数学一级学科硕士研究生培养方案-东北师范大学数学与统计学院
东北师范大学数学与统计学院《数学与应用数学专业(普通...

数学与应用数学专业(普通类)本科课程计划数学与统计学院(终稿纸质版需加盖学院公章,教授委员会成员签字)数学与应用数学专业(普通类)课程计划一、培养目标本专业培养德智体美全面发展与健康个性和谐统一,富有创新精神和开拓精神,具有较强实践能力、自主学习能力和国际视野,适应科学技术发展和现代化建设需要的在科技、教育和经济部门从事科学研究和教学工作的研究型高级专门人才,或在生产经营及管理部门从事实际应用、开发研究和管理工作的高素质复合型数学专业人才。
二、培养要求本专业培养的人才应熟练掌握数学的基本理论、基本方法和技能,具有扎实的专业基础、良好的数学思维和科学素养,受到理论研究、数学建模和计算机技术等方面的系统训练,具有科学研究、教学和数学应用等方面的能力,是有见识、有能力、有责任感的自主学习者。
具体要求如下:1.拥有作为合格公民的基本意识和道德素养,实事求是、独立思考、勇于创新,拥有为国家的繁荣昌盛和人类社会的进步乐于奉献的意识。
2.掌握数学科学的思想方法,了解数学科学的发展动态及应用前景。
3.能熟练使用计算机(包括常用语言、工具以及一些数学软件),具有编写应用程序进行科学计算的能力。
4.了解自然科学、社会科学、工程技术等领域的基本知识,具有应用数学知识解决实际问题的意识和能力。
5.有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,具有一定学术交流能力,具有较高的外语水平,比较熟练地阅读本专业的外文书刊。
6. 有良好的健康意识,掌握增进身心健康的手段和方法,具有健康的体魄、良好的心理素质和高尚的道德情操。
三、学制与修业年限标准学制为4年,修业年限可以为3–6年。
四、最低毕业学分和授予的学位本专业毕业要求的最低学分为155学分,其中通识教育课45学分,专业基础课28学分,专业主干课38学分,专业系列课35学分,生涯规划课程5学分,毕业论文4学分。
符合毕业要求的,准予毕业并发给毕业证书。
计算数学专业硕士研究生培养方案

计算数学专业硕士研究生培养方案
数学专业是一门基础学科,它对于培养学生的逻辑思维能力、分析问题的能力以及解决实际问题的能力具有重要的作用。
为了更好地培养数学专业硕士研究生,我们可以从以下几个方面进行培养。
首先,我们需要为研究生设计一系列的数学专业课程。
这些课程不仅要涵盖数学的基础理论知识,还要注重培养学生的实际解决问题的能力。
比如,我们可以设置数学分析、代数学、几何学、概率论等基础课程,通过这些课程的学习,培养学生的数学思维和数学分析的能力。
此外,还可以设计应用数学、运筹学等应用课程,让学生了解数学在实际问题中的应用,并培养他们解决实际问题的能力。
其次,我们可以为研究生提供一系列的实践机会。
数学专业研究生的实践主要包括科研实践和实习实践两部分。
在科研实践方面,学校可以组织学生参与到数学领域的科研项目中,让他们亲身体验科研的过程,培养他们科研的能力。
在实习实践方面,学校可以与相关机构、企业合作,为学生提供实习机会,让他们能够将所学的数学知识应用到实际工作中去。
第三,我们可以为研究生提供良好的研究环境。
数学研究需要良好的学术氛围和科研条件。
学校可以建立一支优秀的数学研究团队,吸引国内外优秀的数学学者加盟,为研究生提供高水平的导师指导和学术交流的机会。
此外,学校还可以配备一系列的实验设备和软件工具,以支持学生的研究工作。
综上所述,为了培养数学专业硕士研究生,我们需要设计一系列的数学专业课程,提供实践机会,营造良好的研究环境,并设置跨学科的必修
课程。
这样可以培养出具有扎实数学基础、较强解决问题能力和较高学术水平的数学专业硕士研究生。
数学硕士培养方案

数学硕士培养方案研究方向选择在数学硕士培养方案中,学生可以根据自己的兴趣和专长选择合适的研究方向。
常见的数学研究方向包括但不限于以下几个方向:1.纯数学:包括代数学、几何学、拓扑学等研究领域。
2.应用数学:包括数理金融、计算数学、优化理论等研究领域。
