简单含参集合的应用(含答案)
高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.若,则的值为【答案】-1【解析】由集合相等的概念可知有元素,又,则,故,根据集合中元素的互异性知,故。
【考点】集合相等的概念及集合中元素的互异性。
2.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.3.设集合,,若, 则集合P的子集的个数为()A.2个B.4个C.6个D.8个【答案】B【解析】,集合的子集有:共4个。
故B正确。
【考点】1集合的运算,2集合的子集。
4.已知,(1)设集合,请用列举法表示集合B;(2)求和.【答案】(1);(2),【解析】(1)集合为以集合为定义域的函数的值域。
时,;时,;时,;时,。
可用例举法写出集合。
(2)根据交集和并集的定义可直接得出和。
试题解析:解:(1)B= 5分(2) 7分10分【考点】1函数的值域;1集合的运算。
5.设求 .【答案】.【解析】有并集定义得.【考点】并集概念.6.集合.(1)当时,求;(2)若是只有一个元素的集合,求实数的取值范围.【答案】(1)(2)m=3或m≥【解析】(1)两集合的交集即两集合的公共部分,所以应联立方程解方程组。
(2)要使是只有一个元素的集合,只需联立的方程只有一个根,消去y或x后整理出一元二次方程,当判别式等于0时,对称轴需在内,当判别式大于0时,函数的一个零点应在内。
试题解析:(1),所以。
(2)消去y整理可得。
因为是只有一个元素的集合,即此方程在只有一个根。
所以或解得m=3或m≥【考点】集合运算一元二次函数图像7.若集合,,则=()A.B.C.D.【答案】C【解析】由集合的交集运算性质可知,故选C.【考点】集合交集的运算.8.已知全集则()A.B.C.D.【答案】C.【解析】找出全集U中不属于A的元素,确定出A的补集,找出既属于A补集又属于B的元素,即可确定出所求的集合,∵全集U={1,2,3,4},A={1,2},∴∁UA={3,4},又B={2,3},则(∁UA)∪B={2,3,4},故选C.【考点】交、并、补集的混合运算.9.集合.(1)若A B=,求a的取值范围.(2)若A B=,求a的取值范围.【答案】(1)(2)【解析】(1)A B=时,集合A集合B没有公共点,所以时成立。
第1讲、集合子集问题含参讨论

第一讲、集合子集(包含)含参问题讨论【例题1】已知集合A = ^xax2+2x+\ =0,x e /?),且A中只有一个元素,求G的值.【答案】"=1或4 = 0【解析】①当"=0时,z—I,此时② '"la H 0 时,△= 2‘ —4d = 0,贝ij“ = 1,此时A = {—1}综上可得:d = 0或a= 1【变式1】已知ft n* A = {x e R mx2-2x + 3 = 0, m e /?},且A中只有一个元素,求加的值. 【答案】0,13【变式2】已知集合A = {X/+ X_6=0},B= {扌心+1 =0}且BuA,求d的值.【答案】0丄,一]3 2【例题2】已知集合A = {x I -2 < x < 5 } , B = {x I w +1 < x < 2m-\},若BgA,求实数加的取值范围.【答案】{m I m < 3}【解析】••• BgA①当B = 0时,m+l>2m-l,则m < 2;②当B主0时,要使,只需:m +1 < 2m -1<-2<w+l ,解得:2 </?/<3;5 > 2m -1综上可得:m < 3【变式1】集合A = {x\ a - \ < x < 2« +1}, B = {x\-3 <x <1},若AgB,求d的取值范围.【答案】心3【变式2】已矢口非空集合A= {xHdH,+1,XE/?},B = {x\2<x<3a+\,xeR}, a w R ,求使A^B时,"的取值范圉.【答案】l<t/<3【例题3】设A = {xIx2 + 4x = 0}, B= {x\x2 + 2{a+t)x +a2-1 =o},若B G A ,求a 的值.【答案】a < -1或a = 1【解析】>4 = {0,-4}BgA, B = 0或B={0}或B={_4}或B={0,-4}①当B = 0时△= 4@ + 1)2-4(宀1)<0,解得av-l;②当B={0}或B={-4}时△= 4(a +1)= — 4(/ -1)= 0,解得d = -1,此时B={0},成立,③当3= {0,-4}时A>0-/(0)= 0 ‘ 解得“ =1./(-4)=0综上可得:a<-\或a=l【变式1】集合A={xlF - 3x + 2 = 0}, B={xlx2-2x + «-l=0}, = 求a 的取值范围.【答案】心。
高中数学:含参 “一元二次不等式”的解法高中数学黄金解题模板

【高考地位】解含参一元二次不等式,常涉及对参数的分类讨论以确定不等式的解,这是解含参一元二次不等式问题的一个难点. 在高考中各种题型多以选择题、填空题等出现,其试题难度属中高档题.【方法点评】类型一 根据二次项系数的符号分类使用情景:参数在一元二次不等式的最高次项解题模板:第一步 直接讨论参数大于0、小于0或者等于0;第二步 分别求出其对应的不等式的解集; 第三步 得出结论.例1 已知关于x 的不等式2320ax x -+>)(R a ∈.(1)若不等式2320ax x -+>的解集为{|1}或x x x b <>,求,a b 的值.(2)求不等式ax x ax ->+-5232)(R a ∈的解集【答案】(1)1,2a b ==(2)①当0>a 时,a x x 3{>或}1-<x ②当03<<-a 时,}13{-<<x ax ③当3-=a 时,∅④当3-<a 时,}31{ax x <<-⑤ 当0=a 时,原不等式解集为{}1-<x x(2)第一步,直接讨论参数大于0、小于0或者等于0: 不等式为()0332>--+x a ax ,即()()013>+-x ax第二步,分别求出其对应的不等式的解集: 当0=a 时,原不等式的解集为{}1|-<x x ; 当0≠a 时,方程()()013=+-x ax 的根为1,321-==x ax ;所以当0>a 时,⎭⎬⎫⎩⎨⎧-<>13|x a x x 或; ②当03<<-a 时,13-<a,∴}13{-<<x a x③当3-=a 时,13-=a ,∴∅④当3-<a 时,13->a,∴}31{a x x <<-学*科网第三步,得出结论:综上所述,原不等式解集为①当0>a 时,a x x 3{>或}1-<x ;②当03<<-a 时,}13{-<<x a x ③当3-=a 时,∅;④当3-<a 时,}31{ax x <<-;⑤当0=a 时,原不等式解集为{}1-<x x .考点:一元二次不等式的解法.【点评】(1)本题考察的是一元二次不等式和一元二次方程的关系,由题目所给条件知2320ax x -+=的两根为1x x b ==或,且0a >,根据根与系数的关系,即可求出,a b 的值.(2)本题考察的是解含参一元二次不等式,根据题目所给条件和因式分解化为()()310ax x -+>,然后通过对参数a 进行分类讨论,即可求出不等式的解集.学*科网【变式演练1】【河南省平顶山市2017-2018学年期末调研考试高二理科数学】若不等式对任意实数 均成立,则实数 的取值范围是( )A .B .C .D .【答案】C【变式演练2】已知p :1x 和2x 是方程220x mx --=的两个实根,不等式21253||a a x x --≥-对任意实数[]1,1m ∈-恒成立;q :不等式2210ax x +->有解,若p 为真,q 为假,求a 的取值范围.【答案】1a ≤-∴440a ∆=+>,∴10a -<<, ∴不等式2210ax x +->有解时1a >-, ∴q 假时a 的范围为1a ≤-,②由①②可得a 的取值范围为1a ≤-.学*科网考点:命题真假性的应用类型二 根据二次不等式所对应方程的根的大小分类使用情景:一元二次不等式可因式分解类型解题模板:第一步 将所给的一元二次不等式进行因式分解;第二步 比较两根的大小关系并根据其大小进行分类讨论;第三步 得出结论.例2 解关于x 的不等式01)1(2>++-x a ax (a 为常数且0≠a ).【答案】0<a 时不等式的解集为)1,1(a ; 10<<a 时不等式的解集为),1()1,(+∞-∞a;1=a 时不等式的解集为),1()1,(+∞-∞ ;1>a 时不等式的解集为),1()1,(+∞-∞ a.若1>a ,110<<a ,不等式的解集为),1()1,(+∞-∞ a学*科网 试题分析:21(1)10()(1)0ax a x a x x a-++>⇔-->,先讨论0a <时不等式的解集;当0a >时,讨论1与1a的大小,即分10<<a ,1=a ,1>a 分别写出不等式的解集即可. 考点:1.一元二次不等式的解法;2.含参不等式的解法.【变式演练3】已知0a <,解关于x 的不等式2(2)20ax a x ---<. 【答案】当2a <-时,2{x | x x 1}a <-或>;当2a =-时,{}1x x ≠;当20a -<<时,2{x |x 1x }a<或>-.考点:一元二次不等式.【变式演练4】【2018重庆高三理科数学不等式单元测试卷】已知0<b<1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( )A . -1<a<0B . 0<a<1C . 1<a<3D . 3<a<6 【答案】C【解析】由()()22x b ax ->,整理可得(1-2a )2x -2bx+2b >0,由于该不等式的解集中的整数恰有3个,则有1-2a <0,此时2a >1,而0<b<1+a ,故a>1, 由不等式()22212a x bx b -+-<0解得()()222222,2121b ab b ab x a a ---+<<--即111b bx a a -<<<-+要使该不等式的解集中的整数恰有3个,那么-3<1b a --<-2,由1b a --<-2得-b<-2(a -1),则有a<2b +1,即a<2b +1<12a ++1,解得a<3,由-3<1ba --得3a -3>b>0,解得a>1,则1<a<3.学&科网类型三 根据判别式的符号分类使用情景:一般一元二次不等式类型解题模板:第一步 首先求出不等式所对应方程的判别式;第二步 讨论判别式大于0、小于0或等于0所对应的不等式的解集;第三步 得出结论.例3 设集合A={x |x 2+3k 2≥2k (2x -1)},B={x |x 2-(2x -1)k +k 2≥0},且A ⊆B ,试求k 的取值范围. 【答案】.010<≤-≥k k 或【解析】第一步,首先求出不等式所对应方程的判别式:B 中的不等式不能分解因式,故考虑判断式k k k k 4)(4422-=+-=∆, (1)当k =0时,R x ∈<∆,0. (2)当k >0时,△<0,x R ∈.(3)当k <0时,k k x k k x -+≥--≤>∆或,0.第三步,得出结论:综上所述,k 的取值范围是:.010<≤-≥k k 或【点评】解含参的一元二次不等式,可先分解因式,再讨论求解,若不易分解,也可对∆进行分类,或利用二次函数图像求解.对于二次项系数不含参数且不能因式分解时,则需对判别式∆的符号分类. 【变式演练5】在区间错误!未找到引用源。
高一必修一数学集合中含参取值范围专项练习(含解析)

