基因克隆载体的特点、分类和表达

合集下载

克隆载体与表达载体

克隆载体与表达载体

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。

克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。

克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。

(这是为携带”感兴趣的外源DNA实现外源DNA勺无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。

)其中,为使插入的外源 DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。

是否含有表达系统元件,即启动子 -- 核糖体结合位点 -- 克隆位点 -- 转录终止信号,这是用来区别克隆载体和表达载体的标志。

表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。

表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。

表达载体( Expression vectors )就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。

如表达载体 pKK223-3 是一个具有典型表达结构的大肠杆菌表达载体。

其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。

在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。

(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在 mRNAk有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3〜10 bp处的由3 —9bp组成的序列。

这段序列富含嘌吟核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体 RNA的识另U与结合位点。

克隆载体与表达载体

克隆载体与表达载体
人工染色体
染色体具有复制功能,利用染色体的复制元件来驱动外源DNA片段复制的载体称为人工染色体载体
其装载外源DNA的容量比质粒、噬菌体和噬菌体-质粒杂合载体等有很大的拓展,甚至可以跟染色体的大小相媲美。
人工染色体载体拷贝数少,制备困难,通常采取“穿梭载体”的策略来解决
含有质粒载体所必备的第一受体(大肠杆菌)质粒复制起始位点,这样的载体在大肠杆菌内可以按质粒复制形式进行高拷贝复制,含有第二受体(如酵母)端粒(TEL)、DNA复制起始位点(ARS)和着丝粒(CEN)以及合适的选择标记。载体在体外与目的DNA重组后转化到第二受体细胞,按照染色体复制的形式进行复制和传递。筛选第一受体的克隆子一般采用抗生素抗性选择标记;筛选第二受体的克隆子常用与受体互补的营养缺陷型。
克隆载体
基本性质
基本特征(或载体的构建)
原理机制
常用的载体
克隆载体
质粒载体
质粒能利用寄主细胞的DNA复制系统进行自主复制;不相容性;可转移性(基因工程中采用非接合性质粒)
(1)具有合适的复制起始位点(ORI)(2)具有合适的选择性标记基因(3)若干限制性内切酶的单一位点(4)具有较小的分子量和较高的拷贝数。
M13噬菌体产生单双链DNA的机制)
LacZ’ 5’端的第13个核苷酸G突变成A,产生了一个EcoR I切点
一类人工构建的含有λ-DNA cos序列和质粒复制子的的特殊类型载体。能像l-DNA那样进行体外包装,并高效转染受体细胞;能像质粒那样在受体细胞中自主复制具有较高容量的克隆能力:45kb;具有与同源性序列的质粒进行重组的能力
当带有抗菌素抗性基因的载体进入受体菌后,受体菌才能生长。不带有抗菌素抗性基因的受体菌不能在含有抗菌素的培养基(选择培养基)中生长。(抗菌素选择原理)

第三章 克隆载体的特征及类型

第三章 克隆载体的特征及类型

质粒
质粒DNA的分离纯化
氯化铯密度梯度离心法: 用含有EDTA的缓冲液悬浮菌体 加溶菌酶裂解细菌细胞壁 加CsCl和溴乙锭 超速离心过夜 在紫外灯下吸取cccDNA 稀释沉淀cccDNA RNAs ocDNA L-DNA proteins
质粒
重要的大肠杆菌质粒载体
pGEM-3Z: 多拷贝 装有多克隆位点(MCS) 正选择颜色标记 lacZ’ 装有两个噬菌体的强启动子 用于外源基因的高效表达
ori Apr
pGEM-3E 2743 bp lacZ’
PT7
MCS
PSP6
注意:T7和SP6启动子特异性地由噬菌体DNA编码的RNA聚合 酶所识别,因此相应的受体菌必须表达噬菌体RNA聚合酶,如: E.coli BL21(DE3)等
质粒
质粒的基本特征
质粒的自主复制性:拷贝数的控制机制 – 质粒DNA复制启动控制 控制复制引物与模板的结合
RNA II
3’ 5’
复制方向
5’ 3’
ori
RNA I
rop
(+) Rop
E.coli ColE1 plasmid
RNAII是复制的正向调节分子,RNAI是复制的负调节物
质粒
质粒的基本特征
在重组的 pGEM3Z载体中 加入相应的RNA 聚合酶,可以 发生外源基因 转录。
质粒
质粒DNA的分离纯化
实验室一般使用下列三种方法制备质粒DNA: 氯化铯密度梯度离心法
质粒DNA纯度高、周期长、设备要求高、溴乙锭污染
沸水浴法
质粒DNA纯度底、快速、操作简便
碱溶法 质粒DNA纯度、操作周期介于氯化铯法和碱溶法之间
拷贝数控制系统的干扰,致使两种质粒的最终拷贝数不同,

