克隆载体与表达载体教程文件

合集下载

克隆载体表达载体构建详细版

克隆载体表达载体构建详细版

一、稀释引物1、4℃,15min、13000转离心(先等离心机降温)2、根据OD值加DD水。

3、静置30min(冰上)4、准备1.5毫升EP管,并加90ulDD水。

5、向EP管中加10ul引物,震荡离心,-20℃保存。

二、跑MIX检测引物(20ul体系)、上引物0.8ul下引物0.8ulMix 10ulDNA(日本晴)1ulDD水7.4ul三跑高保真酶(50ul体系)DNAorCDNA 2ul上引物2ul下引物2ul5*buffer 10uldNTPs 5ulDD水28ulPfu(最后加)1ul四胶回收流程1、在紫外线下切胶,用牙签装入2ml的EP管中。

2、按量加XP2,放在55℃水浴锅中10min,每2min摇匀1次,涡旋,短离。

3、将液体冷却到室温,转移到平衡住中,离心10000转,1min30s,倒掉滤液。

4、加入xp2 300ul,离心10000r,1min30s,倒掉滤液。

5、加入spw700ul,离心10000r,1min,倒掉滤液(重复一次)6、空转2min,13000r,之后换1.5mlEP管。

7、套上保鲜膜放入37℃烘箱中,30min。

8、加入DD水10ul,静置2min,离心2min,13000r,重复3次,-20℃保存。

五、胶回收产物检测(10ul)体系上引物0.4ul下引物0.4ulMix 5ul回收产物1ulDD水 3.2ul六、构建blunt cloning 载体(克隆载体)(4ul 体系)胶回收产物 3.5ulBlunt cloning 0.5ul混匀后,PCR:25℃15min 盖子温度50℃之后转化1、提前5min从-70℃冰箱中拿出大肠杆菌感受态,冰上解冻5min。

2、将样品(4ul)加入感受态的大肠杆菌中,冰上30min,大约剩5min左右,打开水浴锅预热到42℃,并拿出SDC 培养基解冻(室温解冻)。

3、水浴锅42℃,60-90s迅速转移到冰浴2min,该过程中不要摇动离心管。

(整理)克隆载体与表达载体

(整理)克隆载体与表达载体

一部分:概念解析二部分:问题解答克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。

克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。

克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。

(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。

) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。

是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。

表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。

表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。

表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。

如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。

其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。

在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。

(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。

这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。

克隆载体-精品

克隆载体-精品

转移特征: 分转移性和非转移性两个特征
命名规则: pUC19
“p”表示质粒(plasmid)
“UC”表示发现或构建该质粒的作者或实验室名称
“19”表示该质粒的实验编号
2020/7/2
9
质粒的生物学特性
1. 寄生性,质粒的宿主范围很广 2. 稳定性 3. 自主复制性,质粒的拷贝数多 4. 传递性 5. 表型效应 6. 可消除性 7. 重组性 8. 分子量较小 9. 不相容性,两种亲缘关系密切的不同质粒,不能够在同
5. Phagemid载体
一类由噬菌体功能片段和质粒构建的复合载体
2020/7/2
6
I
细菌质粒 载体
II
噬菌体 载体
III
柯斯质粒 载体
2020/7/2
7
I.细菌质粒载体
概念: 质粒是细菌细胞内独立于细菌染色体而自然存在的、 能自我复制、易分离和导入的环状双链DNA分子
质粒是基因工程中最常用的运载体 而最常用的质粒是大肠杆菌的质粒
质粒的复制能在宿主细胞外完成吗? 质粒的存在对宿主细胞有无影响?
2020/7/2
8
分类:
F质粒(F因子或性质粒)
R质粒(抗药性因子)
Col质粒(大肠杆菌素因子)
复制类型: “严紧型”的低拷贝复制质粒(拷贝数少,为1-5个) 与“松弛型”高拷贝复制质粒的(拷贝数多,可达10-200个拷 贝)。因此,作为载体的质粒应该是松弛型的。
一个寄主细胞系中稳定地共存的现象
质粒能够“友好”地“借居”在宿主细胞中。一般来说,质 粒的存在与否对宿主细胞生存没有决定性的作用。但是,质粒的 复制则只能在宿主细胞内完成
2020/7/2
10
质粒载体的修饰改造