3.统计学:包括概率论、数理统计、统计计算等研究领域。
课程设置数学硕士培养方案主要包括以下几个模块的课程:基础课程•高级数学:包括高等代数、高等几何、数学分析等课程。
这些课程是数学研究的基础,为学生打下坚实的理论基础。
•概率论和数理统计:介绍概率论和数理统计的基本理论和应用方法,为学生进行统计和概率研究打下基础。
•数值计算方法:介绍数值计算的基本原理和方法,以及在数学研究和应用中的应用。
专业课程•代数学:介绍基本的代数结构和代数方程的理论,以及其在数学研究中的应用。
•几何学:介绍几何学的基本理论和方法,以及其在数学研究和应用中的应用。
•拓扑学:介绍拓扑学的基本理论和方法,以及其在数学研究和应用中的应用。
•数学建模:介绍数学建模的基本理论和方法,以及其在实际问题求解中的应用。
研究课程•科研研究:参与导师的科研项目,学习科研方法和技巧,进行自主科研工作。
•论文写作:学习如何撰写学术论文,包括选题、调研、实验和写作等方面的内容。
实践训练在数学硕士培养方案中,实践训练是非常重要的一环。
学生可以通过以下几种方式进行实践训练:1.科研项目参与:参与导师的科研项目,熟悉科研的实际操作过程,掌握科研方法和技巧。
2.学术会议报告:参加学术会议并进行学术报告,向其他学者展示自己的研究成果,锻炼学术交流能力。
3.实习实训:参加相关企业或科研机构的实习,了解实际应用场景,提升实践能力。
学位要求数学硕士培养方案要求学生完成以下学位要求:1.完成规定学分并通过各门课程的考核。
2.成功完成科研项目并撰写学术论文。
3.参加学术会议并进行学术报告。
4.通过学位论文答辩。
结语数学硕士培养方案旨在培养具备扎实数学理论基础和创新思维能力的专业人才。
学科教学(数学)专业硕士研究生培养方案

学科教学(数学)专业硕士研究生培养方案(专业代码:045104)一、培养目标培养掌握现代教育理论、具有较强的教育教学实践和研究能力的高素质的中小学教师。
具体要求为:(一)拥护中国共产党领导,热爱教育事业,具有良好的道德品质,遵纪守法,积极进取,勇于创新。
(二)具有良好的学识修养和扎实的专业基础,了解学科前沿和发展趋势。
(三)具有较强的教育实践能力,能胜任相关的教育教学工作,在现代教育理论指导下运用所学理论和方法,熟练使用现代教育技术,解决教育教学中的实际问题;能理论结合实践,发挥自身优势,开展创造性的教育教学工作。
(四)熟悉基础教育课程改革,掌握基础教育课程改革的新理念、新内容和新方法。
(五)能运用一种外国语阅读本专业的外文文献资料。
二、招生对象具有国民教育序列大学本科学历(或本科同等学力)人员。
三、学习方式及年限采用全日制学习方式,学习年限一般为2年。
四、课程设置课程设置要体现理论与实践相结合的原则,分为学位基础课程,专业必修课程,专业选修课程,实践教学四个模块。
总学分不少于36学分。
学科教学(数学)全日制教育硕士专业学位研究生培养方案课程设置表关于实践教学(6学分)实践教学时间原则上不少于1年。
实践教学包括教育实习、教育见习、微格教学、教育调查、课例分析、班级与课堂管理实务等实践形式,其中第二学期最后3周在校内进行教师岗位培训,使研究生具备良好的师德和敬业精神、能够写好教案、能够辅导和答疑中小学生、具有良好的演讲能力和课堂组织能力,为履行教师职责打下坚实的基础。
第三学期到中小学进行顶岗实习。
五、教学方式要重视理论与实践相结合,采用课堂参与、小组研讨、案例教学、合作学习、模拟教学等方式。
应在中小学建立稳定的教育实践基地,做好教育实践活动的组织与实施。
成立导师组负责研究生的指导,并在中小学聘任有经验的高级教师担任指导教师,实行双导师制。
六、学位论文及学位授予(一)学位论文选题应紧密联系基础教育实践,来源于中小学教育教学中的实际问题。
数学学科硕士研究生培养方案

数学学科硕士研究生培养方案学科代码:070100(一级学科)数学一级学科包含五个二级学科:基础数学;计算数学;应用数学;运筹学与控制论;概率论与数理统计。
