运筹学网络最优化问题

合集下载

运筹学中的最优路径规划算法研究与优化

运筹学中的最优路径规划算法研究与优化

运筹学中的最优路径规划算法研究与优化运筹学是研究在特定的限制条件下如何做出最佳决策的学科。

在运筹学中,最优路径规划是一项重要的研究内容。

最优路径规划的目标是找到在给定条件下从起点到终点的最短路径或最优路径。

这项技术广泛应用于物流管理、交通规划、航空航天、电子商务和人工智能等领域,为提高效率、降低成本和优化资源利用提供了良好的支持。

运筹学中的最优路径规划算法有很多种,每种算法都有其独特的优势和适用场景。

下面将重点介绍几种常见的最优路径规划算法和其优化方法。

(一)迪杰斯特拉算法(Dijkstra Algorithm)迪杰斯特拉算法是一种广泛应用的单源最短路径算法,用于解决带有非负权值的有向图或无向图的最短路径问题。

该算法通过不断更新起点到各个节点的最短距离来找到最短路径。

迪杰斯特拉算法的基本思想是从起点出发,选择当前距离起点最近的节点,并将该节点加入到已访问的节点集合中。

然后,更新与该节点相邻的节点的最短距离,并选择下一个最短距离的节点进行扩展。

直到扩展到终点或者所有节点都被访问过为止。

为了优化迪杰斯特拉算法的性能,可以使用优先队列(Priority Queue)来选择下一个节点。

优先队列可以根据节点的最短距离进行排序,使得选择下一个节点的过程更加高效。

(二)贝尔曼福特算法(Bellman-Ford Algorithm)贝尔曼福特算法是一种用于解决任意两节点之间的最短路径问题的算法,可以处理带有负权边的图。

该算法通过对图中所有边进行多次松弛操作来得到最短路径。

贝尔曼福特算法的基本思想是从起点到终点的最短路径包含的最多边数为n-1条(n为节点数),因此算法进行n-1次松弛操作。

每次松弛操作都会尝试更新所有边的最短距离,直到无法再进行松弛操作为止。

为了优化贝尔曼福特算法的性能,可以使用改进的贝尔曼福特算法。

改进的贝尔曼福特算法通过剪枝操作去除不必要的松弛操作,从而减少算法的时间复杂度。

(三)弗洛伊德算法(Floyd Algorithm)弗洛伊德算法是一种解决带有负权边的图的任意两节点之间最短路径问题的算法。

运筹学优化问题和决策分析的方法

运筹学优化问题和决策分析的方法

运筹学优化问题和决策分析的方法运筹学是一门应用数学学科,旨在通过建立数学模型来解决决策问题,并运用优化算法寻找最优解。

在现代社会中,运筹学的应用已经渗透到各个领域,包括供应链管理、物流规划、生产调度等。

本文将介绍运筹学中的优化问题和决策分析的方法。

一、优化问题的基本概念在运筹学中,优化问题是指在一定的约束条件下,寻找某个指标的最优解。

优化问题可以分为线性优化问题和非线性优化问题。

线性优化问题的目标函数和约束条件都是线性的,而非线性优化问题的目标函数和约束条件涉及非线性关系。

在解决优化问题时,通常会使用数学建模的方法。

首先,将实际问题抽象为数学模型,然后建立数学模型的目标函数和约束条件。

接下来,运用优化算法求解模型,得到最优解。

二、常用的优化算法1. 线性规划线性规划是指优化问题的目标函数和约束条件都是线性的情况。

线性规划常常可以用单纯形法来求解,该方法通过迭代计算,逐步逼近最优解。

2. 非线性规划非线性规划是指优化问题的目标函数和约束条件涉及非线性关系的情况。

在求解非线性规划问题时,可以使用梯度下降法、牛顿法等方法。

3. 整数规划整数规划是指优化问题的变量需要取整数值的情况。

整数规划问题通常更加复杂,可以使用分支定界法、割平面法等算法求解。

三、决策分析的方法决策分析是指运用数学建模和分析方法来帮助决策者做出最佳决策。

决策分析的方法包括多属性决策分析、决策树分析、动态规划等。

1. 多属性决策分析多属性决策分析是指在考虑多个决策指标的情况下,综合分析各个指标的权重和价值,从而做出最佳决策。

常用的多属性决策分析方法包括层次分析法、模糊综合评判法等。

