f x f x h→+-=.其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.例1 求极限2222x x p p x q q→+-+-()0,0p q >>.分析 此题是0x →时00型未定式,在没有学习导数概念之前,常用的方法是消去分母中的零因子,针对本题的特征,对分母分子同时进行有理化便可求解.但在学习了导数的定义式之后,我们也可直接运用导数的定义式来求解.解 令()f x =()g x =则x → ()()()()000lim00x f x f x g x g x →--=--()()'0'0f g =p q=.9. 利用归结原则求极限归结原则设f 在()00;'U x δ内有定义,()0lim x x f x →存在的充要条件是:对任何含于()00;'U x δ且以0x 为极限的数列{}n x ,极限()lim n n f x →∞都存在且相等.例1求极限211lim 1nn n n →∞⎛⎫++ ⎪⎝⎭.分析 利用复合函数求极限,令()21211x x x u x x ++⎛⎫=+ ⎪⎝⎭,()1x v x x+=求解. 解 令()21211x x x u x x ++⎛⎫=+ ⎪⎝⎭,()1x v x x+=则有 ()lim n u x e →+∞=;()lim 1n v x →+∞=,由幂指函数求极限公式得()()211lim 1lim xv x x x u x e x x →+∞→+∞⎛⎫++== ⎪⎝⎭, 故由归结原则得221111lim 1lim 1n xn x e n n x x →∞→+∞⎛⎫⎛⎫++=++= ⎪ ⎪⎝⎭⎝⎭. 注 1 归结原则的意义在于把函数归结为数列极限问题来处理,对于0x x +→,0x x -→,x →+∞和x →-∞这四种类型的单侧极限,相应的归结原则可表示为更强的形式.注 2 若可找到一个以0x 为极限的数列{}n x ,使()lim n n f x →∞不存在,或找到两个都以0x 为极限的数列{}'n x 与{}''n x ,使()'lim n n f x →∞与()"lim n n f x →∞都存在而不相等,则()0lim x x f x →不存在10.利用泰勒公式求极限在此种求极限的方法中,用得较多的是泰勒公式在00x =时的特殊形式,即麦 克劳林公式.也可称为带有佩亚诺余项的麦克劳林公式()()()()()()()2"000'02!!n nn f f f x f f x x x x n ο=+++⋯⋯++.例1 求极限2240cos limx x x e x -→-.解 由于极限式的分母为4x ,我们用麦克劳林公式表示极限的分子,取4n =:()245cos 1224x x x x ο=-++,()22452128x x x ex ο-=-++,()2452cos 12x x x ex ο--=-+.因而求得()24524400cos 112limlim 12x x x x x x ex x ο-→→-+-==-.利用此种方法求极限时,必须先求函数的麦克劳林公式,选取恰当的n . 2.10用导数的定义求极限常用的导数定义式,设函数()y f x =在点0x 处可导,则下列式子成立: 1.()()()00'limx x f x f x f x x x →-=-,2.()()()0000'limh f x h f x f x h→+-=.其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.例1证明()()211lim 212x x x x →-=--.分析 当1x ≠时,10x -≠,故()()211122x x x x x-+=---,于是有 ()()23111332212222x x x x x x x x x --+--=-==-----, 取112δ=,当101x δ<-<时1322x <<,故有122x ->,从而有()()21212x x x ----61x <-,取26εδ=即可.证明 对于0ε∀>,取1m i n ,26εδ⎧⎫=⎨⎬⎩⎭,于是当01x δ<-<时,有 ()()2126112x x x x ε--<-<--,由定义知()()211lim 212x x x x →-=--成立.注 函数()f x 在点0x 处是否有极限,与函数()f x 在点0x 处是否有定义无关.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数极限的十种求法
函数极限是高等数学中的一个重要概念,在数学分析、微积分、实变函数、复变函数等领域均有应用。

函数极限的求法有很多种,以下将介绍其中的十种方法。

一、代数方法
利用现有函数的代数性质,根据极限的定义求解。

例如,对于
函数 f(x)=2x+1-x,当 x 趋近于 1 时,有:
lim f(x) = lim (2x+1-x) = lim x+1 = 2
x→1 x→1 x→1 x→1
二、夹逼定理
夹逼定理也称为夹逼准则或夹逼定律。

当f(x)≤g(x)≤h(x),且
lim f(x)=lim h(x)=l 时,有 lim g(x)=l。

例如,对于函数 f(x)=sin(x)/x 和 g(x)=1,当 x 趋近于 0 时,有:
-1 ≤sin(x)/x ≤ 1
lim -1 ≤ lim sin(x)/x ≤ lim 1
x→0 x→0 x→0 x→0
lim sin(x)/x = 1
三、单调有界准则
单调有界准则也称收敛定理。