一、培养目标1、较好地掌握马克思主义基本理论,树立爱国主义和集体主义思想,遵纪守法,具有较强的事业心和责任感,具有良好的道德品质和学术修养,身心健康。
2、在本学科上掌握坚实的基础理和系统的专业知识,具有从事科学研究工作或独立担任专门技术工作的能力。
本学科培养的硕士研究生是数学方面的高层次的专门人才,具有比较扎实宽广的数学基础,了解本学科目前的进展与动向,并在某一方向受到一定的科研训练,有较系统的专业知识,初步具有独立进行理论研究的能力,或运用专业知识与有关专业人员合作解决某些实际问题的能力,在某个应用方向上做出有理论或实践意义的成果,毕业后能从事与数学相关的教学、科研或其它实际工作。
本学科培养的硕士研究生应具有良好的科学素质,严谨的治学态度及较强的开拓精神,善于接受新知识,提出新思路,探索新课题,并有较强的适应性。
3、掌握一门外语,能熟练阅读专业外文资料,并具有较好的科技写作能力。
二、培养方向:1.非线性微分方程理论及其数值解法2.优化与控制理论及其数值计算3.数值代数与数值软件4.非线性泛函分析及其应用5.应用微分方程与软件开发6.复微分方程及其应用7.金融数学与随机分析8.图论与组合三、学习年限:2.5—3年四、学分要求:总学分最低30 学分,必修课不得低于16学分五、课程设置备注1、根据各研究方向的具体情况,可选修学校其它专业的硕士研究生课程。
2、对跨学科报考或同等学历录取的研究生,由导师指定补修本专业的本科主干课程2门,最多不超过4学分。
补修课所取得学分不记入总学分。
3、专业外语课程作为必修环节,由导师指导查阅一定数量的专业外文文献资料,在第三学期开题阶段提交一份外语文献阅读报告,交导师审查并评定成绩,通过后记1学分。
东北师范大学数学与统计学院硕士研究生课程表【模板】

3
5楼机房
专业主干课
星
期
五
1-3
应用随机过程
(3月11日开始上课)
刘 红
3
108
专业基础课
星期六
股票投资与基金分析
(预计4月16日开始上课)
刘大雷
1
108
专业选修课
证券投资市场分析与实务
(预计5月28日开始上课)
宋 昭
1
108
专业选修课
家庭财务诊断与理财规划
(3月5日8:00开始上课)
张小琳
1
108
专业选修课
**大学数学与统计学院
硕 士 研 究 生 课 程 表
2016学年春季学期
自2016年2月29日起实施
2015级学科教学(数学)全日制教育硕士
课程名称
任课教师
学分
教室
课程性质
星
期
一
1-2
中学数学解题与实践
郭 民
2
317
学科教育类课程
3-4
高观点下的中学数学
秦德生
3
逸夫楼104
学科类课程
星
期
二
1-2
中学数学教学技能综合训练
李 清
2
403
学科教育类课程
3-4
微格教学
微格教学
微格教学
郭 民
秦德生
李 清
2
研究生楼13教室
研究生楼14教室
研究生楼15教室
学科教学实践类课程
星
期
三
星期四星源自期五1-2
*高观点下的中学数学
秦德生
3
逸夫楼104
学科类课程
3-4
2019东北师范大学数学与统计学院硕士研究生拟录取名单

108 费晓旭 109 孙锐 110 魏博 111 杨珂 112 王新玉 113 柴晓雪 114 富嘉欣 115 杨小曼 116 侯乔宇 117 李响 118 郝锦瑞 119 李月 120 崔柳 121 张赫洋 122 张珂 123 于清华 124 程昕 125 刘佳 126 李佳航 127 李江豪 128 陈梓杭 129 梁润美 130 赵宸轩 131 范惠琳 132 张晓晶 133 蒲张妮 134 辛泽曦 135 曲畅 136 郑汝佳 137 温洪伟 138 孙东山 139 李凯鑫 140 成思瑶 141 徐乐乐 142 臧月 143 景凡莉
73 宋盈颖
基础数学
74 许博源
基础数学
75 许珈齐
运筹学与控制论 76 赵晓萌
运筹学与控制论 77 张越
运筹学与控制论 78 李晓雯
运筹学与控制论 79 郑娜
运筹学与控制论 80 宋悦
运筹学与控制论 81 王天铖
运筹学与控制论 82 王志宇
运筹学与控制论 83 董雪迪
运筹学与控制论 84 庞如意
运筹学与控制论 85 刘思童
