端面比压计算改(2)
机械密封

2.1 工况条件介质:乙烯;温度-40℃~-10℃;介质压力:3 MPa;轴径:45 mm;线速度:9.4 m/s;转速:4000 r/min;根据综合参数与轴径为中型机械密封。
2.2结构选择2.2.1密封结构的分类机械密封的使用工况和参数主要有密封腔温度和密封压力、密封端面平均速度、轴径、介质特性等。
根据这些参数可以将机械密封进行分类,如表1,表2 所示表 1 机械密封按试用工况和参数分类使用工况类别工况参数按密封端面平均线速度v/(m/s)超高速高速一般速度密封端面平均线速度>100密封端面平均线速度≥25~100密封端面平均线速度<100按密封腔温度t/℃高温中温普温低温密封腔温度>150密封腔温度>80~150密封腔温度>-20~80密封腔温度<-20按轴径大小d/mm大轴径一般轴径小轴径轴径>120轴径≥25~120轴径<25按使用介质耐磨粒介质耐强腐蚀介质耐弱腐蚀介质含磨粒介质耐强酸强碱及其他强腐蚀介质耐油丶水丶有机溶剂及其他弱腐蚀介质按密封压力P/MPa 超高压高压中压低压密封腔压力>15密封腔压力>3~5密封腔压力>1~3密封腔压力>常压~1表 2 机械密封按综合参数和轴径分类机械密封综合参数机械密封类别压力P/MPa 温度t/℃线速度v/(m/s)轴径d/mm重型机械密封>3 <20或>150 ≥25 >120中型机械密封≤3 <-20~150 <25 25~120轻型机械密封<0.5 >0~80 <10 ≤402.2.2 密封结构的确定2.2.2.1单端面由一对密封端面组成的机械密封,结构简单,制造与拆装都相对简便,使用广泛,故采用。
采用场合:作为最常用的机械密封型式,适用于一般场合。
2.2.2.2 内流式流体在密封端面间的泄露方向与离心力方向相反的机械密封,离心力起着阻碍流体泄露的作用,故泄漏量少,密封可靠。
适用场合:可用于高压,有固体颗粒的流体,泄漏量少,故采用。
2.2.2.3 内装式静止环安装于密封端盖(或相当于密封端盖的零件)的内侧(即面向主机工作腔的一侧),适用场合:由于摩擦副受力状态好,冷却润滑效果好,用于安装精度较高的场合,故采用。
机械密封基础知识-三机械密封的计算精选全文

2024/9/28
4
(三)液膜反力的计算
Fm =λP介 S
(液膜比压Pm=λP介)
λ:膜压系数≈0.5(中粘度),=0.65~0.75(低粘度),
=0.3~0.4(高粘度)。
它是一个平均值,表示液膜压力占介质压力的比例,
并不表示压力的分布情况。该公式为端面比压的计算
提供了方便。
S:端面面积S=π(d22-d12)/4
2024/9/28
17
各种组对在非平衡型机械密封中的许用[PV]值
SiC/ SiC/ 石墨 SiC
WC/ WC/ WC/
WC/ Al2O3/ Cr2O3喷涂/ Stellite/
石墨 WC 填充PTFE 青铜 石墨
石墨
石墨
180
14.5
7~1 5
4.4
5
2 3~7.5 15
3~9
2024/9/28
三、机械密封的计算
(一)补偿环的受力状况
要进行端面比压计算,首先要分析补偿环的受力情况。 如图,补偿环受到的力有:
2024/9/28
1
向左的:弹簧力Ft、介质压力所产生的作用力Fp 向右的:液膜反力Fm、静环作用的端面支承力F; 摩擦力R,很小可以忽略; 以上四力平衡,有F=Ft+Fp-Fm 端面比压P=F/S (S为端面面积) 上面各项力的计算方法在后面章节再加以叙述。
(4)端面缝隙情况:渐开形,λ减小;渐收形,λ增大
(5)其他因素:转速高,对于内流式λ减小,对于外流式λ
增大。此外端面比压、密封面温度、粗糙度等都有一定影响。
2024/9/28
8
(六)弹簧比压的计算
Pt =F弹/S F弹可计算得出,但一般有误差±10%,这是由于制造厂、 制造工艺、原材料的化学成分、热处理工艺等存在差异的 缘故。 一般Pt =0.15~0.2Mpa(内装),0.3~0.6Mpa(外装),反应釜中, 转速低,轴摆动大,取大值。
(完整word版)机械密封端面比压的确定