集合中含参取值范围一.选择题(共8小题)1.集合A={x|x2=1},B={x|ax=1}.若B⊆A,则实数a的值为()A.1 B.﹣1 C.±1 D.0或±12.已知,那么实数a的取值范围是()A.(﹣1,2)B.C.D.3.设A=[﹣2,4),B={x|x2﹣ax﹣4≤0},若B⊆A,则实数a的取值范围为()A.[﹣1,2)B.[﹣1,2]C.[0,3]D.[0,3)4.设集合A={x,y|y=},B={x,y|y=k(x﹣b)+1},若对任意0≤k≤1都有A∩B≠∅,则实数b的取值范围是()A.B.C. D.5.已知集合A={1,2},B={x|mx﹣1=0},若A∩B=B,则符合条件的实数m的值组成的集合为()A.{1,}B.{﹣1,}C.{1,0,}D.{1,﹣}6.已知集合A={x|0<x<1},B={x|0<x<c},若A∪B=B,则实数c的取值范围是()A.[1,+∞)B.(0,1]C.(0,1 D.(1,+∞)7.已知集合A={x|x≤1},B={x|x>a},且A∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,∞)D.[1,+∞)8.集合M={1,2(m2﹣2m﹣5)+(m2+5m+6)i},N={3,10},且M∩N≠∅,则实数m的值为()A.﹣2 B.﹣2或4 C.﹣2或﹣3 D.﹣2或5二.填空题(共10小题)9.不等式的解集是空集,则实数a的取值范围是.10.设全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},若N⊆M,则实数a的取值范围是.11.已知集合A={﹣1,0,a},B={x|1<2x<2},若A∩B≠∅,则实数a的取值范围是.12.已知集合A={x|﹣2≤x≤7},B={x|m+1<x<2m﹣1}且B≠∅,若A∪B=A,则m的取值范围是.13.已知集合A={x|x<a},B={x|1<x<2},A∪(∁R B)=R,则实数a的取值范围是.14.已知函数,A={x|t≤x≤t+1},B={x||f(x)|≥1},若集合A∩B只含有一个元素,则实数t的取值范围是.15.设f(x)=x2+ax+bcosx,{x|f(x)=0,x∈R}={x|f(f(x))=0,x∈R}≠∅,则满足条件的所有实数a,b 的值分别为.16.已知,B={(x,y)|y=kx+3},并且A∩B=∅,则实数k的值是.17.设集合,B={x|x2﹣3ax﹣10a2≤0,a>0},满足A∩B=A的正实数a 的取值范围是.18.已知集合S={x|kx2+1>kx},若S=R,则实数k的取值范围.三.解答题(共16小题)19.设集合A={x|x2+4a=(a+4)x,a∈R},B={x|x2+4=5x}.(1)若A∩B=A,求实数a的值;(2)求A∪B,A∩B.20.已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=∅,求a的范围.21.已知M={x|﹣2≤x≤5},N={x|a+1≤x≤2a﹣1}.(Ⅰ)若M⊆N,求实数a的取值范围;(Ⅱ)若M⊇N,求实数a的取值范围.22.A={x|x2+4x=0},B={x|x2+2(a﹣1)x+a2﹣1=0},如果A∩B=B,求实数a的取值范围.23.设集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2},C={x|x≥a﹣1}.(1)求A∩B;(2)若B∪C=C,求实数a的取值范围.24.已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0},且A∪B=A,A∩C=C,求实数a,m的取值范围.25.设A={x|x2﹣3x+2=0},B={x|x2﹣ax+2=0},B⊆A.(1)写出集合A的所有子集;(2)若B非空,求a的值.26.已知集合A={x||x﹣1|<2},B={x|x2+ax﹣6<0},C={x|x2﹣2x﹣15<0}(1)若A∪B=B,求a的取值范围;(2)是否存在a的值使得A∪B=B∩C,若存在,求出a的值;若不存在,请说明理由.27.已知集合A={x|(x+1)(x﹣5)≤0},集合B={x|1﹣m≤x≤1+m,m>0}.(1)若A⊆B,求实数m的取值范围;(2)若集合A∩B中有且只有3个整数,求实数m的取值范围.28.已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.(1)当m=3时,求集合A∩B;(2)若B⊆A,求实数m的取值范围.29.已知集合A={(x,y)|y=﹣x2+mx﹣1},B={(x,y)|x+y=3,0≤x≤3},若A∩B中有且仅有一个元素,求实数m的取值范围.30.设集合A={x|﹣2≤x≤4},B={x|m﹣3≤x≤m}.(1)若A∩B={x|2≤x≤4},求实数m的值;(2)若A⊆(∁R B),求实数m的取值范围.31.已知集合A={x∈R|mx2﹣2x+1=0},在下列条件下分别求实数m的取值范围:(Ⅰ)A=∅;(Ⅱ)A恰有两个子集;(Ⅲ)A∩(,2)≠∅32.设x、y为实数,集合A={(x,y)|y2﹣x﹣1=0},B={(x,y)|16x2+8x﹣2y+5=0},C={(x,y)|y=kx+b},问是否存在自然数k,b使(A∪B)∩C=∅?33.已知A={x|a≤x≤2a+3},B={x|x2+5x﹣6>0}.(Ⅰ)若A∩B={x|1<x≤3},求a的值;(Ⅱ)若A∪B=B,求a的取值范围.34.已知集合A={x|x2﹣2ax+4a2﹣3=0},集合B={x|x2﹣x﹣2=0},集合C={x|x2+2x﹣8=0}(1)是否存在实数a,使A∩B=A∪B?若存在,试求a的值,若不存在,说明理由;(2)若A∩B≠∅,A∩C=∅,求a的值.参考答案一.选择题(共8小题)1.解:∵A={x|x2=1}={﹣1,1},又∵B⊆A,当a=0,ax=1无解,故B=∅,满足条件若B≠∅,则B={﹣1},或Q={1},即a=﹣1,或a=1故满足条件的实数a∈{0,1,﹣1}故选D.2.解:由题意,,由A∪B=A得B⊆A又B={x|x2﹣2ax+a+2≤0}当B是空集时,符合题意,此时有△=4a2﹣4a﹣8<0解得﹣1<a<2 当B不是空集时,有解得2≤a≤综上知,实数a的取值范围是故选D3.解:∵△=a2+16>0∴设方程x2﹣ax﹣4=0的两个根为x1,x2,(x1<x2)即函数f(x)=x2﹣ax﹣4的两个零点为x1,x2,(x1<x2)则B=[x1,x2]若B⊆A,则函数f(x)=x2﹣ax﹣4的两个零点在[﹣2,4)之间注意到函数f(x)的图象过点(0,﹣4)∴只需,即解得:0≤a<3故选 D4.解:∵集合A={(x,y)|y=},B={(x,y)|y=k(x﹣b)+1},当0≤k≤1时,都有A∩B≠∅,作图如下:集合A中的曲线为以(0,0)为圆心,2为半径的上半圆,B中的点的集合为过(b,1)斜率为k的直线上的点,由图知,当k=0时,显然A∩B≠∅,当k=1,y=(x﹣b)+1经过点B(2,0)时,b=3;当k=1,直线y=(x﹣b)+1与曲线y=相切与点A时,由圆心(0,0)到该直线的距离d==2得:b=1﹣2或b=1+2(舍).∵0≤k≤1时,都有A∩B≠∅,∴实数b的取值范围为:1﹣2≤b≤3.故选C.5.解:∵A∩B=B∴B⊆A当m=0时,B=∅满足要求;当B≠∅时,m+1=0或2m﹣1=0m=﹣1或∴综上,m∈{1,0,}.故选C.6.解:若A∪B=B,则A⊆B,∵A={x|0<x<1},B={x|0<x<c},∴c≥1.故选A.7.解:∵集合A={x|x≤1},B={x|x>a},且A∪B=R,∴a≤1,故选B.8.解:∵M={1,2,(m2﹣2m﹣5)+(m2+5m+6)i},N={3,10},且M∩N≠∅,∴(m2﹣2m﹣5)+(m2+5m+6)i=3或(m2﹣2m﹣5)+(m2+5m+6)i=10即m2+5m+6=0解得m=﹣2或﹣3当m=﹣2时(m2﹣2m﹣5)+(m2+5m+6)i=3,满足条件当m=﹣3时(m2﹣2m﹣5)+(m2+5m+6)i=10,满足条件故选C二.填空题(共10小题)9.解:根据题意,x+a>0的解集为x>﹣a,若这个不等式组的解集是空集,则ax>﹣1,即ax+1>0的解集为{x|x≤﹣a}的子集,分析可得,当a≤﹣1,成立;故答案为a≤﹣1.10.解:∵全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},N⊆M,∴2a﹣1≤1 且4a≥2,解得2≥a≥,故实数a的取值范围是[,1],故答案为[,1].11.解:∵集合A={﹣1,0,a},B={x|1<2x<2}={x|0<x<1},若A∩B≠∅,则有0<a<1,故实数a的取值范围是(0,1),故答案为(0,1).12.解:据题意得B⊆A,故有﹣2≤m+1<2m﹣1≤7,转化为不等式组,解得2<m≤4,故m的取值范围是的取值范围是(2,4],故答案为(2,4].13.解:∵B={x|1<x<2},∴∁R B={x|x≥2或x≤1},要使A∪(∁R B)=R,则a≥2.故答案为:{a|a≥2}.14.解:∵要解|f(x)|≥1,需要分类来看,当x≥0时,|2x2﹣4x+1|≥1∴2x2﹣4x+1≥1或2x2﹣4x+1≤﹣1∴x≥2或x≤0或x=1∵x≥0∴x≥2或x=1或x=0.当x<0时,|﹣2x2﹣4x+1|≥1∴﹣2x2﹣4x+1≥1或﹣2x2﹣4x+1≤﹣1∴﹣2≤x≤0或x或x∵x<0∴﹣2≤x<0或x综上可知B={x|﹣2≤x≤0或x或x≥2或x=1}∵集合A∩B只含有一个元素,∴t>0且t+1<2∴0<t<1故答案为:0<t<115.解:∵f(x)=x2+ax,∴f(f(x))=f(x)2+af(x)=(x2+ax)2+a•(x2+ax)=x4+2ax3+(a2+a)x2+a2x 当a=0时,{x|f(x)=0,x∈R}={x|f(f(x))=0,x∈R}={0}≠∅当a≠0时,{x|f(x)=0,x∈R}={0,﹣a}.若{x|f(f(x))=0,x∈R}={0,﹣a},则f(f(﹣a))=0且除0,﹣a外f(f(x))=0无实根,即x2+ax+a=0无实根即a2﹣4a<0,即0<a<4综上满足条件的所有实数a的取值范围为0≤a<4故答案为:0≤a<4,b=0.16.解:由题意A集合是一条直线y=﹣3x﹣2去掉一个点(﹣1,1)后所有点的集合,B集合是直线y=kx+3所有点的集合,∵A∩B=∅,∴两直线的位置关系是平行,或者是直线y=kx+3过点(﹣1,1),若两直线平行,则有k=﹣3,若直线y=kx+3过点(﹣1,1),则有1=﹣k+3,得k=2综上,实数k的值是2或﹣3故答案为2或﹣317.解:集合={x|﹣2≤x≤2}.B={x|x2﹣3ax﹣10a2≤0,a>0}={x|(x+2a)(x﹣5a)≤0,a>0}={x|﹣2a≤x≤5a}.因为A∩B=A,所以A⊆B,即,所以,即a≥1.所以正实数a的取值范围是[1,+∞).故答案为:[1,+∞).18.解:要使若S=R,需kx2+1>kx恒成立,即kx2 ﹣kx+1>0 恒成立.当k=0时,不等式即1>0,显然成立;当k≠0时,由△=k2﹣4k<0,解得0<k<4,故答案为:[0,4).三.解答题(共16小题)19.解:A={x|x=4或x=a},B={x|x=1或x=4}(1)因为A∩B=A 所以A⊆B,由此得a=1 或a=4(2)若a=1,则A=B={1,4}所以A∪B={1,4},A∩B={1,4}若a=4,则A={4}所以A∪B={1,4},A∩B={4}若a≠1,4则A={4,a}所以A∪B={1,4,a},A∩B={4}20.解:当A=φ时即2a>a+3,a>3,此时满足A∩B=∅当A≠∅时,2a≤a+3,即a≤3时有2a≥﹣1且a+3≤5解之﹣≤a≤2,此时A∩B=φ综合知,当a>3或﹣≤a≤2时,A∩B=∅21.解:(Ⅰ)由于M⊆N,则,解得a∈Φ(4分)(Ⅱ)①当N=Φ时,即a+1>2a﹣1,有a<2.(6分)②当N≠Φ,则,解得2≤a≤3,综合①②得a的取值范围为a≤3.(10分)22.解:A═{x|x2+4x=0}={0,﹣4},∵A∩B=B,∴B⊆A.方程x2+2(a﹣1)x+a2﹣1=0的判别式△=4(a﹣1)2﹣4(a2﹣1)=﹣8a+8.①若B=∅时,△=﹣8a+8<0,得a>1;②若B={0},则,解得a=1;③B={﹣4}时,则,此时方程组无解.