学科教学(数学)59 张晓丽
学科教学(数学)60 时秀玉
学科教学(数学)61 燕洁
基础数学
62 赵杰
基础数学
63 信徵笙
基础数学
64 王佳楠
基础数学
65 李秋怡
基础数学
66 李莹月
基础数学
67 曲爽
基础数学
68 王佳玉
基础数学
69 王新茗
基础数学
70 程靖国
基础数学
71 苗洋洋
基础数学
72 刘静静
基础数学
应用数学
101 刘秀红
应用数学
数学硕士研究生培养方案

数学硕士研究生培养方案
一、培养目标
二、培养要求
1.理论基础:学生要求掌握扎实的数学基本理论和方法,具备深入研究各个领域的数学知识的能力。
2.科研能力:学生要求具备独立从事科学研究的能力,能够进行研究性课题的独立设计与完成,具有写作学术论文的能力。
3.创新意识:学生要求具备解决实际问题和创新科学研究的能力,具有创新思维和开拓进取的意识。
4.学科交叉:学生要求具备学科交叉的综合能力,能够应用数学方法解决其他领域的问题。
5.科学素质:学生要求具有较高的科学素质和道德修养,具备团队合作和领导能力,具有较强的沟通和表达能力。
三、培养计划
1.课程学习:研究生一般需要修满30学分的课程,包括必修课程和选修课程。
必修课程包括数学分析、高等代数、数学建模等,选修课程根据学生的研究方向和个人兴趣进行选择。
2.科研实践:研究生在培养期间需要参与科研实践活动,包括科研项目的立项、研究计划的设计、实验数据的采集与处理、研究成果的整理与发表等。
3.学术交流:研究生需要参加学术讲座、学术报告以及学术会议等学术交流活动,积极与同行交流学术观点、分享研究成果。
4.创新能力培养:为培养学生的创新能力,研究生在培养期间需要完成一定的创新性课题,并撰写相关论文进行发表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学一级学科硕士研究生培养方案(0701)适用专业:070101基础数学、070102计算数学、070103概率论与数理统计、070104应用数学、070105运筹学与控制论、070120数学教育一、培养目标培养适应国家和地方经济与社会发展需要的学术型、应用型高层次数学专门人才。
具体要求是:1.树立爱国主义和集体主义思想,具有公民意识和社会责任感,具有良好的道德品质和强烈的事业心,能立志为祖国的建设和发展服务。
2.掌握系统而坚实的数学基础理论和专门知识;具有从事数学科学研究的创新意识和独立从事实际工作的专门技术水平;具有使用第一外国语进行国际交流的能力,能够熟练地阅读本学科的外文文献,并具有初步撰写外文科研论文的能力。
3.主要为攻读博士做前期的专业知识和科研能力准备;培养高校和中学需要的从事教学、科研等工作的高层次人才,培养企事业单位需要的从事技术开发、咨询预测等工作的高层次人才。
4.具有健康的体魄和较强的心理素质。
二、研究方向1.基础数学专业奇点理论,李代数及其应用,同调代数,低维拓扑,非交换几何,算子理论及算子代数。
2.计算数学专业微分方程数值解,数值代数,数值逼近,分形几何。
3.概率论与数理统计专业应用概率,生物统计,生物信息,教育与心理测量,金融与经济统计,机器学习。
4.应用数学专业常微分方程理论及应用,泛函微分方程理论及应用,随机微分方程理论及应用,偏微分方程理论及应用,生物数学。
5.运筹学与控制论专业分布参数系统控制理论及应用,集中参数系统控制理论及应用。
6.数学教育专业数学教育心理,数学课程,数学教学,数学教师专业发展。
三、修业年限实行弹性学制,基本学制为3年,其中生源为跨专业、同等学力的研究生原则上学制要延长一年。
凡修满最低学分、学习成绩优秀者,经本人申请、指导教师同意与学院教授委员会讨论通过,并顺利通过学位论文答辩,可以提前毕业(最低修业年限不得少于2年)。
四、毕业学分和授予的学位毕业时总学分不少于33学分,其中课程总学分要求不少于27学分,必修环节总学分6学分(学术活动1学分,教学实践1学分,文献阅读1学分,学位论文3学分)。
硕士研究生在规定修业年限内修满规定学分,通过思想品德考核,学位论文答辩,符合《中华人民共和国学位条例》有关规定,达到我校学位授予标准,授予理学硕士学位。