机械密封端面比压的确定润滑油作业部许松涛2007年11月2日机械密封端面比压的确定摘要:泵是石油化工企业最主要和常见的机械设备,由于工艺条件的要求,以及人们经济意识和环保意识的提高,近年来泵密封的泄漏越来越受到关注。
泵的密封是防止介质从泵轴周围的间隙处泄漏,或空气从间隙处侵入泵体。
机械密封作为石化企业泵最常见的密封形式,占重要地位,机械密封的端面比压是影响密封性能和使用寿命的最主要因素之一。
文章结合实际工作中机械密封的安装及维修情况,对密封的端面比压在计算、校核中的一些问题进行分析,以便于确定压缩量,能对机械密封的使用情况有所改善。
关键词:机械密封端面比压分析1.机械密封工作原理及常见结构型式机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。
1、静止环(静环)2、旋转环(动环)3、弹性元件4、弹簧座5、紧定螺钉6、旋转环辅助密封圈7、防转销8、静止环辅助密封圈9、固定压盖图1——机械密封结构示意图常用机械密封结构如图1所示。
旋转环和静止环往往还可根据它们是否具有轴向补偿能力而称为补偿环或非补偿环。
机械密封中流体可能泄漏的途径有如图1中的A、B、C、D四个通道。
C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密封,二者均属静密封。
B通道是旋转环与轴之间的密封,当端面摩擦磨损后,它仅仅能追随补偿环沿轴向作微量的移动,实际上仍然是一个相对静密封。
因此,这些泄漏通道相对来说比较容易封堵。
静密封元件最常用的有橡胶O形圈或聚四氟乙烯V形圈,而作为补偿环的旋转环或静止环辅助密封,有时采用兼备弹性元件功能的橡胶、聚四氟乙烯或金属波纹管的结构。
A通道则是旋转环与静止环的端面彼此贴合作相对滑动的动密封,它是机械密封装置中的主密封,也是决定机械密封性能和寿命的关键。
因此,对密封端面的加工要求很高,同时为了使密封端面间保持必要的润滑液膜,必须严格控制端面上的单位面积压力,压力过大,不易形成稳定的润滑液膜,会加速端面的磨损;压力过小,泄漏量增加。
第六章 机械密封

按密封端面接 触状态
按弹簧元件的 运动状态
按密封端面数 目
14
按静环安装位 置
按密封流体在 密封端面引起 的卸载程度
按工作条件
按介质泄漏方 向
按弹性元件的 结构和布置
按用途
1) 按密封端面接触状态分类
密封 端面 接触 状态
接触式 非接触式 半接触式
流体压力与弹性元件压力下机 械密封,端面名义间隙小,多 在混合和边界润滑下运行。
d
2 2
d12
式中 p ——密封流体压力,指机械密封内外侧流体的压差。
(6-4)
p p1 p2 10
(6-5)
6.1.3 力学分析
载荷系数 K 指密封流体压力作用在补偿环上,使之对于非补偿环趋于闭合的有效作
用面积 Ae 与密封环带面积 A 之比。其物理本质是密封流体压力作用比压 pe 与密封流体压力 p 之比。
3
6.1.2机械密封的基本结构、工作原理*
1
2
冲洗液
3
4
5
D
6
B
C A
10 9
87
图6-1 机械密封结构原理
1—弹簧座;2—弹簧;3—旋转环(动环);4—压盖;5—静环密封圈;6—防转 销;7—静止环(静环);8—动环密封圈;9—轴(或轴套);10—紧定螺钉 A,B,C,D—密封部位(通道)
4
机械密封基本元件的作用*
Ae
4
d22 db2
(6-3)
式中,db 为滑移直径,也称为平衡直径,指密封流体压力作用在
补偿环辅助密封圈处的轴(或轴套)的直径。
密封流体压力作用比压 pe 单位密封面上承受的流体压力所施
加的使密封端面闭合的力。
机械密封端面比压的确定

机械密封端面比压的确定润滑油作业部许松涛2007年11月2日机械密封端面比压的确定摘要:泵是石油化工企业最主要和常见的机械设备,由于工艺条件的要求,以及人们经济意识和环保意识的提高,近年来泵密封的泄漏越来越受到关注。
泵的密封是防止介质从泵轴周围的间隙处泄漏,或空气从间隙处侵入泵体。
机械密封作为石化企业泵最常见的密封形式,占重要地位,机械密封的端面比压是影响密封性能和使用寿命的最主要因素之一。
文章结合实际工作中机械密封的安装及维修情况,对密封的端面比压在计算、校核中的一些问题进行分析,以便于确定压缩量,能对机械密封的使用情况有所改善。
关键词:机械密封端面比压分析1.机械密封工作原理及常见结构型式机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。
1、静止环(静环)2、旋转环(动环)3、弹性元件4、弹簧座5、紧定螺钉6、旋转环辅助密封圈7、防转销8、静止环辅助密封圈9、固定压盖图1——机械密封结构示意图常用机械密封结构如图1所示。
旋转环和静止环往往还可根据它们是否具有轴向补偿能力而称为补偿环或非补偿环。
机械密封中流体可能泄漏的途径有如图1中的A、B、C、D四个通道。
C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密封,二者均属静密封。
B通道是旋转环与轴之间的密封,当端面摩擦磨损后,它仅仅能追随补偿环沿轴向作微量的移动,实际上仍然是一个相对静密封。
因此,这些泄漏通道相对来说比较容易封堵。
静密封元件最常用的有橡胶O形圈或聚四氟乙烯V形圈,而作为补偿环的旋转环或静止环辅助密封,有时采用兼备弹性元件功能的橡胶、聚四氟乙烯或金属波纹管的结构。
A通道则是旋转环与静止环的端面彼此贴合作相对滑动的动密封,它是机械密封装置中的主密封,也是决定机械密封性能和寿命的关键。
因此,对密封端面的加工要求很高,同时为了使密封端面间保持必要的润滑液膜,必须严格控制端面上的单位面积压力,压力过大,不易形成稳定的润滑液膜,会加速端面的磨损;压力过小,泄漏量增加。
机械密封使用寿命计算书

