ansys板中圆孔的应力集中
平面问题

2.定义单元类型 (1)确定选用solid平面单元(plane182或者plane183)
plane182
plane183
(2)plane182关键字的设置
K3:设置单元特性 Plane stress:不考虑厚度的平面应力(默认选项) Axisymmetric:轴对称 Plane strain :平面应变 Plane strs w/thk:考虑厚度的平面应力 Genrl plane strn:广义的平面应变
拉力为负
7.定义分析类型
8.求解
Von mises stress应力
实例:平面对称问题
实例[2]:如图平板,尺寸(mm)及载荷 如图所示。已知板厚t=2mm,材料弹性模 量E=2×105N/mm2,泊松比v=0.3,求平 板的最大应力及其位移。
解题思路:
1.该问题属于平面应力问题
2.根据平板结构的对称性,只需分析其中的四分之一即可。即如下简化模型:
(3)plane182实常数的设置
板的厚度
3.定义材料属性
4.建立几何模型
注意:平面问题,模型必须建立在总体坐标系下的xy平面
5.划分网格
5.施加载荷与约束
(1).施加约束
(2).施加载荷
q t 20 20 1N/mm2
注意:在平面问题和空间问题中,分布载荷均以压力为正,
平面问题的分析求解
Ansys求解基本步骤
1.确定问题的分析类型
2.定义单元类型
3.定义材料属性
4.建立几何模型 5.划分网格 6.定义约束与载荷 7.定义分析类型 8.求解 9.查看结果,分析结果的正确性。
实例
平面问题:板中圆孔的应力集中 如图所示板件,其中心位置有一个小圆孔,尺寸(mm)如图所示。 弹性模量E=2.1×105MPa, 泊松比v=0.3 拉伸载荷:q=20N/mm
基于ANSYS的有限宽板孔边应力集中分析

4 结论
圆孔附近发生了明显的应力集中现象 ,且孔径越小应力集中越明显 ,应力突然变大的趋势越快 . 参考文献 :
[1 ] 徐芝纶 . 弹性力学简明教程 : 第 2 版 [M] . 北京 : 高等教育出版社 ,1993. [2 ] 王国强 . 实用工程数值模拟技术及其在 ANSYS 上的实践 [M] . 西安 : 西北工业大学出版社 ,1999. [3 ] 刘 波 ,曹晓东 . 平板中心圆孔边应力集中的有限之分析 [J ] . 石油化工设备技术 ,2004 ,25 (5) :20~23. [4 ] 朱晓东 ,覃启东 . 基于 ANSYS 平台含圆孔薄板的应力集中分析 [J ] . 苏州大学学报 ( 工科版) ,2004 ,25 (5) :20~23. [5 ] 张胜明 . 基于有限元软件 ANSYS/ 7. 0 的结构分析 [M] . 北京 : 清华大学出版社 ,2003.
图1 带孔平板
第 1 期 张宁锋 : 基于 ANSYS 的有限宽板孔边应力集中分析 ・35 ・
析中采用八节点实体单元 PLANE82 ,单元属性设置为 Plane stress w/
thk ,弹性模量和泊松比分别为 200 GPa 和 0. 3 ,边界条件为 x = 0 , UX = 0 ; y = 0 , UY = 0 . 在板远端作用有沿 x 轴方向的 100 MPa 的均匀
( 上接第 19 页)
参考文献 :
[1 ] BARTTREPAK,辛晓英 . 虚拟红外防盗报警器 [J ] . 家庭电子 ,2001 , (10) :33~34. [2 ] 魏立君 ,韩华琦 . 1COM S40000 系列 60 种常用集成电路的应用 [M] . 北京 : 人民邮电出版社 ,1995. [3 ] 蔡凡弟 . 门窗监控远距离转发报警器 [J ] . 电子世界 ,1999 , (10) :28~31. [4 ] 赵建华 ,张荷芳 ,李 静 . 门窗监控远距离转发报警器 [J ] . 现代电子技术 ,2001 , (8) :37~39. [5 ] 李建华 . 实用遥控器原理与制作 [M] . 北京 : 人民邮电出版社 ,1996.
【静力分析】AnsysWorkBench验证应力集中系数