五、培养方式1.硕士研究生培养以课程学习和应用技能培养为主,以科学研究为辅。
坚持“宽口径,厚基础,重应用”的培养原则。
2.硕士研究生培养采取导师负责与集体培养相结合的方式,导师是硕士研究生培养的第一责任人,每个硕士研究生导师组要由3~5人组成,配合导师,充分发挥其集体培养优势。
3.研究生导师应在同研究生本人商量的基础上根据研究生的实际情况和就业意愿为其“量体裁衣”制定个性化的个人学习和研究计划。
个人学习和研究计划在入学后5个月内完成并交学院备案。
4. 研究生选课必须在导师指导下进行,每学期开学填写选课单,由导师签字同意后选课才有效。
5.硕士研究生教学形式应灵活多样,提倡采用研讨班、专题式、启发式等多种教学方法,把课堂讲授、交流研讨、案例分析等有机结合,促进学生的自主性学习和研究性学习,加大对研究生创新能力的培养。
6.有计划地聘请国内外专家来我院授课,或派出硕士研究生到其他名牌高校或科研院所修读部分课程。
提倡与国内外著名高校和科研院所互相承认学分,联合培养研究生。
7.论文工作环节需对硕士进行系统、全面的研究训练,培养综合运用知识发现问题、分析问题和解决问题的能力。
8.硕士研究生培养实行学分制。
六、课程学习(一)课程设置与学分要求1.必修课(不少于16学分)(1)公共基础课(7学分)马克思主义理论课60学时3学分Ⅱ学期基础外国语课80学时4学分Ⅱ学期(2)学科基础课(9学分,按一级学科开设)泛函分析60学时3学分Ⅰ学期(必修)非线性泛函分析60学时3学分Ⅱ学期代数学60学时3学分Ⅰ学期代数拓扑学60学时3学分Ⅰ学期微分拓扑学60学时3学分Ⅱ学期高等概率论60学时3学分Ⅰ学期应用随机过程60学时3学分Ⅱ学期数值分析一60学时3学分Ⅰ学期数值分析二60学时3学分Ⅱ学期数学课程与教学论60学时3学分Ⅱ学期注:每名硕士研究生至少从以上课程中选择3门课程作为必修课,其中“泛函分析”为必修课。
2.发展方向选修课(至少11学分)(1)专业方向课(至少6学分,必选;允许跨专业选课)基础数学专业:李超代数60学时3学分Ⅳ学期同调代数60学时3学分Ⅱ学期李代数60学时3学分Ⅱ学期黎曼几何60学时3学分Ⅲ学期算子理论及算子代数60学时3学分Ⅱ学期奇点理论60学时3学分Ⅲ学期计算数学专业:计算代数几何60学时3学分Ⅰ学期最优化计算60学时3学分Ⅲ学期发展微分方程数值解60学时3学分Ⅲ学期迭代与差分方程60学时3学分Ⅲ学期矩阵计算60学时3学分Ⅱ学期分形几何60学时3学分Ⅱ学期信息科学中的计算选讲60学时3学分Ⅳ学期概率论与数理统计专业:现代统计学60学时3学分Ⅰ学期统计计算60学时3学分Ⅱ学期多元统计分析60学时3学分Ⅲ学期非参数统计60学时3学分Ⅲ学期离散数据分析60学时3学分Ⅳ学期随机分析60学时3学分Ⅳ学期应用数学专业:定性理论60学时3学分Ⅱ学期稳定性理论60学时3学分Ⅱ学期泛函微分方程60学时3学分Ⅲ学期动力系统60学时3学分Ⅳ学期索伯列夫空间60学时3学分Ⅰ学期双曲型方程60学时3学分Ⅱ学期非线性发展方程60学时3学分Ⅳ学期运筹学与控制论专业:椭圆型方程60学时3学分Ⅱ学期抛物型方程60学时3学分Ⅲ学期最优控制理论60学时3学分Ⅲ学期线性系统理论60学时3学分Ⅲ学期数学教育专业:数学教育研究导论40学时2学分Ⅰ学期数学教育心理学40学时2学分Ⅱ学期数学教育测量与评价40学时2学分Ⅱ学期数学方法论40学时2学分Ⅲ学期数学教育哲学40学时2学分Ⅳ学期学院要求各系有计划地聘请国内外专家来我院集中授课,或派出硕士研究生到其他名牌高校或科研院所修读部分课程。
(2)公共选修课(任选)研究生院组织开设,由教师教育系列、公共管理系列、科技与社会发展前沿系列等选修课程组成。
(3)跨院校、跨学科课程(数学教育专业研究生在下列课程中选修4学分,其他专业任选)现代教育学原理导论40学时2学分Ⅰ学期教育科学研究方法40学时2学分Ⅰ学期发展与教育心理学40学时2学分Ⅱ学期3.必修环节(6学分)(1)学术活动1学分提交2份学术报告听后感。