2. 决策树分析决策树分析是一种通过构建决策树来辅助决策的方法。

决策树是一种具有树状结构的决策模型,通过分析各个决策路径上的概率和收益来进行决策。

3. 动态规划动态规划是一种递推和状态转移的方法,常用于求解多阶段决策问题。

动态规划将决策问题分解为一系列子问题,并通过逐步求解子问题来求解原问题的最优解。

(运筹学与控制论专业优秀论文)一类最优化问题的算法设计

(运筹学与控制论专业优秀论文)一类最优化问题的算法设计
ii
知识水坝为您提供优质论文
承诺书
本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立 进行研究工作所取得的成果。尽我所知,除文中已经注明引用的内容 外,本学位论文的研究成果不包含任何他人享有著作权的内容。对本 论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明 确方式标明。
本人授权南京航空航天大学可以有权保留送交论文的复印件,允 许论文被查阅和借阅,可以将学位论文的全部或部分内容编入有关数 据库进行检索,可以采用影印、缩印或其他复制手段保存论文。
1.3 本文的主要内容
本文主要研究一类具有特殊形式的最优化问题,求解这一类最优化问题的全 局最优解,并应用到求解互补问题上。虽然目前已经有很多算法,但是我们考虑 到本最优化问题的约束条件是特殊的,因此可以利用约束条件的特殊性构造更为 简单有效的算法。
本文提出了一类新的函数,将它定义为半正定函数。利用这类函数将原问题; 分别转化为无约束最优化和含等式约束的最优化问,并分别设计了算法,进行了 数值实验,验证了算法的有效性。为了给出问题的全局最优解,我们又研究了算 法子问题的全局最优化算法,利用填充函数法来求解子问题。这样就保证了前面 设计的算法可以求得问题的全局最优解。最后,针对约束最优化问题(P),提出 了拟填充函数的概念,构造了一类拟填充函数并设计了算法。具体内容如下:
In this article we propose a new type of function, which is called a semi-positive function. We use this function to make another function, then we can turn the original problem into another one. We give algorithms and numerical results. Then we investigate the sub-problem. Also we propose the definition of quasi-filled function. We propose a quasi-filled function and design algorithm. It mainly contains the following six chapters:

运筹学在计算机网络优化中的应用研究

运筹学在计算机网络优化中的应用研究

运筹学在计算机网络优化中的应用研究随着计算机技术的不断发展和计算机网络的普及,网络运维已经成为各个企事业单位的重要部分。

而如何对网络进行优化以提高其性能和稳定性,就成为了当前亟待解决的问题。

在这个问题的解决过程中,运筹学展现出了不可替代的作用。

一、运筹学简介运筹学(Operations Research,OR)是一门研究各类决策问题的数学学科。

它可以帮助人们在面临不确定性的决策问题时,通过运用数学模型、统计分析、优化算法等工具和方法,获得全面的、科学的、合理的决策方案。

在现实生活中,它广泛应用于物流、生产、金融、管理、交通等领域。

二、运筹学在计算机网络优化中的应用在计算机网络中,路由算法、拥塞控制、分布式计算等问题都需要考虑网络节点之间的协作和数据传输的路由选择等方面的因素,这就需要对网络进行优化来提高网络性能。