机械密封使用寿命计算书机械密封磨损率计算:摩擦副材料粘着磨损的磨损量△v△v=K w WL/HK W—磨损系数W—法向载荷,N;L—摩擦路程,m;H—硬度N/m2其中周速:V=L/T (2)载荷:W=PcAf (3)线度磨损: △L=△VAf(4)将(2)、(3)、(4)代入(1)得机械密封磨损率υ=△LT =K W P C A f LA f TH=K W P C V/H即υ=(K WH)P c V其中P C—端面比压,MPa根据《流体动密封》查得:机械密封的端面比压计算公式如下:P C=p s+(k−λ)p其中P C—端面比压,MPaP s—弹簧比压,MPaK为载荷系数(平衡系数)λ为液膜反压系数p为介质压力,MPa本项目中机械密封采用专用的计算程序进行设计本项目中机械密封磨损率计算:1.M524型机械密封M524-230:P C=p s+(k−λ)p=0.3MPaυ=(K W)P c V=0.13m/hH2. 集装式机械密封C20-185JP C=p s+(k−λ)p=0.26MPaυ=(K W)P c V=0.11m/hH注:我国GB/T33509-2017规定磨损率V0.2m/h。
与德国DIN24960的规定相同。
本项目中机械密封磨损率V=0.13、0.11m/h均≤0.2m/h。
符合国家标准要求。
机械密封寿命计算:机械密封寿命=窄环凸台高度/磨损率1.M524型机械密封M524-230:机械密封寿命=窄环凸台高度/磨损率=3×103/0.13=23077h2. 集装式机械密封C20-185J:机械密封寿命=窄环凸台高度/磨损率=3×103/0.11=27273h本项目中机械密封寿命大于12000h要求。
符合标书要求。
机械密封基础知识-三机械密封的计算

2018/12/3
2
(二)密封端面中液膜反力的分布情况
2018/12/3
3
在d2处,端面间液膜压力等于P介。在d1处,端面间液 膜压力近似为零。对于中间分布情况,人们通过大量试验 发现,各点的压力分布与介质性质有关,还与端面中的相 态和摩擦状态有关。 对于丁烷等(粘度小、易汽化介质),压力分布成凸抛物线状1。 对于水等(中等粘度介质),压力分布成直线性2。 对于润滑油等(高粘度介质),压力分布成凹抛物线状3。
2018/12/3
12
端面比压的选取原则:
(1)必须高于弹簧比压;
(2)必须大于介质在端面温度升高时的饱和蒸汽压; 在保证以上条件下,尽量取小值,以防端面发热,破坏液膜,加剧磨损,功 率消耗增大,密封使用寿命减短。同时考虑以下原则: (1)对自润滑性好的组对(M106K/SiC、YG6/ SiC、M106K/YG6) 可以取稍大值(因液膜不易被破坏,摩擦系数不易增加。)。 (2)对于外装式机械密封,可以取稍小值(因介质比压很小,
两相。rb为汽化半径,此处液膜压力=P饱和(tp),
tp处温度最高。 r2~rb区域,液膜压力成线性分布,液相 rb~r1区域,液膜压力成抛物线分布,气相 对于易汽化介质膜压系数λ,中国石油大学顾永泉教授提出一个计算公式: λ=2/3×/P1+(1/2-1/6×Pf/P1)(r2~rb)/( r2 -r1) 式中:Pf :rb处气化压力 P1 :介质压力 rb:气化半径 r2 /r1 :端面外半径/内半径 计算值一般在0.70~0.85之间。
转速低,轴摆动大,取大值。
2018/12/3
9
(七)载荷系数K
介质压力对补偿环的有效作用A面积与端面面积S之比。 K=A/S
2018/12/3
浮动端面密封结构设计——(一)端面比压的计算