④B={0,﹣4},,此时a无解.综上所述实数a≥1.23.解:(1)由题意知,B={x|2x﹣4≥x﹣2}={x|x≥2}…(2分)所以A∩B={x|2≤x<3}…(4分)(2)因为B∪C=C,所以B⊆C…(6分)所以a﹣1≤2,即a≤3…(8分)24.解:由已知得A={1,2},B={x|(x﹣1)(x﹣a+1)=0},由A∪B=A,知B⊆A由题意知B≠∅,当B为单元素集合时,只需a=2,此时B={1}满足题意.当B为双元素集合时,只需a=3,此时B={1,2}也满足题意所以a=2或a=3,由A∩C=C得C⊆A当C是空集时,△=m2﹣8<0即﹣2<m<2;当C为单元素集合时,△=0,求得m=±2,此时C={}或C={﹣},此时不满足题意,舍去;当C为双元素集合时,C只能为{1,2},此时m=3;综上m的取值集合为{m|m=3或﹣2<m<2}.25.解:(1)由题可知:A={1,2},所以集合A的所有子集是:∅,{1},{2},{1,2};(2)因为B非空集合,①当集合B中只有一个元素时,由判别式等于0可得,a2﹣8=0可知,此时B={x|x2﹣ax+2=0}={x|=0},故B={}或{},不满足B⊆A,不符合题意.②当集合B中有两个元素时,A=B,比较方程的系数可得a=3,综上可知:a=3.26.解:(1)∵集合A={x||x﹣1|<2},B={x|x2+ax﹣6<0},C={x|x2﹣2x﹣15<0}∴A={x|﹣1<x<3},C={x|﹣3<x<5},由A∪B=B知A⊆B,令f(x)=x2+ax﹣6,则得﹣5≤a≤﹣1(2)假设存在a的值使A∪B=B∩C,由A∪B=B∩C⊆B知A⊆B,又B⊆A∪B=B∩C知B⊆C,∴A⊆B⊆C.由(1)知若A⊆B,则a∈[﹣5,1]当B⊆C时,△=a2+24>0,∴B≠φ∴得≤a≤﹣1,故存在a∈[﹣,﹣1]满足条件.27.解:(1)因为A={x|(x+1)(x﹣5)≤0}={x|﹣1≤x≤5},因为m>0,所以B≠∅.所以要使A⊆B,则有,即,即m≥4,所以实数m的取值范围[4,+∞).(2)因为A={x|﹣1≤x≤5},B={x|1﹣m≤x≤1+m,m>0}.则集合B的区间长度为1+m﹣(1﹣m)=2m.所以集合A∩B中有且只有3个整数,则有2m<4,即m<2.此时1+m<3.①若2≤1+m<3,要使集合A∩B中有且只有3个整数,此时三个整数为0,1,2,所以满足﹣1<1﹣m≤0,即,解得,所以此时1≤m<2.②若1≤1+m<2,要使集合A∩B中有且只有3个整数,此时三个整数为﹣1,0,1,所以满足1﹣m≤﹣1,即,解得,所以m无解.综上实数m的取值范围[1,2).28.解:(1)当m=3时,B={x|4≤x≤5}(3分)则A∩B={x|4≤x≤5}(6分)(2)①当B为空集时,得m+1>2m﹣1,则m<2(9分)当B不为空集时,m+1≤2m﹣1,得m≥2由B⊆A可得m+1≥﹣2且2m﹣1≤5(12分)得2≤m≤3(13分)故实数m的取值范围为m≤3(14分)29.解:由题意,得x2﹣(m+1)x+4=0在[0,3]上有且仅有一解①△=0时方程有相等实根且在[0,3]上,即∴m=3②△>0时,只有一根在[0,3]上,两根之积为4>0,则32﹣(m+1)×3+4<0,∴m>所以,m的取值范围是m=3或m>.30.解:(1)因为A={x|﹣2≤x≤4},B={x|m﹣3≤x≤m}.所以若A∩B={x|2≤x≤4},则,即,所以m=5.…6分(2)因为B={x|m﹣3≤x≤m},所以∁R B={x|x>m或x<m﹣3},要使A⊆(∁R B),则m﹣3>4或m<﹣2,即m>7或m<﹣2.即m的取值范围为(﹣∞,﹣2)∪(7,+∞)…12分.31.解:(Ⅰ)若A=∅,则关于x的方程mx2﹣2x+1=0 没有实数解,则m≠0,且△=4﹣4m<0,所以m>1;(3分)(Ⅱ)若A恰有两个子集,则A为单元素集,所以关于x的方程mx2﹣2x+1=0 恰有一个实数解,讨论:①当m=0时,x=,满足题意;②当m≠0时,△=4﹣4m,所以m=1.综上所述,m的集合为{0,1}.(3分)(Ⅲ)若A∩(,2)≠∅,则关于x的方程mx2=2x﹣1在区间(,2)内有解,这等价于当x∈(,2)时,求值域:m=﹣=1﹣(﹣1)2∴m∈(0,1](5分)32.解:若(A∪B)∩C=∅,则(A∩C)∪(B∩C)=φ,即有A∩C=φ且B∩C=φ.即方程组①与②都无解,由①得k2x2+(2kb﹣1)x+b2﹣1=0,若k=0,则方程为x=1﹣b2,有解,不满足条件,若k≠0,则判别式△=(2kb﹣1)2﹣4k2(b2﹣1)<0,即1﹣4kb+4k2<0,∴b>,∵k,b是自然数,∴b>1,由②得16x2+8x﹣2(kx+b)+5=0,即16x2+(8﹣2k)x+5﹣2b=0,判别式△=(8﹣2k)2﹣4×16(5﹣2b)<0,即k2﹣8k+32b﹣64<0,即b<=≤=,∵b是自然数,∴b=2,此时k=1,故存在b=2,k=1使得使(A∪B)∩C=∅.33.解:∵A={x|a≤x≤2a+3},B={x|x2+5x﹣6>0}=[x|x<﹣6,或x>1}.﹣﹣﹣﹣﹣﹣(2分)(Ⅰ)依题意A∩B={x|1<x≤3}可得,∴a=0.﹣﹣﹣﹣(5分)(Ⅱ)由A∪B=B得A⊆B.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)①当A=∅时满足题意,此时,a>2a+3,解得a<﹣3.﹣﹣﹣﹣﹣﹣(8分)②当A≠∅时,有,解得a>1.﹣﹣﹣﹣﹣﹣(11分)综上,a的取值范围为:a<﹣3 或a>1,即(﹣∞,﹣3)∪(1,+∞).﹣﹣﹣﹣﹣﹣(12分)34.解:(1)若A∩B=A∪B,则A=B,∵B={x|x2﹣x﹣2=0}={﹣1,2},∴A={﹣1,2},即﹣1和2是方程x2﹣2ax+4a2﹣3=0的两个根,∴,∴.满足△>0,∴a存在.(2)若A∩B≠∅,A∩C=∅,则可知集合A中无﹣4,2.至少有一个元素﹣1.当A={﹣1}时,当A={﹣1,x},x≠2时,.。
通关练01 集合含参问题【考点通关】高一数学题型归纳与解题策略(必修第一册)(原卷版)

通关练01集合含参问题○通○关○练一、单选题1.(2022·江西·高一期末)已知集合{}21,,3A x x =+,若2A ∈,则x =()A .-1B .0C .2D .3【解析】因为2A ∈,所以2x =或232x +=,而232x +=无实数解,所以2x =.故选:C.2.(2022·重庆·高一期末)已知集合{}{}011,0,3A B a ==-+,,,且A B ⊆,则a 等于()A .﹣3B .﹣2C .0D .1【解析】因为A B ⊆,所以312a a +=⇒=-,经验证,满足题意.故选:B.3.(2022·全国·高一期末)已知集合(){}2210M x x x =-=,{}2,N m m =,若M N M ⋃=,则m =()A .-1B .-1或0C .±1D .0或±1【解析】依题意,(){}{}22101,0,1M x x x =-==-.由M N M ⋃=,可知:N M ⊆,又2m m ≠,则1m =-.故选:A .4.(2022·贵州毕节·高一期末)已知集合{2=<-A x x 或}1≥x ,{}B x x a =≥,若A B =R ,则实数a 的取值范围是()A .(,2)-∞-B .(,2]-∞-C .(,1)-∞D .(2,1)-【解析】因为集合{2=<-A x x 或}1≥x ,{}B x x a =≥,A B =R ,所以2a ≤-.故选:B .5.(2022·河北·武安市第一中学高一期末)已知集合{|24}A x x =< ,{|3}B x a x a =-<+ ,若AB A =,则a 取值范围是()A .2a >-B .1a ≤-C .1aD .2a >【解析】由A B A =知A B ⊆,故234a a -<⎧⎨+⎩,解得1a .故选:C .6.(2022·广东深圳·高一期末)已知集合{}2,1A =-,{}|2B x ax ==,若A B B =,则实数a 值的集合为()A .{}1-B .{}2C .{}1,2-D .{}1,0,2-【解析】A B B B A ⋂=⇒⊆,{} 2,1A =-的子集有{}{}{},2,1,2,1φ--,当B φ=时,显然有0a =;当{}2B =-时,221a a -=⇒=-;当{}1B =时,122a a ⋅=⇒=;当{}2,1B =-,不存在a 符合题意,实数a 值集合为{}1,0,2-,故选:D.7.(2022·四川雅安·高一期末)设集合{|12},{|}A x x B x x a =-≤<=<,若A B ⋂≠∅,则a 的取值范围是()A .12a -<≤B .2a >C .1a ≥-D .1a >-【解析】集合{|12},{|}A x x B x x a =-≤<=<,因为A B ⋂≠∅,所以集合A ,B 有公共元素,所以1a >-.故选:D二、多选题8.(2022·全国·高一开学考试)已知集合{}4A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是()A .−1B .1C .−2D .2【解析】因为B A ⊆,所以4A ∈A ,则444a ≤⎧⎪≤,解得1a ≤.故选:ABC9.(2022·全国·高一课时练习)设集合{}3M x a x a =<<+,{2N x x =<或}4x >,则下列结论中正确的是()A .若1a <-,则M N ⊆B .若4a >,则M N ⊆C .若MN =R ,则12a <<D .若MN ≠∅,则12a <<【解析】对于A ,若1a <-,则32a +<,则M N ⊆,故A 正确;对于B ,若4a >,则显然任意x M ∈,则4x >,则x ∈N ,故M N ⊆,故B 正确;对于C ,若MN =R ,则234a a <⎧⎨+>⎩,解得12a <<,故C 正确;对于D ,若M N ⋂=∅,则234a a ≥⎧⎨+≤⎩,不等式无解,则若MN ≠∅,a R∈,故D 错误.故选:ABC.10.(2022·全国·高一课时练习)已知{}22,3,23U m m =+-,{}|1|,2A m =+,{}5U A =ð,则m 的值可以是()A .-4B .-2C .2D .4【解析】由题可知213235m m m ⎧+=⎪⎨+-=⎪⎩,解得2m =或4m =-,故选:AC.11.(2022·全国·高一课时练习)设集合{|28}S x x =-≤≤,{|04}T x x =<<,若集合()R P T S ⊆⋂ð,则P 可以是()A .{|20}x x -≤≤B .{|57}x x ≤≤C .{|28}x x -≤≤D .{|15}x x ≤≤【解析】因为{|28}S x x =-≤≤,{|04}T x x =<<,所以{0R T x x =≤ð或4}x ≥,(){20R T S x x ⋂=-≤≤ð或48}x ≤≤,因为集合()R P T S ⊆⋂ð,所以集合P 可以是AB.故选:AB12.(2022·广东汕尾·高一期末)设{}29140A x x x =-+=,{}10B x ax =-=,若A B B =,则实数a 的值可以为()A .2B .12C .17D .0【解析】集合2{|9140}{2A x x x =-+==,7},{|10}B x ax =-=,又A B B =,所以B A ⊆,当0a =时,B =∅,符合题意,当0a ≠时,则1{}B a =,所以12a=或17a =,解得12a =或17a =,综上所述,0a =或12或17,故选:BCD三、填空题13.(2022·上海·同济大学第二附属中学高一期末)若集合2{|(1)320,}A x a x x x R =-+-=∈有且仅有两个不同的子集,则实数a =_______;【解析】因为集合A 仅有两个不同子集,所以集合A 中仅有1个元素,当10a -=时,23x =,所以23A ⎧⎫=⎨⎬⎩⎭,满足要求;当10a -≠时,()()234120a ∆=--⋅-=,所以18a =-,此时方程解为43x =,即43A ⎧⎫=⎨⎬⎩⎭,满足要求,所以18a =-或1,故答案为:18-或1.14.