而运筹学在网络优化中的应用研究则可以提供有效的工具和方法。

(一)网络路由优化网络路由优化是指通过合理的路由算法,将流量分配到不同的路由路径上,实现最优的性能和稳定性。

在这个问题上,运筹学可以提供一系列的优化算法,如线性规划、整数规划、网络流模型等,可以帮助网络管理员对网络进行优化管理。

例如,对于带宽有限的网络,运筹学可以提供合理的优化算法,将网络流量合理地分配到各条路径,达到最优状态。

(二)拥塞控制网络拥塞是指网络中的数据流量过大,导致网络达到了其容量极限,从而造成数据包的丢失和延迟。

为了避免网络拥塞,需要对网络进行拥塞控制。

运筹学可以提供不同的拥塞控制算法,如TCP-Vegas、SPEED、TCP-fair等,这些算法可以减少网络拥塞,保证网络数据传输的质量和稳定性。

(三)分布式计算随着云计算和大数据应用的不断普及,分布式计算成为了一种重要的计算模式。

分布式计算模式主要通过将计算任务分散到多个节点上执行,从而提高计算效率。

在分布式计算中,运筹学可以通过不同的算法,如贪心算法、遗传算法、模拟退火算法等,帮助实现任务分配和资源调度的最优化。

《运筹学》胡运权清华版-9-03网络计划的优化

《运筹学》胡运权清华版-9-03网络计划的优化

44
20
18 19 2
15
0
10
9 5
5
1
0
(人数)
按时差将工作排序
(天数)
0 1 2 3 4 5 6 7 8 9 10 11
9
6
7
5
1
1
2
3
5
6
3
44
20
18
15
10
5 0
(人数)
19 工作2 (1,2) , 总时差0,编为1#
工作0 (1,49) , 总时差1,编为2# 工作(1,6) , 总时5 差7,编为1 3#
24
18 6 T=64(天)
18
③ 总直接费用 478+10×1=488(百元)
间接费用 180 -33=147(百元)
总费用
488 +147=635(百元)
第二次调整
①,
1246 1346
同时缩短
(1,3), (1,2) 同时缩小 2.5+1=3.5 可选方案: (1,3), (2,4) 同时缩小 1+2=3
按时差将工作排序
(天数)
0 1 2 3 4 5 6 7 8 9 10 119 Nhomakorabea6
7
5
1
1
2
3假设:已进行5中非关键工作 6
3
4 不4允许中断
工作(1,4) , 总时差1,编为1#
20
19 20
18
工作(2,3) , 总时差0,编为2#
15
10
9
工作(1,6) ,5总时差5,编为3#
5
1
0
第二次调整结果
总费用
634.4(百元)

网络优化图及网络(运筹学)

网络优化图及网络(运筹学)
详细描述
最短路径问题有多种算法,如Dijkstra算法和Bellman-Ford算法。这些算法通 过不断优化路径长度,最终找到最短路径。在现实生活中,最短路径问题广泛 应用于交通网络、通信网络和电力网络等领域。
最小生成树问题
总结词
最小生成树问题是图论中的另一个经典问题,旨在在给定连 通图中找到一棵包含所有节点且总权重最小的树。
网络优化图及网络(运筹学)
目 录
• 网络优化图概述 • 网络(运筹学)基础 • 网络优化模型 • 网络优化算法 • 网络优化实例分析 • 网络(运筹学)的未来发展与挑战
01
网络优化图概述
定义与特点
定义
网络优化图是一种数学模型,用于描 述现实世界中各种网络系统的结构和 行为。
特点
网络优化图具有节点和边的概念,能 够表示各种对象之间的关系和交互作 用,同时可以引入各种参数和约束条 件,以实现特定的优化目标。
详细描述
大数据的爆炸式增长使得传统的数据 处理和分析方法难以应对,需要采用 新的数据处理和分析技术,如分布式 计算、流处理等,以提高数据处理效 率。
人工智能与网络优化
总结词
人工智能技术的发展为网络优化提供了 新的思路和方法,可以更好地解决复杂 的问题。
VS
详细描述
人工智能技术如机器学习、深度学习等可 以用于网络优化,例如通过学习历史数据 来预测未来的流量和需求,从而更好地进 行资源调度和路径选择。
遗传算法通过模拟生物进化 过程中的自然选择和遗传机 制,不断迭代和优化种群中 的个体,最终找到最优解。
遗传算法适用于多目标优化、 约束满足问题等复杂问题,具 有较好的鲁棒性和全局搜索能
力。
05
网络优化实例分析
最短路径问题

运筹学实验报告五最优化问题

运筹学实验报告五最优化问题

2018-2019学年第一学期《运筹学》实验报告(五)班级:交通运输171学号: **********姓名: *****日期: 2018.12.6654321m in x x x x x x z +++++=..ts 6,...,2,1,0302050607060655443322116=≥≥+≥+≥+≥+≥+≥+i x x x x x x x x x x x x x x i i 均为整数,且实验一:一、问题重述某昼夜服务的公共交通系统每天各时间段(每4个小时为一个时段)所需的值班人数如下表所示。

这些值班人员在某一时段开始上班后要连续工作8个小时(包括轮流用膳时间)。

问该公交系统至少需要多少名工作人员才能满足值班的需要?设该第i 班次开始上班的工作人员的人数为x i 人,则第i 班次上班的工作人员将在第(i+1)班次下班。

(i=1,2,3,4,5,6)三、数学模型四、模型求解及结果分析Global optimal solution found.Objective value: 150.0000Objective bound: 150.0000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 4Variable Value Reduced CostX1 60.00000 1.000000X2 10.00000 1.000000X3 50.000001.000000X4 0.000000 1.000000X5 30.00000 1.000000X6 0.000000 1.000000Row Slack or Surplus DualPrice1 150.0000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 10.00000 0.0000007 0.000000 0.000000根据Lingo程序运行结果分析可知:当第i班次开始上班的工作人员排布如下时,所需人力最少,为150人。