△d
=
A
,
,
B
n
中可 以 得出
( 1 )
。
H
s
i 日
方程
( l )对 于 一 部 分 变 形 量 是 正 确 的
在需 要 确 定 每 一 个 倾斜表 面 相 对 于 橡 胶 圈 截
面 中 心的 位 置时
,
只 取 变 形值 △ d 的 一 半 因
,
。
为 在 变 形 中 橡胶 圈 截面 上 的 各 点
3
司
丫
图
4
k
中
,
1
和
2
两 条 曲线 分 别 为 浮 动 端
,
面 密 封 环锥 角 p 等于 2 0 度
和 壳体
Y
0 等于 1 上有两
度
;
p 等于 2 0 度
,
Y
2 度 ( 实线 ) 的 轴 等于 1
。
向 力与 压 缩 童 关 系 曲线 一 28一
曲线
1
和
2
倾 斜表面 上 都 产 生 均 匀位 移
I
根本 不
图 1
能 起密 封 作 用
尹 ’ J `
。
如
”
碑
:
过 去 国 产的 长 齿 滚 刀 使
,
用 寿 命仅 为 现 在 的
,
” 尸
~
/ 砂
~ 一
。
( 2 。 米左 右 ) 粤 7 ~
、
其 根 本原
~
’
“ 甘
` ’ -
一
产 ’
”
了
闪
,
、
金 属 环 主 要 用 于 构成 摩 擦 付 作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s m v /238.81025360229703=⨯⨯⨯=
-π金属波纹管机械密封端面比压计算如下:
某聚酯公司生产时热媒泵使用工况:
进口压力P 1=5.24bar=0.524MPa 出口压力P 2=11.9bar=1.19MPa
介质温度:320℃,轴的转速n=2970r/min ,流量:253m 3/h
实测该泵的机械密封数据如下:
表1:机械密封数据实测值
符号
名称 实测值/mm d 1
接触端面内径 61 d 2
接触端面外径 69 d 3
波纹管内径 56 d 4
波纹管外径 70
据《流体动密封》查得[1],波纹管机械密封的端面比压计算公式如下:
p c =()s p k p λ+-
其中,p c 为端面比压,MPa ;
p s 为弹簧比压,MPa ;
k 为载荷系数(平衡系数);
λ为液膜反压系数;
p 为介质压力,MPa
现对上述公式中各项的取值进行分析或计算如下:
1)λ:为密封面间的平均液膜压力与密封介质压力之比,λ值的大小与介质性质、转速、压力以及密封表面状态等有关。
当液膜静压力近似地按三角形分布考虑时,则可取λ=0.5。
但在高速条件下,液膜动压效应不能忽略,须通过实验确定λ值[1]。
根据本设计初始参数,实测轴外径为53mm ,近似认为轴外径为动环内径,则估算出端面平均线速度:
即v=8.238<30,不属于高速,因此取λ=0.5
2) p: 密封腔处的介质压力[1]
212.0p p p +=
即p=0.762 MPa
3)k :对于内流式:
k=21222e 2
4d -d d -d
其中,d 2为接触端面外径,d 2=69mm ;
d 1为接触端面内径,d 1=61mm
锯齿型金属波纹管有效直径d e 计算公式如下:
d e =2231d d +d d 3
+434() 式中,d 4为波纹管外径,d 4=70mm ;
d 3为波纹管内径,d 3=56mm
4)弹簧比压Ps
端面平均线速度 v=8.238 m/s
根据密封端面平均线速度的不同,弹簧比压的选择范围也不同,其范围可参考下表[2]。
由有关文献[2]介绍
表2 机械密封弹簧比压选择参考表
机械密封类型
密封端面平均线速度(m/s) 弹簧比压Ps (MPa ) 高速机械密封
>30 0.05--0.2 中速机械密封
10~30 0.15--0.3 低速机械密封 <10 0.15--0.6
本机械密封为低速,p s 为0.15~0.6,
分别取p s =0.15,0.45, 0.6
将以上数据代入端面比压计算公式,得出结果如下:
1.p s=0.15时,p c=0.44
2.p s=0.45时,p c=0.74
3.p s=0.60时,p c=0.89
参考文献
[1]陈匡民,董宗玉,陈文梅等.流体动密封[M].成都:成都科技大学出版社,1990
[2]李继和,蔡纪宁,林学海等.机械密封技术[M].北京:化学工业出版社,1987
Ps取0.15,0.45,0.6;
介质压力p=0.762MPa;
λ=0.5;
1.当d4=70时,k=0.88,p c结果分别对应如下
1)p c= 0.44
2)p c=0.74
3)p c=0.89
2. 当d4=71时,k=0.952
1)p c= 0.49
2)p c=0.79
3)p c=0.94
3. 当d4=72时,k=1.025
1)p c= 0.55
2)p c=0.85
3)p c=1.00。