克隆载体与表达载体

克隆载体与表达载体
质粒载体,其5'端各带有一个不配对的脱氧胸腺嘧 啶(T),用该载体可进行PCR产物的直接克隆。
TA载体构建:
在 般质粒载体的基础上构建。
方法1:先米用限制性内切核酸酶酶切使质粒载体线性化,再通过K1enow片
段将酶切的线性载体末端补平
方法2:利用产生平末端的限制性内切核酸酶酶切产生平末端,最后将线性化 钝末端质粒载体加T反应形成。目前有很多公司推出了TA质粒载体。
1)通过裂解过程增殖载体2)载体与外源DNA的酶
切3)外源DNA与载体的连接4)重组噬菌体的体外 包装5)包装噬菌体颗粒的感染6)筛选(入噬菌体载 体的克隆原理)
插入式载体
置换型载体
(取代型载 体)
M
13噬 菌体 载体
M13噬菌体的基因组 为单链DNA。噬菌体颗 粒的大小受其DNA端 点制约的,不存在包装 限制。只感染雄性大肠 杆菌
入噬菌体载体
入噬
菌体
载体
分类
插入式载体
一种只具有一 个可供外源DNA插入的克 隆位点的派生 载体
入噬菌体载体相对于质粒载体失活:如 入gt10、入NM1149等载体,在cl基因上有EcoRI及Hi ndIII的酶切位点。外源基因 插入后将导致cI基因的失活。cI基因失活后将导致噬菌体不能溶原化,产生清晰的噬菌斑。相反,产生混浊的 噬菌斑。
(1)基因组大小;去除非必需区,建立外 源DNA片段的克隆或替换位点(2)在DNA的非必需区插入选择标记:lacZ
基因;基因c1失活(cl基因:溶源 过程控制基因);Spi筛选(野生型入 噬菌体在带有P2原噬菌体的溶源性
E.coli中 的生长会受到限制的表型, 称 作Spi+,即对P2噬菌体的干扰敏感)
BAC

【学习课件】第三章基因克隆与表达的载体

【学习课件】第三章基因克隆与表达的载体

分子量大,拷贝数少,宿主广,不符合基因工程的安全要求
2021/7/9
21
大肠杆菌接合(conjunction)
2021/7/9
22
Donor cell
Conjugative plasmid
Recipient cell
Pilus 菌毛
Plasmid transfer by conjugation between bacterial cells.
colicin E1能杀死不含ColE1 质粒的菌。
可以通过插入失活筛选。但细菌群体容易自 发突变出抗colicin E1的细胞…….
2021/7/9
29
2、质粒载体的构建:
(1) 具有复制起始位点(ORI) 一般选择组装松弛型质粒复制起始位点。 (2)具有合适的选择标记基因 是筛选的标志。理想的载体应该有两种选择标记基因
(3)若干限制性内切酶的单一位点(MCS)
用来插入外源DNA片断,且插入后不影响复制功能
2021/7/9
30
2021/7/9
31
(4)具有较小的分子量和较高的拷贝数
缩短长度-“轻装上阵”,大于15 kb的质 粒的转化率明显下降
2021/7/9
32
3、质粒的选择标记及其工作原理
(1)选择标记
① 抗生素抗性
存在于多种宿主细胞中、独立于染色体以外的可自主复 制的双链闭合环状DNA分子。
存在于细菌、霉菌、蓝藻、酵母等细胞中。
2021/7/9
9
大肠杆菌的质粒
2021/7/9
10
(一)质粒( Plasmid )的命名
质粒的命名规则
① 天然存在的质粒:其符号的第一个字 母要大写,并不用斜体字,书写时要 用括号括起来,如(ColE1)。

分子克隆载体 ppt讲义转pdf

分子克隆载体 ppt讲义转pdf
AU A G C A CG GC CG CG GC 5’…AUACCA UUUUUUUUU…3’ ’… …
UUUU...…
RNA­pol RNA pol ­
5¢ 5 ¢ 3¢ 3 ¢ 3¢ 3 ¢ 5¢ 5 ¢
5´pppG 5
茎环结构使转录终止的机理 茎环结构使转录终止的机理
一、pBR322
调控序列
增强子 启动子
结构基因
UAS 酵母
TATA
核糖体结合位点(S-D序列)
mRNA有与核糖体DNA结合的位点S-D 序列 (Shine-Dalgarno),又称为核糖体结合点。
3’… A CACUAGG…5’ 16sRNA U C U-C-C-U 5’……A G G A PuPuUUUPuPu…AUG mRNA
表达体系的发展
表达体
第一代 原核生物表达体系 第二代 酵母表达体系 第三代 哺乳类细胞表达体系 第四代 基因直接导入
载体
质粒、噬菌体 穿梭质粒 病毒、脂质体 DNA本身
宿主
细菌 酵母 培养细胞 生殖细胞、 体细胞、个体
基因工程的目的是使目的基因能高效表达。 基因表达受DNA结构、蛋白质因子与核酸相互辨认、结 合等组成的表达体系的调控。 基因表达调控可在转录、转录后修饰、翻译、翻译后修 饰等水平进行 基因工程载体的构建必需应用表达调控的基本理论知 识,应用已知的调控序列进行重组、改造。
P
O
Z Y X
诱导物 诱导物
乳糖(或IPTG)
P O
Z Y X
Am
lacZ
N H 2
COOH
a片段 片段
w片段 片段
lacZ
标志补救(ß-半乳糖苷酶法) ß 半乳糖苷酶法)