运筹学及其应用9.1 多阶段决策过程最优化问题举例

运筹学及其应用9.1 多阶段决策过程最优化问题举例

6
t
使 S = ∑ ∑ f ( x i ) + 16 u j =
i =1
j =1
Байду номын сангаас
6
∑ f ( xi ) + 16(5x1 + 4 x2 + 3x3 + 2 x4 + x5 − 185)
i =1
为最小,其中
f
(xi )
=
110200xxii
,0 −
≤ xi ≤ 15 300,15 < xi

30
6
例1
因此,我们的问题就变成:求y,y1,y2,…,yn-1,以使 g(y)+h(x-y)+g(y1)+h(x1-y1)+…+g(yn-1)+h(xn-1-yn-1) 达到最大,且满足条件
x1=ay+b(x-y) x2=ay1+b(x1-y1)
……… xn-1=ayn-2+b(xn-2-yn-2) yi与xi均非负,i=1,2, …,n-1
5
例1
若以y与x-y分别投入生产方式A与B,在第一 阶段生产后回收的总资源为x1=ay+b(x-y),再将x1 投入生产方式A和B,则可得到收入g(y1)+h(x1-y1), 继续回收资源x2=ay1+b(x1-y1),……
若上面的过程进行n个阶段,我们希望选择n 个变量y,y1,y2,…,yn-1,使这n个阶段的总收入最大。
第二种方法即所谓“局部最优路径”法,是 说某人从k出发,他并不顾及全线是否最短,只是选 择当前最短途径,“逢近便走”,错误地以为局部 最优会致整体最优,在这种想法指导下,所取决策
必是v1→v2→v5→ v9→ v10 ,全程长度是30;显
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 最小费用流问题
第5章 网络 最优化问题
3、最小费用流问题的解的特征
(1)具有可行解的特征:在以上的假设下,当 且仅当供应点所提供的流量总和等于需求点 所需要的流量总和时(即平衡条件),最小 费用流问题有可行解;
(2)具有整数解的特征:只要其所有的供应、 需求和弧的容量都是整数值,那么任何最小 费用流问题的可行解就一定有所有流量都是 整数的最优解(与运输问题和指派问题的解 一样)。因此,没有必要加上所有决策变量 都是整数的约束条件。
(5) 售货员从某个点vi出发走过其他所有点后回 到原点vi,如何安排路线使总路程最短。这属 于货郎担问题或旅行售货员问题。
(6)邮递员从邮局vi出发要经过每一条边将邮件 送到用户手中,最后回到邮局vi,如何安排路 线使总路程最短。这属于中国邮递员问题。
天津财经大学 珠江学院
5.1 网络最优化问题基本概念
第5章 网络 最优化问题
5.1 网络最优化问题基本概念 5.2 最小费用流问题 5.3 最大流问题 5.4 最短路问题 5.5 最小支撑树问题 5.6 货郎担问题和中国邮路问题
天津财经大学 珠江学院
本章主要内容框架图
第5章 网络 最优化问题