【静⼒分析】AnsysWorkBench验证应⼒集中系数应⼒集中是在零件上普遍存在的现象,有各种各样的应⼒集中被计算出来,这次使⽤板中央有孔的零件来计算应⼒集中系数。
新建静⼒分析(Static Structural)导⼊模型后,在DM中打开模型,右键Import1 > Generate,⽣成模型。
使⽤Manual(⼿动⽅式)⽣成中⾯。
点击Tools > Mid-Surface > 选择模型的两个⾯ > Apply(系统默认使⽤⼿动⽅式);右键Midsurf1 > Generate,⽣成中⾯。
使⽤⾃动⽅式⽣成中⾯。
⽣成中⾯可以使问题简化,求解更加快速。
点击Tools > Mid-Surface > Selection Method :Aotumatic;在Min和Max Threshold处分别填1和3,代表最⼩壁厚为1mm,最⼤壁厚为3mm;Find Face Pairs Now:Yes,⽴即查找⾯对,此时在Face Pairs处出现数字1,表⽰已经⾃动找到⼀个⾯对。
右键Midsurf2 > Generate,⽣成中⾯。
退出DM,进⼊静⼒分析。
划分⽹格。
设置⽹格尺⼨右键Mesh > Insert > Sizing > 选中中⾯ > Apply;Element Size:0.5mm。
设置映射⽹格右键Mesh > Insert > Face Meshing > 选中中⾯ > Apply右键Mesh > Generate,⽣成⽹格。
设置边界条件设置固定约束点击A5 > Supports > Fixed Support > 选中中⾯的⼀个短边 > Apply设置⼒点击A5 > Loads > Force > Magnitude :100N;Direction:选择⼀个长边,将板拉伸。
平板孔口应力集中的ANSYS有限元分析喻光安

平板孔口应力集中的ANSYS 有限元分析一、开孔的应力集中和应力集中系数容器开孔后使承载截面减小,破坏了原有的应力分布,并产生应力集中,而且接管处容器壳体与接管形成不连续结构而产生边缘应力,这两种因素均使开孔或开孔接管部位的局部应力比壳体的薄膜应力大,这种现象称为开孔的应力集中。
常用应力集中系数t K 来描述接管处的应力集中特性。
未开孔时的名义应力为σ,开孔后按弹性方法计算出最大应力若为max σ,则弹性应力集中系数的定义为σσ/max t =K 。
下面以两向拉伸应力作用下的平板为例,利用ansys 有限元分析得出平板的受力情况,求出t K 的值,并与理论解作分析比较。
二、两向拉伸应力作用下平板的理论分析。
如图所示为无限平板受21σσ≥两向拉伸应力作用,由弹性力学的知识可得A 、B 两点的应力为213σσσ-=A ,12-3σσσ=B比较可得 1211max t -3σσσσσ==K 当σσσ==21时 2-31211max t ===σσσσσK 当σσ=1,σσ212=时 5.20.5-31max t ===σσσσσK三、建立模型。
设有中心带圆孔的长方形平板,板的厚度为0.05m ,圆孔的孔半径r=0.05m,材料的弹性模量E 为2e11,泊松比为0.3,板长度为30m ,宽度为230m ,m N /401=σ,m /202N =σ2σ 平板开小圆孔的应力集中取四分之一薄板,模型如下:对模型进行网格划分并施加荷载,并对圆孔周围的区域进行局部网格划分,划分后的模型。
,Ansys计算后的应力云图如下:由应力云图可知,圆孔处最大应力m N /27.100max =σ 验证公式当m /401N ==σσ,m N /20212==σσ时 50675.24027.1001max t ≈==σσK ,基本符合理论解2.5。
ANSYS分析平面带孔平板报告

ANSYS分析平面带孔平板报告本报告主要针对一个平面带孔平板进行分析。
首先,我们将介绍分析目的和模型的几何参数。
然后,我们将讨论所选的材料特性和应用于模型的加载条件。
接下来,我们将详细描述ANSYS软件的使用方法和分析结果。
最后,我们将通过讨论结果和得出的结论总结整个分析过程。
1.分析目的和模型几何参数本次分析的目的是研究平面带孔平板的应力分布和变形情况。
为了进行分析,我们选择了一个矩形平板作为模型,并在中间位置加入一个圆形孔洞。
模型的几何参数如下:- 平板长度:L = 100 mm- 平板宽度:W = 50 mm- 孔洞直径:D = 10 mm2.材料特性和加载条件本次分析中,我们选择了一个均匀材料模型来代表平板的材料特性。
该材料的弹性模量E和泊松比ν分别设置为100GPa和0.3、我们将加载模型的边界条件设置为在平板的一侧施加一个垂直向下的恒定压力。
3.ANSYS软件的使用方法和分析结果我们使用ANSYS软件进行了分析。
首先,我们创建了平板的几何模型,并在模型中添加了孔洞。
然后,我们定义了材料特性和加载条件,并生成了有限元网格。
接下来,我们使用ANSYS的力学分析功能进行了平板的弹性力学分析。
我们计算了平板的应力分布和变形情况。
结果显示,在施加压力后,平板会发生弯曲,并且应力集中在孔洞周围。
边缘的应力较小,呈现均匀分布。
另外,我们还计算了平板的挠度,并绘制了挠度云图。
结果显示,孔洞周围的挠度较大,而边缘附近的挠度较小。
这是由于孔洞周围的应力集中导致的。
4.结果和讨论通过对分析结果的讨论,我们得出以下结论:-孔洞会导致平板发生应力集中,并增加了平板的应力水平。
-孔洞周围的挠度较大,而边缘附近的挠度较小。
-平板的应力分布和变形情况与材料特性、加载条件以及孔洞的大小和形状有关。
5.总结本报告详细描述了对平面带孔平板的应力分析。
通过使用ANSYS软件,我们能够计算平板的应力分布和变形情况,从而对平板的性能和行为进行评估。
薄板圆孔的ANSYS分析