考查合格记1学分(2)教学实践1学分硕士研究生都要参加学院组织的教学实践活动,为低年级本科生讲授习题、批改作业等。
由主讲教师负责对硕士研究生参加教学实践情况进行考查,考查合格记1学分。
(3)文献阅读1学分文献阅读以讨论班的形式进行,主要是学生报告,导师组成员现场指导。
要阅读的内容必须是与即将要做的论文密切相连的系列内容,由导师组和研究生本人商量后制定。
第四学期和第五学期必须开设每周一次的讨论班。
此外,数学教育专业在确定硕士生录取名单后将必读经典文献目录发给拟录取的每位硕士生。
每位硕士生必须在第2学期期末之前至少提交二份书面文献阅读报告。
其他各专业的(4)开题报告和学位论文3学分4.补修课程生源为同等学力或跨学科的硕士研究生,必须在导师指导下确定2-3门本学科的本科生主干课程作为补修课程。
补修课程不列入培养方案,但要列入硕士研究生个人培养计划,只记成绩,不计学分。
(二)教学方式硕士研究生教学形式应灵活多样,提倡采用研讨班、专题式、启发式等多种教学方法,把课堂讲授、交流研讨、案例分析等有机结合,促进学生的自主性学习和研究性学习,加大对研究生创新能力的培养。
(三)考核方式学院统一要求所有学科基础课都要指定教材、教学大纲,并进行严格的闭卷考试。
具体要求详见《东北师范大学研究生课程考核与管理办法》。
七、学位论文硕士研究生课程学习成绩合格,完成各项必修环节,方可进入学位论文撰写阶段。
学位论文是为了培养硕士研究生独立思考、勇于创新的精神和从事科学研究或担负专门技术工作的能力。
学位论文必须是科研论文。
硕士研究生应在导师指导下独立完成硕士学位论文工作。
我院原则上不要求硕士研究生答辩前应公开发表学术论文。
1.研究计划硕士生应在导师指导下,尽早初拟论文选题范围,并在入学后5个月内制定研究计划,提交给学院备案。
2.开题报告硕士研究生的开题报告应于第五学期完成,开题报告的时间与论文通讯评阅的时间间隔不应少于6个月。
开题报告的审查重点考查硕士生的文献收集、整理、综述能力和研究设计能力。
开题报告必须公开进行。
3.论文进展报告硕士生在撰写论文过程中,应定期向导师组作进展报告,并在导师组的指导下不断完善论文。
进展报告至少进行1次。
4.论文评阅与答辩硕士生学位论文必须由导师认可,并经过导师组认定合格后,方可进行答辩。
学位论文答辩在第六学期末(或以后)进行。
论文答辩应从论文选题与综述、研究设计、论文的逻辑性和规范性、工作量等方面重点考查论文是否使硕士生受到了系统、完整的研究训练。
论文答辩未通过者,应修改论文,并再次申请答辩,两次答辩的时间间隔不得少于半年。
答辩的具体要求详见《东北师范大学学位授予工作细则》。
完成学位论文工作各个环节,并通过论文答辩后记3学分。
八、实践活动1.研究生除了参加必修环节中的学术实践和教学实践外还可根据个人培养需要参加学院和学校组织的实习等其他实践活动。
2.学院提倡教师要发挥课堂教学的实践教育功能,在课堂教学中通过实际问题引导学生学会处理复杂问题,提高解决实际问题的能力。
附:数学教育专业经典文献目录1.Bishop, A. J. Second International Handbook of Mathematics Education. The Netherlands: Kluwer Academic Publishers,20032.弗赖登塔尔. 作为教育任务的数学3. 王策三. 教学论稿4. 格劳斯主编. 数学教与学研究手册5. 马忠林主编.数学课程论6. 丁尔升,唐复苏.中学数学课程导论7.克鲁切茨基. 中小学数学能力心理学8. 李士锜. PME:数学教育心理9. 喻平. 数学教育心理学10. 徐利治. 数学方法论选讲11. G.波利亚.怎样解题12. G.波利亚.数学与猜想13. M.克莱因.古今数学思想14. 亚历山大洛夫等. 数学──它的内容、方法和意义15. COMAP申大维等译. 数学的原理与实践16. 李文林. 数学史概论17. 雅克·阿达玛. 数学领域中的发明心理学18 R.柯朗. 什么是数学19. 郑毓信. 数学教育哲学20. 夏基松、郑毓信. 西方数学哲学。