基因工程第三章克隆载体-2共32页

基因工程第三章克隆载体-2共32页
5
6/31
6
(2)λDNA 有56个限制酶识别序列,50个基因, • 左臂,右臂和中央片段,中央片段可以被替代。
right arm left arm
左 臂
7/31
溶菌成熟
Cos
头部合成
晚期控制 DNA合成 阻遏 早期控制
尾部合成
阻遏 重组 删除与结合
中央片段
central stuffer
右 臂
7
10/31
10
(3)插入外源基因(foreign gene) • 可插入20kb的目的基因。
11/31
11
基因组DNA 部分消化
COS
DNA ligase
L
R COS L
Aim gene
12/31
20kb的DNA片段
Aim gene
R COS
12
(4)建立λDNA体外包装系统(packing system)
17
一、定位整合模式
Homologous sequence
Foreign DNA
Homologous sequence
18/31
Vector DNA Genome DNA of receptor cell
Vector DNA
Genome DNA 3
1.1、λ 噬菌体的性质
(1)λDNA: • 线状,双链DNA, 48502bp (linear,double-stranded DNA,dsDNA) • cos位点:λDNA两端各有12bp的粘性末端,
两者互补,进入宿主后可连成环状DNA。
4/31
4
λDNA 头部 尾部 尾丝
5/31
宿主细胞
15/31

何水林版基因工程第三章分子克隆载体PPT演示课件

何水林版基因工程第三章分子克隆载体PPT演示课件

2012年3月
第三章分子克隆载体
湖北民族学院-周毅峰
1质粒的基本特性 1.1 质粒DNA的构型
两条多核苷酸链均保持着完整的环形结构, 称为共价闭合环形DNA(cccDNA),通常 呈现超螺旋的SC构型
只有一条DNA链出现有一至数个缺口,称 为开环DNA(ocDNA),此即OC构型
线性分子DNA(IDNA),称为L构型
2012年3月
第三章分子克隆载体
湖北民族学院-周毅峰
How many copies can be
? replicated
2012年3月
第三章分子克隆载体
湖北民族学院-周毅峰
answers
Repressor model: cop factor
Negative control Antisense RNA model: RNAⅠ
2012年3月
第三章分子克隆载体
湖北民族学院-周毅峰
2012年3月
第三章分子克隆载体
湖北民族学院-周毅峰
1.2 质粒DNA分子大小
质粒 pPbs ColE1 ColV2
Ti PV21
F
宿主 蓝藻 大肠杆菌 大肠杆菌 致癌农杆菌 三叶草根瘤菌 大肠杆菌
分子大小/kb 1.5 6.4 140
330左右 700 94
பைடு நூலகம்
2012年3月
第三章分子克隆载体
湖北民族学院-周毅峰
pBR322 4363 bp
2012年3月
第三章分子克隆载体
湖北民族学院-周毅峰
按功能分类
克隆载体 (cloning vector)对目的基因克隆,建立DNA 和cDNA,其上有复制子即可
表达载体 (expression vector)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。

克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。

克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。

(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。

)
其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。

是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。

表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。

表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。

表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。

如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。

其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。

在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。

(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。

这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。

根据发现者的名字,命名为Shine-Dalgarno序列,简称S-D序列。

由于它正好与30S小亚基中的16s rRNA3’端一部分序列互补,因此S-D序列也叫做核糖体结合序列。

真核生物存在于真核生物mRNA的一段序列,其在翻译的起始中有重要作用。

加Kozark sequence(GCCACC), Kozak sequence是用来增强真核基因的翻译效率的。

是最优化的ATG环境,避免ribosome出现leaky scan)
克隆载体目的在于复制足够多的目标质粒,所以常带有较强的自我复制元件,如复制起始位点等,往往在菌体内存在多拷贝,所以抽质粒会抽出一大堆。

但不具备表达元件。

而表达质粒有复杂的构成,为的是控制目标蛋白的表达,如各种启动子(T7),调节子(LacZ)等,而且以pET为代表的表达载体在菌体内都是低拷贝的,防止渗漏表达。

克隆载体只是把你要的基因片段拿到就可以了,不管读码框什么的,但是表达载体是不但要你的目的基因连在上面,而且要表达蛋白,所以就要求你的读码框不能乱了,否则就不能得到你想到的表达产物。