板中圆孔的应力集中问题:如图所示为一个承受单向拉伸的无限大板,在其中心位置有一个小圆孔。
材料属性为弹性模量E=211Pa,泊松比为0.3,拉伸载荷q=1000Pa,平板厚度t=0.1.1、定义工作名和工作标题(1)定义工作文件名:在弹出的Change Jobname对话框中输入Plate。
选择New log and error files复选框,单击OK按钮。
(2)定义工作标题:在弹出的的Change Title对话框中输入The analysis of plate stress with small circle,单击OK按钮。
(3)重新显示:执行replot命令。
2、定义单元类型和材料属性(1)选择单元类型:在弹出的Element Type中,单击Add按钮,弹出所示对话框,选择Structural Solid和Quad 8node 82选项,单击OK,然后单击close。
(2)设置材料属性:在弹出的define material models behavior窗口中,双击structural/linear/elastic/isotropic选项,弹出linear isotropic material properties formaterial number 1对话框,EX和PRXY分别输入2e11和0.3,单击OK,执行exit命令。
(3)保存数据:单击SAVE_DB按钮。
3、创建几何模型(1)生成一个矩形面:执行相应操作弹出create rectangle by dimensions对话框,输入数据,单击OK,显示一个矩形。
(2)生成一个小圆孔:执行创建圆的操作弹出对话框,输入数据,单击OK,生成一个圆。
(3)执行面相减操作:执行Booleans/Subtract/Areas命令,生成结果如图示。
(4)保存几何模型:单击SAVE_DB按钮。
4、生成有限元网格(自由网格划分)(1)设置网格的尺寸大小:执行size cntrlsl-global-size命令,弹出对话框,在element edge lenge文本框中输入0.5,单击OK.(2)采用自由网格划分:执行mesh/areas/free命令,生成网格模型如图示。
ANSYS上机算例孔板应力集中问题

添加单元 类型
图4-9 单元类型库对话框
图4-8 单元类型对话框
由于12.0版本后对单元类型进行了合并,之前的很多 单元类型在12.0以后在添加页面不见了,但是可以用 命令流的形式调用。格式如下:
ET,1,82
在Element Types对话框中,如图4-10所示,单击Options,弹出如 图4-11所示对话框,设置K3选项栏为Plane strs w/thk,设置K5选 项栏为Nodal stress,设置K6选项栏为No extra output。表示单元 是应用于平面应力问题,且单元是有厚度的。
如图4-20所示对话框,在SIZE选项栏中填寸对话框
越小划分 的越细
运行Mesh>Mesh Tool, 弹出如图4-21所示对话框, 在Shape选项栏后面,选择 Tri和Free,单击Mesh.划分 网格,网格划分如图4-22 所示。
长方形上边
图4-24 拾取要施加载荷的边
(8)求解 运行Solution>Solve>Current LS,弹出如图4-26所示对话框。单 击OK按钮,开始计算,计算结束会弹出计算完毕对话框,单击Cl ose关闭对话框,计算完毕。
图4-25 施加载荷对话框
图4-26 求解当前步载荷对话框
(9)后处理 运行 General Postproc>Plot Results>Contour Plot> Nodal Solu,弹出如图4-27所示对话框,运行DOF Solution>Displacement vector sum和Stress>von Mises stress,分别显示长方形面板的位移云图和应力云图。 结果显示如图4-28和图4-29所示。
基于ANSYS+Workbench的理论应力集中系数的求法