当一个数列同时满足单调有界性质,即数列单调递增或单调递减且有上(下)界时,该数列必定收敛。

对于函数而言,只需要证明其单调有界的性质,即可用该准则求出其极限值。

例如,对于函数 f(x)=sin(x)/x,当 x 趋近于 0 时,此时 f(x) 没有极限值,但是根据单调有界准则,可以求得其极限是 1。

四、洛必达法则
洛必达法则是一种有效的求函数极限值的方法,通常用在0/0
形式的极限中。

对于连续可导的函数 f(x) 和 g(x),若 lim f(x)/g(x)
存在,则有:
lim f(x) lim f'(x)
lim ——— = lim ———
x→a g(x) x→a g'(x)
其中“lim” 表示极限符号,f'(x) 表示 f(x) 的导数,g'(x) 表示 g(x) 的导数。

如果上式右边的极限存在,那么左边的极限也存在,并
且二者相等。

例如,对于函数 f(x)=x^2+2x 和 g(x)=x+1,当 x 趋近于 1 时,有:
lim (x^2+2x) lim (2x+2)
lim ———— = lim ———— = 4
x→1 x+1 x+1
五、泰勒公式
泰勒公式是求解函数在某点处的极限值的有效方法之一。

对于任意可导函数 f(x),泰勒公式展开式为:
n
∑ f^n(a)(x-a)^n
f(x) = f(a)+ ———————————————
n! n=1
其中,“∑”为求和符号,“f^n(x)”表示函数的 n 阶导数,“a”为函数 f(x) 的取值点,“n!”表示 n 的阶乘,“f(a)”代表函数 f(x) 在点 a 处的函数值。

例如,对于函数 f(x)=sin(x),当 x 趋近于 0 时,有:
3 f^4(0)
lim sin(x)/x = lim —— = —————— = 1/3! = 1/6
x→0 4!
六、积分求解
积分是一种求解函数极限的有效方法之一。

在求解函数 f(x) 的
极限时,可以将其表示为一个积分式,然后通过对该积分式求解,得到函数 f(x) 的极限值。

例如,对于函数 f(x)=x/(1+x),当 x 趋近于∞ 时,可以将其表
示为积分式:

x/(1+x) dx = lim ∫x/(1+x) dx = lim ln(x+1) = ln2
x→∞ 0 x→∞
七、级数求和
级数求和是一种求解函数极限值的有效方法之一。

在求解函数
f(x) 的极限时,可以将其表示为一个级数式,然后通过对该级数求和,得到函数 f(x) 的极限值。

例如,对于函数 f(x)=(1-1/x)^x,当 x 趋近于∞ 时,可以将其表示为级数式:
∞ ∞
(1-1/x)^x = e^lim ln(1-1/x)*x = e^-1
x->∞ x=∞
八、极大极小值法
极大极小值法是一种在求极限过程中非常常用的方法。

对于函数 f(x),若其存在极值,那么其极限值必然等于极值。

因此,对于一个充分连续的函数 f(x),通过寻找其极大值和极小值,可以确定其极限值。

例如,对于函数f(x)=sin(πx)/x^2,当 x 趋近于 0 时,可以通过求解其极大极小值确定其极限值:
设f'(x)=πcos(πx)/x^2-2sin(πx)/x^3=0,解得x=1/π 或 x=-1/π。

由此,可得 f(x) 的极大值为π^2/3,极小值为-π^2/3。

因此,当 x 趋近于 0 时,f(x) 的极限值为 1/3。

九、迭代法
迭代法是一种求解函数极限的有效方法。

对于一个谨慎选取的初始值 x0,通过反复迭代求解x1 ≈ x0,x2 ≈ x1,x3 ≈ x2, (x)
≈ xn-1,可以得到函数的极限值。

例如,对于函数 f(x)=x^3+2x^2-1,利用迭代法可以求解其在 1 附近的极限值。

首先,取 x0=1,迭代公式为:
f(xn)-(xn-xn-1)=(xn^3+2xn^2-1)-(xn-1^3+2xn-1^2-1)=3xn^2+4xn-1
当 n=1 时,有 f(x1)-x1=6,因此,可以得到 x1=3/2。

同理,当n=2 时,有 x2=17/12。

当 n=3 时,有 x3=577/408。

当 n 趋近于无穷大时,可以得到 x=0.683772。

十、其他方法
除上述方法外,还有一些可以用来求解函数极限的有效方法。

比如说,对于分数函数而言,可以使用通分法将其化为多项式函数,然后通过代数方法或洛必达法则求解其极限值;对于三角函
数而言,可以使用半角公式或和差公式化简为一些已知的函数,
然后求解其极限值。

此外,还有一些特殊函数,比如说斯特林函数、正交多项式等,也可以使用一些特殊的方法来求解其极限值。

综上所述,函数极限的求解方法包括代数方法、夹逼定理、单
调有界准则、洛必达法则、泰勒公式、积分求解、级数求和、极
大极小值法、迭代法以及其他特殊方法。

在实际应用中,根据不
同的函数性质,选取适当的求解方法,可以大大提高求解效率和
精度。

相关文档
最新文档