(整理)克隆载体与表达载体

(整理)克隆载体与表达载体

一部分:概念解析二部分:问题解答克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。

克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。

克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。

(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。

) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。

是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。

表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。

表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。

表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。

如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。

其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。

在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。

(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。

这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。

克隆载体与表达载体

克隆载体与表达载体

克隆载体与表达载体
1. T载体是克隆载体,你的基因通过TA克隆法插入载体,这一步的目的是扩增基因,得到大量你要的目的基因片段,以便进行下一步表达载体的构建;DH5α是克隆菌株,不能用来做表达;
2. 欲在大肠杆菌中表达外源基因,需要首先构建原核表达载体,如可将构建至T 载体的目的通过双酶切切下来然后连接到表达载体上,如PET系列的载体等,构建成原核表达载体后,可将此载体转化表达菌株,如BL21(DE3,)等,如果你的目的基因含有稀有密码子,也可以转化Rosetta系列的表达菌株。

最后将构建成功的基因工程菌进行诱导表达。

1、T载体常用于克隆,一般来讲都会再把目的基因亚克隆到表达载体上。

但是并非T载体不能用来表达。

常见的pMD18-T,含有lacZ操纵子,可以IPTG诱导表达。

pGEM-T则含有T7和SP6启动子。

2、为了能够顺利地使用T7系统来表达蛋白,在如BL21(DE3)一类的大肠杆菌菌株中,编码T7RNA聚合酶的基因被整合到其染色体上,并位于lacUV5启动子的下游,受乳糖操纵子调控。

而目标蛋白的编码序列则被构建到含T7启动子序列的质粒上,并受T7RNA聚合酶调控转录。

3、构建质粒、基因表达看似比较成熟,也比较简单。

其实这里面大有学问。

学会看菌株和质粒的相关文档,答案就在其中。

克隆载体与表达载体

克隆载体与表达载体

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。

克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。

克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。

(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。

)其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。

是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。

表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。

表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。

表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。

如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。

其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。

在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。

(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。

这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。

克隆载体与表达载体教程文件

克隆载体与表达载体教程文件

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。

克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。

克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。

(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。

)其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。

是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。

表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。

表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。

表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。

如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。

其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。

在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。

(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。

这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。

简述基因克隆载体的主要类型

简述基因克隆载体的主要类型

简述基因克隆载体的主要类型
基因克隆载体是指一类可以携带外源DNA片段并能够被复制的DNA分子。

常用于基因工程中,将特定基因序列克隆到载体DNA上,进而进行转化和表达。

根据不同的功能和应用,基因克隆载体可以分为多种类型,以下是主要的几种:
1. 质粒(Plasmid):质粒是最常用的基因克隆载体之一,通常起源于细菌,具有自主复制的能力,易于操作和扩增。