(2022·湖南·长沙市雨花区教育科学研究所高一期末)已知集合{}22,2A a a a =++,若3A ∈,求实数a 的值_______【解析】由题可知:集合{}22,2A a a a =++,3A∈所以23a +=或223+=a a ,则1a =或32a =-当1a =时,222a a a +=+,不符合集合元素的互异性,当32a =-时,1,32⎧⎫=⎨⎬⎩⎭A ,符合题意所以32a =-,故答案为:32-15.(2022·浙江丽水·高一期末)已知集合2{|0}A x x ax b =++=,{3}=B ,若A B =,则实数a b +=_______【解析】因为{3}A B ==,所以方程20x ax b ++=有且只有一个实数根3x =,所以240390a b a b ⎧-=⎨++=⎩,解得6,9a b =-=.所以3a b +=故答案为:3四、解答题16.(2022·浙江台州·高一期末)已知集合{|12)A x x =-<,集合{(1)()0}B x x x a =-+<∣.(1)求集合A ;(2)若2A B -∈⋃,求实数a 的取值范围.【解析】(1)|1|2,x -<212,x ∴-<-<13x ∴-<<,所以集合{13}A xx =-<<∣;(2)2A B -∈⋃且2A -∉,2B∴-∈(21)(2)0a ∴--⋅-+<,解得:2a >,∴实数a 的取值范围是(2,)+∞.17.(2022·重庆市巫山大昌中学校高一期末)已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-.(1)求A .(2)求A B A ⋃=,求m 的取值范围.【解析】(1)由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-,又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆;当B ≠∅时,则满足2121m m m m≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<,综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.18.(2022·云南德宏·高一期末)设全集U =R ,集合{}{}2230,242A x x x B x x x =--<=-≥-∣∣(1)求()U A B ⋂ð;(2)若集合{20}C xx a =+>∣满足C C =B∪,求实数a 的取值范围.【解析】(1)化简{}{}13,2A x x B x x =-<<=≥,{}23A B x x ⋂=≤<,所以{()2U A B x x ⋂=<ð或3}x ≥.(2){2a C x x ⎫=>-⎬⎭,因为C C =B∪,所以B C ⊆,所以242aa -<⇒>-,所以实数a 的取值范围为()4,-+∞19.(2022·湖南邵阳·高一期末)已知集合{}2320A x x x =-+-≥,{}1B x m x m =-≤≤+.(1)若1m =时,求A B ;(2)若A B ⊆,求实数m 的取值范围.【解析】(1)因为2320x x -+-≥,所以23+20x x ≤-,所以={12}A x x ≤≤.因为1m =,所以{12}B x x =-≤≤所以{12}A B x x ⋂=≤≤(2)因为A B ⊆,所以112m m -≤⎧⎨+≥⎩,解得m 1≥,∴实数m 的取值范围为m 1≥.20.(2022·内蒙古赤峰·高一期末)已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若AB A =,求a 的取值范围.【解析】(1)∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅,∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤,∴a 的取值范围为[]1,2-;(2)∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a <-或5a >,∴a 的取值范围是()(),45,-∞-+∞.21.(2022·山西·高一期末)已知集合{}20,R,R A x x ax b a b =-+=∈∈.(1)若{}1A =,求a ,b 的值;(2)若{}Z 30B x x =∈-<<,且A B =,求a ,b 的值.【解析】(1)若{}1A =,则有210Δ40a b a b -+=⎧⎨=-=⎩,解得21a b =⎧⎨=⎩;(2){}{}Z 302,1B x x =∈-<<=--,因为A B =,所以42010a b a b ++=⎧⎨++=⎩,解得32a b =-⎧⎨=⎩.22.(2022·广东佛山·高一期末)已知集合{}121A x a x a =-<<+,{}2650B x x x =-+<.(1)若A B =,求实数a 的值;(2)若A B =∅,求实数a 的取值范围.【解析】(1)由已知得{}{}265015B x x x x x =-+<=<<A B=11215a a -=⎧∴⎨+=⎩,解得2a =;(2)AB =∅当A =∅时,121a a -≥+,得2a ≤-当A ≠∅时,15121a a a -≥⎧⎨-<+⎩或211121a a a +≤⎧⎨-<+⎩,解得20a -<≤或6a ≥,综合得0a ≤或6a ≥.23.(2022·湖北黄石·高一期末)已知集合{}02A x x =≤≤,{}B 32x a x a =≤≤-.(1)若()R A B ⋃=R ð,求实数a 的取值范围;(2)若A B B ≠I ,求实数a 的取值范围.【解析】(1)因为{}A 02x x =≤≤,所以{R A |0x x =<ð或}2x >.又{}B 32x a x a =≤≤-且()R A B ⋃=R ð,所以320322a aa a -≥⎧⎪≤⎨⎪-≥⎩,解得0a ≤所以实数a 的取值范围是(],0-∞.(2)若A B B =(补集思想),则B A ⊆.当B =∅时,32-<a a ,解得1a >;当B ≠∅时,32a a -≥,即1a ≤,要使B A ⊆,则0322a a ≥⎧⎨-≤⎩,得112a ≤≤.综上,知A B B =时,12a ≥,所以A B B ≠I 时,实数a 的取值范围是12a a ⎧⎫<⎨⎬⎩⎭.24.(2022·河北·武安市第一中学高一期末)已知集合{}2|80,,{|10,}A x x x m m R B x ax a R =-+=∈=-=∈,且A B A ⋃=.(1)若{}3A B =ð,求m ,a 的值.(2)若12m =,求实数a 组成的集合.【解析】(1)因为{}2|80,,{|10,}A x x x m m R B x ax a R =-+=∈=-=∈,且A B A ⋃=.{}3A B =ð,所以3A ∈,3B ∉,所以23830m -⨯+=解得15m =,所以{}3,5A =,所以5∈B ,所以510a -=,解得15a =(2)若12m =,所以{}2,6A =,因为A B A ⋃=,所以B A ⊆当B =∅,则0a =;当{}2B =,则12a =;当{}6B =,则16a =;综上可得110,,26a ⎧⎫∈⎨⎬⎩⎭25.(2022·全国·益阳平高学校高一期末)已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭.(1)若3a =-,求A B ;(2)在①A B =∅,②()R B A R ⋃=ð,③A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.【解析】(1)因为3a =-,所以{|42}A x x =-≤≤-,又因为{|35}B x x =-<≤,所以{|45}A B x x ⋃=-≤≤.(2)若选①A B =∅:则满足15a ->或13a +≤-,所以a 的取值范围为{|4a a ≤-或6}a >.若选②()R B A R ⋃=ð:所以{|1R A x x a =<-ð或1}x a >+,则满足1315a a ->-⎧⎨+≤⎩,所以a 的取值范围为{|24}a a -<≤.若选③A B B ⋃=:由题意得A B ⊆,则满足1315a a ->-⎧⎨+≤⎩所以a 的取值范围为{|24}a a -<≤26.(2022·河北沧州·高一期末)已知集合401x A xx ⎧⎫-=≤⎨⎬-⎩⎭,{}12B x a x a =+≤≤.(1)当2a =时,求A B ;(2)若B A ⋂=∅R ð,求实数a 的取值范围.【解析】(1){}14A x x =<≤,当2a =时,{}|34B x x =≤≤,∴{}|14A B x x ⋃=<≤;(2)A =R ð{|1x x ≤或x >4},当B =∅时,B A ⋂=∅R ð,12a a >+,解得a <1;当B ≠∅时,若B A ⋂=∅R ð,则241121a a a a ≤⎧⎪⎨⎪≥⎩,+>,+,解得12a ≤≤.综上,实数a 的取值范围为{}2a a ≤.27.(2022·广东惠州·高一期末)已知全集U =R ,集合{}2120A x x px =++=,集合{}250B x x x q =-+=.(1)若集合A 中只有一个元素,求p 的值;(2)若{}3A B ⋂=,求A B .【解析】(1)因为集合A 中只有一个元素,所以24120p ∆=-⨯=,p =±(2)当{}3A B ⋂=时,22331203530p q ⎧+⨯+=⎨-⨯+=⎩,7p =-,6q =,此时{}3,4A =,{}2,3B =,{}2,3,4A B =28.(2022·重庆·高一期末)已知集合{}3A x x =≤,{}31B x a x a =-<<+.(1)当4a =时,求()A B R ð;(2)若AB A =,求实数a 的取值范围.【解析】(1){}{}333A x x x x =≤=-≤≤,则R {|3A x x =<-ð或3}x >,当4a =时,{}15B x x =-<<,(){}R =35A B x x ∴⋂<<ð;(2)若A B A =,则A B ⊆,3313a a -<-⎧∴⎨+>⎩,∴实数a 的取值范围为6a >,即(6,)a ∈+∞.29.(2022·广西玉林·高一期末)已知集合{}22150M x x x =--≤,{}N x m x m =-≤≤.(1)当1m =时,求M N ⋂以及()()R R M N ⋃痧;(2)若MN ,求实数m 的取值范围.【解析】(1){}{}(3)(5)035M x x x x x =+-≤=-≤≤,当1m =时,[1,1]N =-,∴[1,1]=-MN ,(,3)(5,)=-∞-+∞R M ð,(,1)(1,)=-∞-+∞R N ð,∴()()(,1)(1,)=-∞-+∞R RM N 痧.(2)由题可知M N Ü,所以35-≤-⎧⎨≥⎩m m ,解得5m ≥,所以实数m 的取值范围为[5,)+∞.30.(2022·青海海东·高一期末)已知集合{2}A xa x a =<<∣,{4B x x =≤-或}3x ≥.(1)当2a =时,求()R A B ⋃ð;(2)若R A B ⊆ð,求a 的取值范围.【解析】(1)由题意得{}24A x x =<<,{4B x x =≤-或}3x ≥,{}R 43B x x ∴=-<<ð,故(){}R 44A B x x ⋃=-<<ð.(2)当0a ≤时,A =∅,符合题意,当0a >时,由23a ≤,得302<≤a ,故a 的取值范围为3,2⎛⎤-∞ ⎥⎝⎦.。
微专题06 含参数不等式问题的处理策略(解析版)

微专题06 含参数不等式问题的处理策略【方法技巧与总结】解含参不等式,常常涉及对参数的分类讨论以确定不等式的解,这是解含参不等式问题的一个难点。