基本概念
连线(边或弧) 权(赋权图) 网络图
网络最优化问题
第5章 网络 最优化问题
▪ 许多研究的对象往往可以用一个图表示,研究 的目的归结为图的极值问题。
▪ 运筹学中研究的图具有下列特征:
(1) 用点表示研究对象,用连线(不带箭头的边 或带箭头的弧)表示对象之间某种关系;
(2) 强调点与点之间的关联关系,不讲究图的比 例大小与形状;
(3) 每条边上都赋有一个权,其图称为赋权图。 实际中权可以代表两点之间的距离、费用、利 润、时间、容量等不同的含义;
量取决于该弧的容量; (5)网络中有足够的弧提供足够容量,使得所有在供应点中
产生的流都能够到达需求点;(有解) (6)在流的单位成本已知前提下,通过每一条弧的流的成本
和流量成正比;(目标是线性的) (7)最小费用流问题的目标在满足给定需求条件下,使得通
过网络供应的总成本最小(或总利润最大)。
天津财经大学 珠江学院
第5章 网络 最优化问题
实用运筹学 -运用Excel建模和求解
第5章 网络最优化问题
天津财经大学 珠江学院
第5章 网络 最优化问题
本章内容要点
网络最优化问题的基本概念 网络最优化问题的四种主要类 型:最小费用流、最大流、最 短路、最小支撑树 各种网络最优化问题的建模与 应用
天津财经大学 珠江学院
本章节内容
▪ 最小费用流问题的特殊类型包括运输问题 和指派问题,以及在下面将要提到的两种 重要类型:最大流问题和最短路问题。
天津财经大学 珠江学院
5.2 最小费用流问题
第5章 网络 最优化问题
例5.1 某公司有两个工厂生产产品,这些产品需要运 送到两个仓库中。其配送网络图如图5-2所示。 目标是确定一个运输方案(即每条路线运送多少单 位的产品),使通过配送网络的运输成本最小。
主要类型
最小费用流问题 最 最大 短流 路问 问题 题
最小支撑树问题
货郎担问题和中国邮路问题
节点(供应点、转运点、需求点)
建模和求解
净流量 数学模型
电子表格模型
天津财经大学 珠江学院
5.1 网络最优化问题基本概念
第5章 网络 最优化问题
▪ 网络在各种实际背景问题中以各种各样的形式 存在。交通、电子和通讯网络遍及我们日常生 活的各个方面,网络规划也广泛用于解决不同 领域中的各种问题,如生产、分配、项目计划 、厂址选择、资源管理和财务策划等等。
第5章 网络 最优化问题
网络最优化问题类型主要包括:
(1)最小费用流问题; (2)最大流问题; (3)最短路问题; (4)最小支撑树问题; (5)货郎担问题和中国邮路问题,等等
天津财经大学 珠江学院
5.2 最小费用流问题
第5章 网络 最优化问题
▪ 最小费用流问题的模型在网络最优化中扮 演着重要的角色,因为它的适用性很广, 并且求解方法容易。通常最小费用流问题 用于最优化货物从供应点到需求点的网络 。目标是在通过网络配送货物时,以最小 的成本满足需求,一种典型的应用就是使 得配送网络的运营最优。
(2)弧:可行的运输线路(节点i->节 点j),经常有最大流量(容量)的限 制。
天津财经大学 珠江学院
5.2 最小费用流问题
第5章 网络 最优化问题
2、最小费用流问题的假设 (1)至少一个供应点; (2)至少一个需求点; (3)剩下都是转运点; (4)通过弧的流只允许沿着箭头方向流动,通过弧的最大流
80
F1
(无限制,700)
W1
60
(50,300) (50,400)
(50,200) DC
(50,400)
70
F2
(无限制,900)
天津财经大学 珠江学院
W2
90
5.2 最小费用流问题
第5章 网络 最优化问题
最小费用流问题的三个基本概念:
1、最小费用流问题的构成(网络表示)
(1)节点:包括供应点、需求点和转运 点;
(4) 建立一个网络模型,求最大值或最小值。
天津财经大学 珠江学院
5.1 网络最优化问题基本概念
第5章 网络 最优化问题
v1 5
v2
8
v3
7
v5
5
4
8
1
2
v4
v6
3
6
对于该网络图,可以提出许多极值问题
天津财经大学 珠江学院
5.1 网络最优化问题基本概念
第5章 网络 最优化问题
(1)将某个点vi的物资或信息送到另一 个点vj,使得运送成本最小。这属于 最小费用流问题。
(2)将某个点vi的物资或信息送到另一 个点vj,使得流量最大。这属于最大 流问题。
(3)从某个点vi出发到达另一个点vj, 怎样安排路线使得总距离最短或总费 用最小。这属于最短路问题。
天财经大学 珠江学院
5.1 网络最优化问题基本概念
第5章 网络 最优化问题
(4)点vi表示自来水厂及用户,vi与vj之间的边 表示两点间可以铺设管道,权为vi与vj间铺设 管道的距离或费用,极值问题是如何铺设管道 ,将自来水送到其他5个用户并且使总的费用 最小。这属于最小支撑树问题。
▪ 网络规划为描述系统各组成部分之间的关系提 供了非常有效的直观和概念上的帮助,广泛应 用于科学、社会和经济活动的各个领域中。
▪ 近些年来,运筹学(管理科学)中一个振奋人 心的发展是它的网络最优化问题的方法论和应 用方面都取得了不同寻常的飞速发展。
天津财经大学 珠江学院
5.1 网络最优化问题基本概念
相关文档
最新文档