质粒通常被用于基因表达、基因敲除和基因突变等领域。

2. 病毒载体(Viral Vector):病毒载体是一类通过改造病毒而成的基因克隆载体,具有高度的转染效率和生物安全性。

病毒载体通常被用于基因治疗、免疫治疗和癌症治疗等领域。

3. 人工染色体(Artificial Chromosome):人工染色体是一种可以模拟天然染色体结构和功能的基因克隆载体,通常具有高度的稳定性和扩增性能。

人工染色体通常被用于基因组学研究和治疗复杂遗传病等领域。

4. 原核表达载体(Prokaryotic Expression Vector):原核表达载体是一类专门用于大肠杆菌等原核生物中进行基因表达的基因克隆载体。

原核表达载体通常具有高度的表达效率和易于操作的特点,被广泛应用于蛋白质制备和生物技术研究等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B)Rep基因:在质粒的复制过程中,Replication基因会指令宿 主细胞合成一种调节蛋白,促进质粒的复制.
C)Inc基因:决定两种亲缘关系相近的两种质粒不能存在于同 一宿主细胞中.
D)Tra基因:指令宿主细胞合成菌毛(Pilus)和细胞表面物, 促使宿主细胞与受体细胞表面结合,遗传物质的转移.
3.5 农杆菌Ti质粒载体的构建
设计原理: 保留T-DNA两侧的边界序列,插入选择 性标记,除去致瘤基因和无关基因.
共整合质粒载体: 将T-DNA区段编码致瘤基因和 冠瘿碱合成酶的基因由pBR322上的一段DNA片 段取代,当携带目的基因片段的pBR322衍生中 间载体进入农杆菌细胞后,两者相同的pBR322 序列之间发生同源交换,导致外源目的基因片 段整合到Ti质粒上.
病毒区基因及功能
Ti质粒T-DNA的边界序列
3 质粒载体的构建
3.1 质粒构建的基本要求
1)构建的质粒载体能转化受体细胞,并在其中进行 松弛型复制. * 选择松弛型质粒复制起始子(Ori)
2) 构建的质粒载体含有克隆外源DNA的位点(MCS) *构建的质粒载体含有选择标记基因(Apr,Tcr,Kmr) *构建的质粒载体分子量小,转化效率高,插入外 源片段较大.
pGEX-2T,pGEX-3X 真核(Eukaryotic)表达载体:pSVK3,pBPV 转录(Transcription)载体:pSL1190 普通载体(General vector):pBR322,pUC18
第二节 质粒克隆载体
1 质粒载体的一般特性
质粒是一种广泛存在于 细菌细胞中染色体以 外 的能自主复制的裸露的 环状双链DNA分子,比 病毒更简单。在霉菌、 蓝藻、酵母和一些动植 物细胞中也发现了质粒, 目前对细菌的质粒研究 得比较深入。
可转移性:质粒可通过接合作用等方式转移到新 的宿主细胞中.
复制性:质粒DNA分子只在宿主细胞内进行单向 复制,其复制受质粒本身和宿主细胞遗传系统的双 重控制,质粒提供复制的起始位点和核苷酸的序 列.
6)相关基因
A)COP因子:决定质粒的拷贝数,在质粒的复制过程中指令细 胞合成阻物,当质粒复制到一定的拷贝时,阻物的量也积 累到足以阻止质粒的复制.
3.2 pBR322质粒载体的构建
3.3 pUC18-19 质粒载体的构建
以pBR322为出发质粒,用含乳糖操纵子O、P和Z’ 的DNA片段取代pBR322上的Tcr基因,并在Z’区组 入一个多克隆位点.
pUC18-19的构建
3.4 蓝藻质粒载体的构建
蓝藻作为受体细胞的特点 a)原核生物,能进行光合作用,具有固氮能力. b)基因组简单,50%的蓝藻含有质粒.
• 质粒载体 大肠杆菌质粒载体,枯草杆菌质粒载体,酵母质 粒载体,农杆菌质粒载体,蓝细菌质粒载体
• 噬菌体质粒载体 双链DNA噬菌体载体:λ 单链DNA噬菌体载体:M13,T3,T7
• 病毒载体 植物病毒载体CaMV(花椰菜花斑病病) 动物病毒载体 SV40(猿猴空泡病毒)
质粒和噬菌体DNA兼有的载体 Phasmid 载体(含有f1 噬菌体的ori) Cosmid 载体(含有λDNA的Cos区)
1 λ噬菌体克隆载体
1.1λ噬菌体的一般特性 λ噬菌体的组成
结构:外壳蛋白 DNA
形态:头部 尾部
c)细胞大(10-10于E.coli)储藏蛋白多,单一蛋白可达
25%,而大肠杆菌仅为5%. d)蛋白更新慢,容受性比较大 e)蛋白酶的降解作用比较低,产物比较均一.
蓝藻质粒的特点 a)双向载体(需要两种Ori). b)合适的选择标记. c)分子大小合适. d)拷贝高.
蓝藻质粒载体pAQE17的构建
基因克隆载体的特 点、分类和表达
具备与外源DNA片段连接和重组的克隆位点.
进入受体细胞后能稳定存在于细胞质中或与染 色体整合在一起.
在宿主细胞或受体细胞中自我复制或随整合的 受体细胞染色体DNA一起复制.
外源基因能在受体细胞中表达.
克隆载体进入细胞后有可供选择标记.
2 克隆载体的分类 2.1 按构建克隆载体DNA的来源分类
染 色 体 和 质 粒 DNA 兼 有 的 载 体 ( Chrosmid vector)
基因整合平台系统 YAC克隆载体
其它克隆载体
2.2 按克隆载体的用途分类
cDNA克隆载体:λgt11,pT7T3 原核(Prokaryotic)表达载体:pKK223-3 原核基因融合(Prokaryotic gene fusion)载体:
外源片段共整合到Ti质粒上的过程
双向载体:由两 个以上的质粒构 建而成. 将Ti 质粒的Vir与广宿 主范围质粒的携 带目的基因 (MCS)、选择性标 记、转移和复制 功能整合在 一 起.双向载体可在 大肠杆菌和农杆 菌中进行 复制 并稳定存在下 去.
双向Ti质粒载体的构建
第三节 噬菌体衍生的克隆载体
E)抗性基因:抗菌素抗性基因,Apr,Tcr. F)产毒素基因:大肠杆菌素基因(Col-质粒). G)降解基因:降解重金属、有机物和农药等.
H) 致瘤基因:诱导某些组织形成肿瘤,如Ti质粒,Ri质粒.
2 几种常见的质粒载体
1)pBR322:含有双抗基因(Apr,Tcr)Col E1 复制起始子
2)pUC18-19:含有pBR322的Apr基因和复制的起始点,
质粒载体的一般特性
质粒的组成与构型 细胞内:超螺旋环状共价双链DNA分子
细胞外:超螺旋、开环,线形
双螺旋共价闭合 环(超螺旋)
开环双螺旋 (一个裂口)
线状双螺旋 (两个裂口)
质粒DNA分子的大小:细菌质粒的大小相差较大, 小的仅不足1kb,大的可达数百kb.
不相容性(Incompatible):两种类似的但又不 同的质粒不能存在于同一细胞中.
部分缺失的Lac操纵子片段,并在Lac Z’区组装了MCS.
pUC 18-19多克隆位点
3)pBluescript M13: 含有M13噬菌体DNA复制起点的载
体,该起点以互为相反方向插入到含有T3和T7噬菌体启动
子的一个来自pUC质粒的载体当中.
pBluescript M13多克隆位点
4)Ti质粒载体
相关文档
最新文档