解决此类问题利用函数与方程思想、数形结合思想及分类与整合思想。
【题型归纳目录】题型一:含参数一元二次不等式(因式分解型) 题型二:含参数一元二次不等式(不能因式分解型) 题型三:分式、根式含参数不等式问题 题型四:绝对值含参不等式问题 【典型例题】题型一:含参数一元二次不等式(因式分解型) 例1.(2022·全国·高一专题练习)解下列不等式: (1)22120(0)x ax a a --<<; (2)()10(01)a x x a a ⎭-->⎫⎪< <⎛⎝.【解析】(1)依题意22120(0)x ax a a --<<,()()430x a x a -+<,403a a <<-解得43a x a <<-,所以不等式22120(0)x ax a a --<<的解集为{}|43x a x a <<-. (2)依题意()10(01)a x x a a ⎭-->⎫⎪< <⎛⎝,()110,1x a x a a a⎛⎫--<<< ⎪⎝⎭, 解得1a x a<<, 所以不等式()10(01)a x x a a ⎭-->⎫⎪< <⎛⎝的解集为1|x a x a ⎧⎫<<⎨⎬⎩⎭. 例2.(2022·辽宁·营口市第二高级中学高一期末)已知关于x 的不等式2320(R)ax x a ++>∈. (1)若2320ax x ++>的解集为{}1x b x <<,求实数,a b 的值; (2)求关于x 的不等式2321ax x ax -+>-的解集.【解析】(1)因为2320ax x ++>的解集为{}1x b x <<,所以方程2320ax x ++=的两个根为,1(1)b b <,由根与系数关系得:3121b ab a ⎧+=-⎪⎪⎨⎪⋅=⎪⎩,解得525a b =-⎧⎪⎨=-⎪⎩;(2)22321(3)30(3)(1)0ax x ax ax a x ax x -+>-⇒-++>⇒-->, 当a =0,不等式为10x -<,不等式的解集为{}1x x <;当0a <时,不等式化为3()(1)0x x a --<,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当0a >时,方程2321ax x ax -+=-的两个根分别为:3,1a.当3a =时,两根相等,故不等式的解集为{|1}x x ≠; 当3a >时,31a <,不等式的解集为3{|x x a<或1}x >; 当0<<3a 时,31a>,不等式的解集为{|1x x <或3}x a >,.综上:当0a <时,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当a =0,不等式的解集为{}1x x <;当0<<3a 时,不等式的解集为{|1x x <或3}x a >.当3a =时,不等式的解集为{|1}x x ≠; 当3a >时,不等式的解集为3{|x x a<或1}x >; 例3.(2022·全国·高一专题练习)设1a >,则关于x 的不等式1(1)()()0a x a x a---<的解集是_________. 【答案】()1,,a a⎛⎫-∞⋃+∞ ⎪⎝⎭【解析】1a >时,10a -<,且1a a>, 则关于x 的不等式1(1)()()0a x a x a ---<可化为1()()0x a x a-->,解得1x a<或x a >, 所以不等式的解集为(-∞,1)(a a ⋃,)∞+.故答案为:()1,,a a⎛⎫-∞⋃+∞ ⎪⎝⎭例4.(2022·全国·高一专题练习)已知关于x 的不等式ax 2﹣x +1﹣a <0. (1)当a =2时,解关于x 的不等式;(2)当a >0时,解关于x 的不等式.【解析】(1)当a =2时,不等式2x 2﹣x ﹣1<0可化为:(2x +1)(x ﹣1)<0, ∴不等式的解集为1{|1}2x x -<<;(2)不等式ax 2﹣x +1﹣a <0可化为:(x ﹣1)(ax +a ﹣1)<0, 当a >0时,()1110x x a ⎛⎫-+- ⎪⎝⎭<,()1110x x a ⎛⎫-+-= ⎪⎝⎭的根为:12111x x a==-,, ①当102a <<时,111a -<,∴不等式解集为1{|11}x x a-<<,②当12a =时,111a=-,不等式解集为∅, ③当12a >时,111a->,∴不等式解集为{x |11a -<x <1},综上,当102a <<时,不等式解集为1{|11}x x a-<<,当a 12=时,不等式解集为∅, 当12a >时,不等式解集为{x |11a-<x <1}..题型二:含参数一元二次不等式(不能因式分解型)例5.(2022·全国·高三专题练习)解关于x 的不等式2210ax x ++<. 【解析】(1)当0a =时,原不等式210x +<,解得12x <-,∴不等式解集为1(,)2-∞-;(2)当0a >时,44a ∆=-,2()21f x ax x =++开口向上,由图象得:①若01a <<时,440a ∆=->,f x ()的两个零点为1,211-±-=ax 1111----+-<a a 不等式0f x <()的解集为1111(----+-a a ; ②若1a ≥时,0∆≤,不等式0f x <()解集为∅; (3)当0a <时,440a ∆=->,f x ()的两个零点为1,211-±-=ax 1111-+----a a2()21f x ax x =++开口向下,由图象得不等式解集为1111(()-+-----∞⋃+∞a a; 综上可知,当0a <时不等式解集为1111()()-+-----∞⋃+∞a a; 当0a =时,不等式解集为1(,)2-∞-;当01a <<时,不等式解集为1111()----+-a a ; 当1a 时,不等式解集为∅. 例6.解关于x 的不等式: (1)2(1)10()ax a x a R -++<∈; (2)2(21)20()ax a x a R +--<∈; (3)2210()ax x a R -+<∈; (4)20(0)x x m x ++>【解析】解:(1)2(1)10ax a x -++<等价于(1)(1)0()ax x a R --<∈, 当0a =时,不等式的解集为(1,)+∞, 当0a >时,等价于1()(1)0x x a--<,即当01a <<时,不等式的解集为1(1,)a当1a =时,不等式的解集为空集, 当1a >时,不等式的解集为1(a ,1),当0a <时,不等式等价于1()(1)0x x a -->,即不等式的解集为(-∞,1)(1a⋃,)+∞(2)2(21)20ax a x +--<等价于(2)(1)0()x ax a R +-<∈ 当0a =时,不等式的解集为(2,)-+∞,当0a >时,不等式等价于1()(2)0x x a -+<,不等式的解集为1(2,)a -当0a <时,不等式等价于1()(2)0x x a-+>,当102a -<<时,不等式的解集为(-∞,1)(2a⋃,)+∞,当12a =-时,不等式的解集为(-∞,2)(2--⋃,)+∞,当12a <-时,不等式的解集为(-∞,12)(a -⋃,)+∞,(3)2210()ax x a R -+<∈;当0a =时,不等式的解集为1(2,)+∞,当0a >时,且△440a =->时,即01a <<时,不等式的解集为244(2a --,244)2a+-, 当0a >是,且△440a =-时,即1a 时,不等式的解集为空集, 当0a <时,且△440a =->时,即0a <时,不等式的解集为(-∞,244244)(22a a--+-⋃,)+∞, (4)20(0)x x m x ++>, 当△140m =->时,即14m <时,20x x m ++=的根为1142m x ---=-(舍去)或1142m x -+-=,若当11402m -+->时,即0m <时,不等式的解集为[0,114]2m-+-,若当11402m -+-<时,即104m <<时,不等式的解集为空集若当11402m-+-=时,即0m =时,不等式的解集为空集当△140m =-<时,即14m >时,不等式的解集为空集, 当△140m =-=时,即14m =时,不等式的解集为空集, 综上所述当0m <时,不等式的解集为[0,114]2m-+-,当0m 时,不等式的解集为空集. 例7.解关于x 的不等式: (1)22(1)10()x a x a R -++<∈; (2)2(8)10()ax a x a R --+>∈.【解析】解:(1)△24(1)40a =+-=时,解得0a =或2-. 当0a =或2-时,不等式化为2(1)0x ±<,此时不等式的解集为∅.由△0>解得0a >或2a <-,此时不等式化为2[(1)2]x a a a -+-+ 2[(1)2]0x a a a -+++<, 解得221212a a a x a a a +-+<<+++,此时不等式的解集为: 22{|1212}x a a a x a a a +-+<<+++;△0<时,即20a -<<时,不等式的解集为∅. 综上可得:20a -时,不等式的解集为∅;当0a >或2a <-时,不等式的解集为22{|1212}x a a a x a a a +-+<<+++.(2)当0a =时,不等式化为810x +>,解得18x >-,此时不等式的解集为1{|}8x x >-.当0a ≠时,由△2(8)40a a =-->,解得16a >或4a <.∴当16a >或4a <且0a ≠时,不等式化为228206482064()()022a a a a a a a x x a a -+-+---+-->. 当16a >或04a <<时,不等式的解集为282064{|2a a a x x a -+-+>或282064}2a a a x a ---+<. 当0a <时,不等式的解集为228206482064{|}22a a a a a a x x a a ---+-+-+<<. 综上可得:当0a =时,不等式的解集为1{|}8x x >-.当16a >或04a <<时,不等式的解集为282064{2a a a xx a -+-+>或282064}2a a a x a---+<. 当0a <时,不等式的解集为228206482064{|}22a a a a a a x x a a ---+-+-+<<. 题型三:分式、根式含参数不等式问题例8.不等式222(0)a x x a a -<+>的解集是( ) A .{|0}x x a < B .{|0x x >或4}5x a <-C .{|}2ax x a -<<D .4{|5x a x a -<-或0}x a <【答案】A【解析】解:不等式222a x x a -<+可化为:222244a x x ax a -<++, 即2540x ax +>,(0)a > 解得:0x >或45x a <-,又由20x a +>,且220a x -得:12a x a -<.综上可得:0x a <.故不等式222(0)a x x a a -<+>的解集是{|0}x x a <, 故选:A .例9.(2022秋•清河区校级期中)已知a R ∈,解不等式11xa x >+-. 【解析】解:原不等式化为(1)01ax a x -++>-①(1)当0a =时,原不等式为1011x x -<⇒>-. 在①中,分子中x 的系数含有字母a ,分类讨论就从这里引起.(2)当0a ≠时,原不等式化为1()01a a x a x +-<-. ② 对于不等式②,分子中的系数a 不能随意约去,因为根据不等式的性质,若给不等式两边同时乘以一个负数,不等式的方向要改变.当0a >时,原不等式等价于101a x a x +-<-. 由于11a a +>,可解得11a x a+<<.也可先确定两根1x ,212()x x x <, 然后直接写出解集.当0a <时,1()01a a x a x +-<-等价于101a x a x +->-. 