带孔平板的等效应力最大值为 189.19MPa,如图 4 所示。
-3-
iL。
一}詈掌。虹
图 4 等效图应力云图
2.6 结果后处理
ANSYS Workbench 中采用应力线性化工具,可以将穿过截面的应力分解成常量应力(membrane 膜应力)和线性应力(bending 弯曲应力)。应力线性化工具使用由两个点定义的路径,如图 1 中截 面由路径相匹配的两个端点(点 N1 和点 N2)和 47 个中间点(通过自动线性插值)定义。点 N1 和 N2 通常设定在自由表面上。
-5-
一种有效途径。
4 参考文献
[1] Budynas−Nisbett.Shigley’s Mechanical Engineering Design·8th(M).McGraw−Hill Primis,2006 [2] 孙训方.材料力学(M).北京:高等教育出版社,2002,8 [3] 王勖成.有限单元法(M).北京:清华大学出版社,2003,7 [4] ANSYS Inc.ANSYS Help,2010
时,才能够使用该方法得出的应力集中系数。如果没有执行网格研究而沿着危险截面路径上网格数
量不足,那么不能使用该
K t
值,这样会导致
K t
偏小。
3 结论
通过本文的研究得出了一种使用 ANSYS Workbench 中应力线性化工具通过膜应力求出应力集中 系数的方法,该方法具有不受几何形状和实验数据缺少的限制,可以作为求解理论应力集中系数的
腱。。有上述计算结果,可得出圆孔处的理论应力集中系数为:
K t
=σ Biblioteka ax σm=188.81 79.417
= 2.38
[1]
根据查阅工程手册 的图表可知,该圆孔处的理论应力集中系数为 2.28 与计算结果很接近。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!板中圆孔的应力集中
/batch
/triad,off
/filname,plate,1
/title,The Analysis of plate stress with small circle /replot
!利用对称性,只建立1/4模型;
/prep7
rectng,0,10,0,10
cyl4,0,0,5
asba,1,2
save
et,1,plane82
mp,ex,1,2e11
mp,prxy,1,0.3
save
!拾取角点,划分映射网格
esize,0.5,0
amap,3,5,2,4,6
save
finish
!施加边界分布载荷和位移约束,求解
/solu
dl,9,,uy
dl,10,,ux
sfl,2,pres,-1000
sfl,3,pres,-1000
solve
save
fini
/post1
pldisp,1
prnsol,s,comp
!显示模式扩展
/expand,4,polar,half,,90
plnsol,s,eqv,0,1
/device,vector,1
fini
实例评析
1.利用模型的对称性,只建立1/4模型,在对称面上施加约束;在后处理中对模型进行扩展,扩展的命令方式为:/expand,4,polar,half,,90,表示复制4块,以极坐标形式,half 表示先做对称变换,再复制,DY方向每隔90度复制一个;GUI:
utility>menu>plotctrl>style>symmetry expansion>详细参见/expand命令说明;
2.圆孔附近映射网格的划分,在拾取角点或者连接线时,注意一定是把圆孔对面的两个或多个边合为一个,而把与圆孔相接的两个边各自作为一条线保留;从本例和《ANSYS 工程分析软件应用实例》——周期对称结构的静力分析实例的网格划分中就可以看出来3.分布载荷的施加,本例在线上施加均布载荷,命令为:sfl,2,pres,-1000此命令表示在线上施加面载荷,具体到本命令流意义为在线2上施加压力pres,均布为-1000,面力的方向指向面内,此处为负,则方向反向,指向面外;另外可参看sfgrad命令关于梯度,梯度方向,梯度原点梯度参考坐标系的概念;在柱坐标系和球坐标系中奇异点的概念;对称性模型约束面外平动自由度和转动自由度,只允许在其面内自由平动和自由转动,反对称约束刚好相反,约束面内的转动自由度和平动自由度,允许在其面外自由转动和平动,建模过程中只建立部分模型,在对称面或反对称面上施加约束,在后处理器中对结果进行对称扩展;对于有多个侧面的单元,还必须指定载荷施加的侧面编号LKEY,缺省时为侧面1;对于梁单元上压力载荷的施加,要指定IOFFT和JOFFT;
4.本例属于平面应力问题,选取了plane82单元,此单元是为8节点二次单元,对应的4节点一次单元为plane42,plane82单元具有谐变形能力,更加适合与曲线附近的网格划分,而plane42单元则没有此能力;所以在本例中选取了plane82单元,具有一下选项:KEYOPT(3)
0 --
Plane stress
1 --
Axisymmetric
2 --
Plane strain (Z strain = 0.0)
3 --
Plane stress with thickness (TK) real constant input。