1.载体即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。

2. 载体的分类
按功能分成:(1)克隆载体: 都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。

它是用来克隆和扩增DNA片段(基因)的载体。

(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs等)还具有转录/翻译所必需的DNA顺序的载体。

按进入受体细胞类型分:(1)原核载体(2)真核载体(3)穿梭载体(sbuttle vector)指在两种宿主生物体内复制的载体分子,因而可以运载目的基因(穿梭往返两种生物之间).
克隆载体顾名思义就是质粒拷贝数比较高,在做上游克隆时比较方便, 其重点在于质粒的复制.
问题:
基因工程中有克隆载体和表达载体,克隆载体可以在受体菌中大量复制,表达载体用于表达目的蛋白,那么实际应用中,我们的最终目的是要得到目的蛋白,克隆载体不能完成表达,有何用呢?还是说利用克隆载体实现目的基因的大量复制后,再将其转移到表达载体中实现表达?它是否有何缺陷不能整合克隆载体的功能?构建兼有克隆和表达双重功能的载体有何困难?
1.克隆的目的比较单一,就是将你感兴趣的DNA片段,重组进入载体,然后于宿主细胞中大量繁殖,主要用于各种文库的建立,比如人类基因组计划;同时由于载体所能容纳的目的片段的长度是有限的,而克隆载体没有表达所需的各种片段,所以可以容纳更长的目的片段,即可以克隆足够长的基因,效率更高。

2.重组DNA需要使用限制性内切酶,因此待克隆的目的片段两端必需有其识别位点,现在的T/A克隆载体可以直接克隆PCR产物,省去了两端加装识别位点的设计,PCR效率就更高。

3.表达载体的目的是多样化的,为了实现实际工作中的需要,不同的目的就要设计不同的载体,用表达载体克隆基因不是不可以,实际工作中要考虑更多,因此更复杂。

4.细菌摄取能量的能力是一定的,如果用来合成大量蛋白质,合成核酸就会少。

5.细菌承受的工作负荷也是有限的,给它的工作太多,效率必然低下,这和我们日常生活是一个道理。

原因很简单,不是不能,是完全可以,但是效率会低很多。

所以我们一般的策略是,将目的片段克隆于非常简单的克隆载体上,按照需要再亚克隆于可以满足各种要求的表达载体上。

回答的不是很系统,如有问题可以继续来信讨论,希望对你有所帮助。

1)
2)“T/A克隆载体可以直接克隆PCR产物,省去了两端加装识别位点的设计,PCR效率就
更高。

”是什么意思?
T/A克隆载体是PUC载体的线性化后两端加了T,而Taq酶有在PCR产物后随机加A的特性,所以PCR产物直接可以接入T载体。

而经典的克隆PCR产物需要限制性内切酶切割后接入载体,所以在设计PCR引物时两端要加酶的识别位点,而加装的序列与模板不配对,因此PCR效率会低很多。

3)
4)克隆载体只是为了得到大量的目的基因,而现在多用PCR就可以达到这个目的。

那这
个目的基因的主要用途是什么?只用来测序吗?表达载体应该兼有克隆与表达的功能的吧?
嗯,基本是这个意思。

就测序不克隆也可以进行,克隆到载体的CMS中就在基因两端有了可供你选择的很多限制性酶切位点,方便亚克隆到各种表达载体上。

当然表达载体可以克隆,但是效率低于克隆载体。

一是因为表达载体不能直接克隆PCR产物,必须加装限制性酶切识别序列,上面已经讲过。

二是表达载体的选择相对克隆载体是更加严谨型的质粒,就是每个细菌里的拷贝数较低,能量守恒,细菌摄取能量的能力是一定的,用来合成蛋白质,核酸的合成必然受一定得限制。

5)我要构建一个基因的载体,
1.我可以将目的基因(1.3kb左右)和表达载体分别作酶切后连接吗?这几天将目的基
因做了一个T载体连接,可是不知道下一步怎么利用?
2.设计引物的时候用了sac1和hind111,做pcr的时候可以用pfu酶吗?pfu酶是必
须的吗?
3.我选择的表达载体上sac1和hind111的酶切位点只是相差两个碱基,做双酶切的时
候能切开吗?
1.如果你的目的基因已经在T载体上,当然可以分别酶切后连接,但是要注意方向。

2.如果是T载体连接PCR的引物可以不设计酶切位点。

T载体可以直接连接PCR产物源
于其末端错加的A,所以不能使用高保真的PFU。

但是你的扩增片段较长,如果用一般的TAQ酶,合成中可能会出错,用PFU准确度高,需要设计酶切位点。

如果PCR产物设计了酶切位点就可以直接克隆进需要的载体,不必借助T载体。

文献上有报道,按1:1的比例混合使用PFU和TAQ效果更好。

3.应该能切开,因为设计引物时保护碱基也就2到3个,但是最好稍微距离远一点。

相关文档
最新文档