由1111a a a +=+<可解得1a x a+<或1x >. 综上,当0a =时原不等式的解集为(1,)+∞. 当0a >时,解集为1(1,)a a + 当0a <时,解集为1(,)(1,)a a+-∞+∞.例10.(2022·全国·高一专题练习)解关于x 的不等式(1)22a x x ->-(其中1a ≤) 【解析】()()()()411242220001222a x a x a x a x a a x x x x -------->⇔->⇔>⇔<----, 又由42122a a a a a ---=≤--及知 当01a <≤时,42,2a a ->-则集合4{|2}2a A x x a -=<<-; 当0a =时,原不等式解集A 为空集; 当0a <时,42,2a a -<-则集合4{|2}2a A x x a -=<<-;综上:当01a <≤时,4{|2}2a A x x a -=<<-; 当0a =时,A 为空集; 当0a <时,4{|2}2a A x x a -=<<-. 例11.(2022·上海交大附中高一阶段练习)已知关于x 的不等式250mx x m-<-的解集为S ,若5S ∈且6S ,则实数m 的取值范围为_____;【答案】(]5[,1)25,366;【解析】由题意,2250(5)()0mx mx x m x m-<⇔--<- 故5S ∈且6S ,可得(55)(25)0(65)(36)0m m m m --<⎧⎨--≥⎩由(55)(25)0m m --<可得,1m <或25m >;由(65)(36)0m m --≥可得,5366m ≤≤因此:(]5[,1)25,366m ∈ 故答案为:(]5[,1)25,366例12.(2022·湖南·株洲二中高一开学考试)解下列关于x 的不等式:(a 为实数) (1)220x x a ++< (2)102ax x ->-. 【解析】(1)原不等式对应的一元二次方程为:220x x a ++=, Δ44a =-,当1a ≥时,Δ440a =-≤,原不等式无解;当1a <时,对应一元二次方程的两个解为:11x a =-- 所以220x x a ++<的解为:1111a x a --<--综上所述,1a ≥时,原不等式无解,当1a <时,原不等式的解集为{1111}xa x a --<--∣; (2)原不等式等价于()()120ax x -->, 当0a =时,解集为(),2-∞;当0a <时,原不等式可化为()()120ax x -+-<,因为12a <,所以解集为1,2a ⎛⎫ ⎪⎝⎭; 当102a <<时,12a >,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 当12a =时,原不等式等价于()11202x x ⎛⎫--> ⎪⎝⎭, 所以2(2)0x ->,解集为{}2xx ≠∣; 当12a >时,12a <,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭;综上所述,当0a =时,解集为(),2-∞;当0a <时,解集为1,2a ⎛⎫⎪⎝⎭;当102a <≤时,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭;当12a >时,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭.例13.(2022·全国·高一课时练习)解不等式:01axx ≤+. 【解析】()0101axax x x ≤⇔+≤+且10x +≠. 当0a >时,()10ax x +≤且()1010x x x +≠⇔+≤且1010x x +≠⇔-<≤, 此时原不等式的解集为{}10x x -<≤; 当0a =时,原不等式的解集为{}1x x ≠-;当0a <时,()10ax x +≤且()1010x x x +≠⇔+≥且101x x +≠⇔<-或0x ≥, 此时原不等式的解集为{|1x x <-或}0x ≥.综上可知,当0a >时,原不等式的解集为{}10x x -<≤;当0a =时,原不等式的解集为{}1x x ≠-;当0a <时,原不等式的解集为{|1x x <-或}0x ≥. 题型四:绝对值含参不等式问题例14.(2022春•安平县校级期中)对于任意的实数x ,不等式|1|x kx +恒成立,则实数k 的取值范围是()A .(,0)-∞B .[1-,0]C .[0,1]D .[0,)+∞【解析】解:不等式|1|x kx +恒成立,|1|y x ∴=+的图象不能在y kx = 的图象的下方,如图所示:01k ∴;故选:C .例15.(2022·全国·高一课时练习)已知集合{}24A x x =<<,{}2211B x x a =--≤,若A B B =,则实数a 的取值范围是______. 【答案】()2,3【解析】由2211x a --≤,得1a x a ≤≤+,∴{}1B x a x a =≤≤+. 由A B B =,得B A ⊆.显然B ≠∅,∴214a a >⎧⎨+<⎩,解得23a <<.故答案为:()2,3.例16.(2022·全国·高一专题练习)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___. 【答案】2≤a ≤4【解析】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩,∴2<a <4. 又当a =2时,A ={x |1<x <3}, a =4时,A ={x |3<x <5}, 均满足A 是B 的真子集, ∴2≤a ≤4. 故答案为:2≤a ≤4例17.(2022·全国·高一单元测试)若不等式34x b -<的解集中的整数有且仅有2、3,则b 的取值范围是______. 【答案】78b ≤≤【解析】由34x b -<可得434x b -<-<,也就是4433b bx -+<<, 因为解集中的整数只有2,3,所以44123433b b-+≤<<<≤, 所以71058b b ≤<⎧⎨<≤⎩,故78b ≤≤.填78b ≤≤.例18.(2022·上海·高一课时练习)解关于x 的不等式:()1x x a a R ->-∈.【解析】两边平方,得()()221x x a ->-,即()()()2111a x a a ->-+.当1a =时,不等式解集为∅;当1a >时,不等式解集为1,2a +⎛⎫+∞ ⎪⎝⎭; 当1a <时,不等式解集为1,2a +⎛⎫-∞ ⎪⎝⎭. 例19.(2022·上海嘉定·高一期末)已知集合2{|23,}A x x x x R =+<∈,集合{|1,0,}B x x a a x R =-<>∈.若A B ⊆.求实数a 的取值范围.【解析】由223x x +<得2230x x +-<,解得31x -<<,即()3,1A =-. 又由1,0x a a -<>解得11a x a -<<+,即()1,1B a a =-+.因为A B ⊆,所以1311a a -≤-⎧⎨+≥⎩,解得4a ≥. 因此所求实数a 的取值范围是[)4,+∞.【过关测试】一、单选题1.(2022·全国·高一课时练习)若使不等式()2220x a x a +++≤成立的任意一个x 都满足不等式10x -≤,则实数a 的取值范围为( )A .{}1a a >-B .{}1a a ≥-C .{}1a a <-D .{}1a a ≤-【答案】B【解析】因为不等式10x -≤的解集为{}1x x ≤,由题意得不等式()2220x a x a +++≤的解集是{}1x x ≤的子集,不等式()2220x a x a +++≤,即()()20x x a ++≤, ①当2a =时,不等式的解集为{}2-,满足{}{}21x x -⊆≤;②当2a <时,不等式的解集为{}2x x a -≤≤-, 若{}{}21x x a x x -≤≤-⊆≤,则1a -≤,所以12a -≤<;③当2a >时,不等式的解集为{}2x a x -≤≤-,满足{}{}21x a x x x -≤≤-⊆≤;综上所述,实数a 的取值范围为{}1a a ≥-.故选:B .2.(2022·四川德阳·高一期末)若关于x 的不等式101x ax ->+的解集为11a ⎛⎫- ⎪⎝⎭,,则a 的取值范围为( ) A .() 1? ∞+,B .(0,1)C .() 1?∞--,D .(-1,0) 【答案】C 【解析】不等式101x ax ->+ 等价于()()110x ax -+>,设()()()11f x x ax =-+ , 显然a =0不符合题意,若0a > ,()()111f x x x a a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦,()f x 是开口向上,零点分别为1和1a - 的抛物线, 对于()0f x > ,解集为1x a<- 或1x > ,不符合题意; 若0a < ,则()f x 是开口向下,零点分别为1和1a- 的抛物线, 对于()0f x > ,依题意解集为1,1a ⎛⎫- ⎪⎝⎭,11a ∴-< ,即(),1a ∞∈-- , 故选:C.3.(2022·全国·高一课时练习)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m的取值范围为( )A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【答案】C【解析】不等式()2330x m x m -++<,即()()30x x m --<, 当3m >时,不等式解集为()3,m ,此时要使解集中恰有3个整数,这3个整数只能是4,5,6,故67m <≤;当3m =时,不等式解集为∅,此时不符合题意;当3m <时,不等式解集为(),3m ,此时要使解集中恰有3个整数,这3个整数只能是0,1,2,故10m -≤<;故实数m 的取值范围为[)(]1,06,7-⋃.故选:C二、多选题4.(2022·湖南·株洲二中高一开学考试)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的值可能为( )A .5-B .3-C .πD .5【答案】ABD【解析】解不等式2280x x -->,得4x >或2x <-解方程22(27)70x k x k +++=,得127,2x x k =-=- (1)当72k >,即72k -<-时,不等式22(27)70x k x k +++<的解为:72k x -<<- 此时不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集为7,2k ⎛⎫-- ⎪⎝⎭,依题意,则54k -≤-<-,即45k <≤; (2)当72k <,即72k ->-时,不等式22(27)70x k x k +++<的解为:72x k -<<-,要使不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集中只有一个整数, 则需满足:35k -<-≤,即53k -≤<;所以k 的取值范围为[5,3)(4,5]-.故选:ABD.5.(2022·全国·高一课时练习)已知a ∈R ,关于x 的不等式()10a x x a ->-的解集可能是( ) A .{}1x x a <<B .{}1x x x a 或C .{}1x x a x 或D .∅ 【答案】BCD【解析】当0a <时,不等式等价于()()10x x a --<,解得1<<a x ;当0a =时,不等式的解集是∅;当01a <<时,不等式等价于()()10x x a -->,解得1x >或x a <;当1a =时,不等式的解集为{}1x x ≠;当1a >时,不等式等价于()()10x x a -->,解得x a >或1x <.故选:BCD .三、填空题6.(2022·全国·高一课时练习)已知集合{}2280,R A x x x x =--≤∈ ,(){}2550,R B x x m x m x =-++≤∈ ,设全集为R ,若R B A ⊆,则实数m 的取值范围为______.【答案】()4,+∞ 【解析】解不等式2280x x --≤,得24x -≤≤,所以R {2A x x =<-或4}x > ,(){}()(){}2550,R 50B x x m x m x x x x m =-++≤∈=--≤ , 因为R B A ⊆,当5m =时,{}5B =,满足题意;当5m >时,[]5,B m =,满足题意.当5m <时,[],5B m =,由R B A ⊆,得4m >,所以45m <<.综上,m 的取值范围为()4,+∞.故答案为:()4,+∞7.(2022·上海市控江中学高一期中)已知k 为正实数,关于x 的不等式()24(2)0kx k x --+<的解集为,A B A =⋂Z ,则当k 的值变化时,集合B 中的元素个数的最小值为______;【答案】6【解析】由方程240kx k --=,可解得44x k k=+≥,当且仅当2k =时,等号成立, 则42,A k k ⎛⎫=-+ ⎪⎝⎭,即(]2,4A -⊂,由(]{}2,41,0,1,2,3,4-⋂=-Z ,则集合B 中的元素最少有6个, 故答案为:6.8.(2022·湖南·雅礼中学高一开学考试)不等式()()221110a x a x ----<的解集是全体实数,求实数a 的取值范围________. 【答案】315a -<≤ 【解析】根据题意,当210a -≠时,可得()()222Δ141010a a a ⎧=-+-<⎪⎨-<⎪⎩,解得315a -<<, 当1a =时,不等式()()221110a x a x ----<显然成立. 综上可得,315a -<≤, 故答案为:315a -<≤. 四、解答题9.(2022·全国·高一课时练习)在①A B A ⋃=,②A B ⋂≠∅,③R B A ⊆这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由.已知一元二次不等式2320ax x -+>的解集{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a 、b 的值;(2)求集合B ;(3)是否存在实数m ,使得______?【解析】(1)因为一元二次不等式2320ax x -+>的解集{1A x x =<或}x b >, 则关于x 的一元二次方程2320ax x -+=的两根分别为1、b , 所以,32021a b a -+=⎧⎪⎨⨯=⎪⎩,解得12a b =⎧⎨=⎩. (2)由(1)可得(){}()(){}222020B x x m x m x x x m =-++<=--<. 当2m =时,(){}220B x x =-<=∅;当2m <时,()(){}{}202B x x x m x m x =--<=<<;当2m >时,()(){}{}202B x x x m x x m =--<=<<.(3)若选①,{1A x x =<或}2x >,由A B A ⋃=,则B A ⊆,当2m =时,B A =∅⊆;当2m <时,{}2B x m x A =<<⊄,不合乎题意;当2m >时,{}2B x x m A =<<⊆,合乎题意.综上所述,2m ≥;选②,当2m =时,B =∅,此时A B =∅,不合乎题意;当2m <时,{}2B x m x =<<,若A B ⋂≠∅,则1m <,此时1m <;当2m >时,{}2B x x m =<<,此时A B ⋂≠∅.综上所述,1m <或2m >; 选③,{}12A x x =≤≤R .当2m =时,R B A =∅⊆;当2m <时,{}R 2B x m x A =<<⊆,则12m ≤<;当2m >时,{}2B x x m A =<<⊄R ,不合乎题意.综上所述,12m ≤≤.10.(2022·上海市杨浦高级中学高一期中)设集合{|12,},{|()(2)0,}A x x x B x x a x a x =-<<∈=--<∈R R ,若B A ⊆,求实数a 的取值范围.【解析】当0a >时,{|2}B x a x a =<<,当0a =时,B =∅,当0a <时,{|2}B x a x a =<<,由B A ⊆,而{|12,}A x x x =-<<∈R ,若0a >,有122a a ≥-⎧⎨≤⎩(等号不同时成立),则01a <≤; 若0a =,显然B =∅A ⊆成立;若0a <,有212a a ≥-⎧⎨≤⎩(等号不同时成立),则102a -≤<; 综上,112a -≤≤. 11.(2022·全国·高一课时练习)已知集合2{|12}{|40}A x x B x x ax =≤≤=-+≥,,若A B ⊆,求实数a 的取值范围.【解析】集合{|12}A x x =≤≤,2{|40}B x x ax =-+≥,若A B ⊆,B 一定非空,若2160a =-≤,得44a -≤≤,R B =,A B ⊆成立,若0>,即4a >或者4a ,设()24f x x ax =-+,(1)()11450f a a =-+=-≥,即5a ≤,对称轴02a <,所以4a ,(2)()2820f a =-≥,即4a ≤,对称轴22a ≥,不成立, 综上,(]4a ∞∈-,. 12.(2022·陕西·榆林市第一中学高一期末(理))解关于x 的不等式()()21440ax a x a ---<∈R .【解析】①当0a =时,原不等式可化为40x --<,解得4x >-;②当0a >时,原不等式可化为()140x x a ⎛⎫-+< ⎪⎝⎭,解得14x a -<<; ③当0a <时,原不等式可化为()140x x a ⎛⎫-+> ⎪⎝⎭, <i>当14a <-,即104a -<<时,解得1x a <或4x >-; <ⅱ>当14a =-,即14a =-时,解得4x <-或4x >-; <ⅱ>当14a >-,即14a <-时,解得4x <-或1x a>. 综上所述,当14a <-时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或; 当14a =-时,不等式解集为{}4x x ≠-;当104a -<<时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或;当0a =时,不等式解集为{}4x x >-;当0a >时,不等式解集为14x x a ⎧⎫-<<⎨⎬⎩⎭.13.(2022·全国·高一专题练习)当a ≤0时,解关于x 的不等式()21220ax a x +--≥.【解析】由()21220ax a x +--≥可得(ax +1)(x -2)≥0①当a =0时,原不等式即x -2≥0﹐解得x ≥2﹔②当a <0时,(ax +1)(x -2)≥0,方程(ax +1)(x -2)=0的两根为11x a =-,22x = 当12a =-时,原不等式解为:x =2﹔ 当102a -<<时,12a ->,原不等式的解为;12x a ≤≤-, 当12a <-时,12a -<,原不等式的解为:12x a -≤≤,综上,当a =0时,原不等式的解集为{}2x x ≥; 当12a =-时,原不等式的解集为{}2x x =; 当102a -<<时,原不等式的解集为:12x x a ⎧⎫≤≤-⎨⎬⎩⎭; 当12a <-时,原不等式的解为:12x x a ⎧⎫-≤≤⎨⎬⎩⎭.14.(2022·全国·高一专题练习)解关于x 的不等式 220x x a ++>.【解析】方程220x x a ++=中()4441a a =-=-,①当10a -<即1a >时,不等式的解集是R ,②当10a -=,即1a =时,不等式的解集是{|1}x x ∈≠-R ,③当10a ->即1a <时,由220x x a ++=解得:121111x a x a =--=--,1a ∴<时,不等式的解集是{|11>-+-x x a 11}<--x a ,综上,1a >时,不等式的解集是R ,1a =时,不等式的解集是{|1}x x ∈≠-R ,1a <时,不等式的解集是{|11>-+-x x a 11}<--x a ,15.(2022·湖北·武汉市钢城第四中学高一阶段练习)已知关于x 不等式2364ax x -+>的解集为{1x x <或}x b >.(1)求实数a 、b 的值.(2)解关于x 不等式2ax -+(ac+b)x -bc>0.【解析】(1)因为不等式2364ax x -+>的解集为{1x x <或}x b >,所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且0,a > b >1. 由根与系数的关系得3121b ab a⎧+=⎪⎪⎨⎪⋅=⎪⎩ ,解得12a b =⎧⎨=⎩.(2)原不等式化为2(2)20x c x c -++<,即(2)()0x x c --<,①当2>c 时,不等式的解集为{}2x x c <<;②当2c <时,不等式的解集为{}2x c x <<;③当2c =时,不等式的解集为∅.16.(2022·安徽宣城·高一期中)(1)已知不等式2320mx x +->的解集为{}2x n x <<,求m ,n 的值; (2)求关于x 的不等式()210x a x a +--> (其中a R ∈)的解集.【解析】(1)由题意4620m +-=,1m =-,不等式为2320x x -+->,即2320x x -+<,解得12x <<,所以1n =;(2)不等式2(1)0x a x a +-->可化为(1)()0x x a -+>,1a <-时,1x <或x a >-,1a =-时,1x ≠,1a >-时,x a <-或1x >.综上,1a ≤-时,不等式的解集为(,1)(,)a -∞-+∞,1a >-时,解集为(,)(1,)a -∞-+∞.。
第一章 集合典型例题(1)(含答案及解析)-苏教版人教版必修1高一数学上册同步培优训练

专题01 集合中的典型题(1)(满分120分时间:60分钟)班级姓名得分一、选择题:1.下列各式中,正确的个数是:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③⌀⊆{0,1,2};④⌀={0};⑤{0,1}={(0,1)};⑥0={0}.()A. 1B. 2C. 3D. 42.已知非空集合A,B满足以下两个条件:(ⅰ)A∪B={1,2,3,4,5,6},A⋂B=⌀;(ⅰ)若x∈A,则x+1∈B.则有序集合对(A,B)的个数为()A. 12B. 13C. 14D. 153.已知集合A=(1,3),集合B={x|2m<x<1−m}.若A∩B=⌀,则实数m的取值范围是()A. 13⩽m<32B. m⩾0C. m⩾32D. 13<m<324.设M,P是两个非空集合,规定M−P={x|x∈M,且x∉P},根据这一规定,M−(M−P)等于()A. MB. PC. M∪PD. M∩P5.若集合M={x|x≤6},a=2√2,则下面结论中正确的是A. {a}⫋MB. a⫋MC. {a}∈MD. a∉M6.中国古代重要的数学著作孙子算经下卷有题:今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A={x|x=3n+2,n∈N∗}, B={x|x=5n+3,n∈N∗},C={x|x=7n+2,n∈N∗},若x∈A∩B∩C,则整数x的最小值为()A. 128B. 127C. 37D. 23二、多选题7.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a−b、ab、ab∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,下列命题中正确的是()A. 数域必含有0,1两个数B. 整数集是数域C. 若有理数集Q⊆M,则数集M必为数域D. 数域必为无限集∈A,则称集合8.若集合A具有以下性质:(1)0∈A,1∈A;(2)x,y∈A,则x−y∈A,且x≠0时,1x A是“完美集”,给出以下结论,其中正确结论的序号是()A. 集合B={−1,0,1}是“完美集”;B. 有理数集Q是“完美集”;C. 设集合A是“完美集”,若x,y∈A,则x+y∈A;D. 设集合A是“完美集”,若x,y∈A,则xy∈A;9.对任意A,B⊆R,记AⅰB= { x|x∈A∪B,x∉A∩B},并称AⅰB为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则AⅰB={1,4}.下列命题中,正确的是()A. 若A,B⊆R,且AⅰB=B,则A=⌀B. 若A,B⊆R,且AⅰB=⌀,则A=BC. 若A,B⊆R,且AⅰB⊆A,则A⊆BD. 存在A,B⊆R,使得AⅰB=(∁R A)ⅰ(∁R B)三、单空题10.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有______ 个.11.已知集合M={x|x2−2x−8=0},N={x|ax+4=0},且N⊆M,则由a的取值组成的集合是_________.12.已知集合A={x|ax+1=0},B={x|x2−3x+2=0},若A⊆B,则a的取值集合为_______.13.设集合A={1,a2−3},B={−4,a−1},若A⋃B中恰有3个元素,则a=________.四、解答题14.已知集合A={x∈R|mx2−2x+1=0},在下列条件下分别求实数m的取值范围.(1)A=⌀;(2)A恰有两个子集;.15.设集合A={x|x2−3x+2=0},B={x|x2+(a−1)x+a2−5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.16.已知全集,集合M={x|−2≤x≤5},N={x|a+1≤x≤2a+1}.(Ⅰ)若a=2,求;(Ⅱ)若M∪N=M,求实数a的取值范围.17.已知集合A={x|a−12<x<a2},B={x|0<x<1}(Ⅰ)若a=12,求A⋃(∁R B).(Ⅱ)若A⋂B=⌀,求实数a的取值范围.一、选择题:1.下列各式中,正确的个数是:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③⌀⊆{0,1,2};④⌀={0};⑤{0,1}={(0,1)};⑥0={0}.()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题主要考查元素与集合、集合与集合之间的基本关系,特别要注意空集这一概念在题中的特殊性,根据集合中的相关概念,对每个命题进行一一判断.【解答】解:对①,集合与集合之间不能用∈符号,故①不正确;对②,由于两个集合相等,任何集合都是本身的子集,故②正确;对③,空集是任何集合的子集,故③正确;对④,空集是不含任何元素的集合,而{0}是含有1个元素的集合,故④不正确;对⑤,集合{0,1}是数集,含有2个元素,集合{(0,1)}是点集,只含1个元素,故⑤不正确;对⑥,元素与集合只能用∈或∉符号,故⑥不正确.故选B.2.已知非空集合A,B满足以下两个条件:(ⅰ)A∪B={1,2,3,4,5,6},A⋂B=⌀;(ⅰ)若x∈A,则x+1∈B.则有序集合对(A,B)的个数为()A. 12B. 13C. 14D. 15【答案】A【解析】【分析】本题考查交集、并集及其运算,考查了学生理解问题的能力.分别讨论集合A,B元素个数,即可得到结论.根据元素关系分别进行讨论是解决本题的关键.【解答】解:若集合A 中只有1个元素,则集合B 中有5个元素,则A 可以为{1},{2},{3},{4},{5},有5种; 若集合A 中只有2个元素,则集合B 中有4个元素,则A 可以为{1,3},{1,4},{1,5},{2,4},{2,5},{3,5},有6种;若集合A 中只有3个元素,则集合B 中有3个元素,则A 只能是{1,3,5},只有1种,则共有有序集合对(A,B)12个,故选A .3. 已知集合A =(1,3),集合B ={x|2m <x <1−m}.若A ∩B =⌀,则实数m 的取值范围是( )A. 13⩽m <32B. m ⩾0C. m ⩾32D. 13<m <32【答案】B【解析】【分析】本题考查集合的包含关系判断与应用,交集及其运算等基础知识分类讨论m 的取值,得出使A ∩B =Ø成立时m 的取值范围.【解答】解:由A ∩B =Ø,得:①若2m ≥1−m ,即m ≥13时,B =Ø,符合题意;②若2m <1−m ,即m <13时,需{m <131−m ≤1或{m <132m ≥3,解得0≤m <13,综合可得m ≥0,∴实数m 的取值范围是m ≥0.故选B .4. 设M ,P 是两个非空集合,规定M −P ={x|x ∈M ,且x ∉P},根据这一规定,M −(M −P)等于() A. M B. P C. M ∪P D. M ∩P【答案】D【解析】【分析】本题考查了集合新定义问题,属于较难题.分M ∩P =⌀与M ∩P ≠⌀讨论,可证明M −(M −P)=M ∩P .解:当M∩P=⌀时,∵任意x∈M都有x∉P,∴M−P=M,∴M−(M−P)=⌀=M∩P;当M∩P≠⌀时,M−P表示了在M中但不在P中的元素,M−(M−P)表示了在M中但不在M−P中的元素,∵M−P中的元素都不在P中,所以M−(M−P)中的元素都在P中,∴M−(M−P)中的元素都在M∩P中,∴M−(M−P)=M∩P.故选D.5.若集合M={x|x≤6},a=2√2,则下面结论中正确的是A. {a}⫋MB. a⫋MC. {a}∈MD. a∉M【答案】A【解析】【分析】本题考查元素与集合的关系及集合与集合的关系,由a=2√2<6即可求解.【解答】解:因为集合M={x|x≤6},a=2√2<6,所以{a}⫋M.故选A.6.中国古代重要的数学著作孙子算经下卷有题:今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A={x|x=3n+2,n∈N∗}, B={x|x=5n+3,n∈N∗},C={x|x=7n+2,n∈N∗},若x∈A∩B∩C,则整数x的最小值为()A. 128B. 127C. 37D. 23【解析】【分析】本题考查集合的应用,描述法的定义,交集及其运算,元素与集合的关系.先从四个选择中最小的数开始进行检验是否满足x∈A∩B∩C,即x属于A,B,C中每一个集合,找出最小的一个即可.【解答】解:∵23=3×7+2=5×4+3=7×3+2,∴23∈A,23∈B,23∈C,∴23∈A∩B∩C,所以23是四个答案中最小的一个,故选:D.二、多选题∈P(除数b≠0)则7.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a−b、ab、ab 称P是一个数域,例如有理数集Q是数域,下列命题中正确的是()A. 数域必含有0,1两个数B. 整数集是数域C. 若有理数集Q⊆M,则数集M必为数域D. 数域必为无限集【答案】AD【解析】【分析】这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的四个命题代入进行检验,要满足对四种运算的封闭,只有一个个来检验.本题考查的主要知识点是新定义概念的理解能力.我们可根据已知中对数域的定义:设P是一个数集,且至少含有两个数,若对∈P(除数b≠0)则称P是一个数域,对四个命题逐一进行判断即任意a、b∈P,都有a+b、a−b、ab、ab可等到正确的结果.解:当a=b时,a−b=0、ab=1∈P,故可知A正确.当a=1,b=2,12∉Z不满足条件,故可知B不正确.当M中多一个元素复数i则会出现1+i∉M,所以它也不是一个数域,故可知C不正确.根据数据的性质易得数域有无限多个元素,必为无限集,故可知D正确.故选AD.8.若集合A具有以下性质:(1)0∈A,1∈A;(2)x,y∈A,则x−y∈A,且x≠0时,1x∈A,则称集合A是“完美集”,给出以下结论,其中正确结论的序号是()A. 集合B={−1,0,1}是“完美集”;B. 有理数集Q是“完美集”;C. 设集合A是“完美集”,若x,y∈A,则x+y∈A;D. 设集合A是“完美集”,若x,y∈A,则xy∈A;【答案】BCD【解析】【分析】本题主要考查新定义,利用条件进行推理,考查学生的推理能力,根据“完美集”的定义,分别进行判断即可.【解答】解:A.∵1,−1∈B,1−(−1)=2∉B,不满足性质(2),∴A不正确;B.∵0∈Q,1∈Q,x、y∈Q,∴0−y=−y∈Q,∴x+y=x−(−y)∈Q,且x≠0时,1x∈Q,∴B正确;C.∵0∈A,x、y∈A,∴0−y=−y∈A,∴x+y=x−(−y)∈A,故C正确;D.x,y∈A时,①若x=0,或1,则x2∈A;②若x≠0,且x≠1,则x−1,1x−1,1x∈A,∴1x−1−1x=1x2−x∈A;∴x2−x∈A,x2−x+x=x2∈A;∴x∈A得到x2∈A;∴同理可得y2∈A,x2+y2∈A,(x+y)2∈A;∴2xy=(x+y)2−(x2+y2)∈A;若x,y有一个为0,则xy∈A,若x,y都不为0,则:1 xy =12xy+12xy∈A,∴xy∈A;∴x∈A,y∈A,能得到xy∈A,故D正确.故选BCD.9.对任意A,B⊆R,记AⅰB= { x|x∈A∪B,x∉A∩B},并称AⅰB为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则AⅰB={1,4}.下列命题中,正确的是()A. 若A,B⊆R,且AⅰB=B,则A=⌀B. 若A,B⊆R,且AⅰB=⌀,则A=BC. 若A,B⊆R,且AⅰB⊆A,则A⊆BD. 存在A,B⊆R,使得AⅰB=(∁R A)ⅰ(∁R B)【答案】ABD【解析】【分析】本题主要考查新定义,属于较难题.根据新定义,逐一判断即可.【解答】解:由题意可得:,故正确;,所以正确;若A,B⊆R,且A⊕B⊆A,则B⊆A,故不正确;存在A,B⊆R,使得A⊕B=(∁R A)⊕(∁R B,)如A=B,故正确.故答案为ABD.三、单空题10.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有______ 个.【答案】16【解析】解:∵M={a2,0},N={1,a,2},且M∩N={1},∴a=−1,∴M∪N={−1,0,1,2},故M∪N的子集有24=16个.故答案为:16.由题意先确定集合M,N,再求M∪N={−1,0,1,2},从而求子集的个数.本题考查了集合的运算及集合的化简,同时考查了集合的子集个数问题,11.已知集合M={x|x2−2x−8=0},N={x|ax+4=0},且N⊆M,则由a的取值组成的集合是_________.【答案】{0,−1,2}【解析】【分析】本题考查集合关系中参数取值问题,根据集合M={x|x2+x−8=0}写出集合M最简单的形式,然后再根据N⊆M,求出a的值,【解答】解:∵集合M={x|x2−2x−8=0}={−2,4},∵N⊆M,N={x|ax+4=0},∴N=⌀,或N={−2}或N={4}三种情况,当N=⌀时,可得a=0,此时N=⌀;当N={−2}时,−2a+4=0,可得a=2;当N={4}时,4a+4=0,可得a=−1.∴a的可能值组成的集合为{0,−1,2}.故答案为{0,−1,2}.12.已知集合A={x|ax+1=0},B={x|x2−3x+2=0},若A⊆B,则a的取值集合为_______.【答案】{−1,0,−12}.【解析】【分析】本题考查集合的包含关系及应用.根据A⊆B,利用分类讨论思想求解即可,特别要注意A=⌀不可忽略.【解答】解:当a=0时,A=⌀,满足A⊆B;当a≠0时,A={−1a }⊆B,−1a=1或−1a=2,解得a=−12或−1,}.综上实数a的所有可能取值的集合为{−1,0,−12}.故答案为{−1,0,−1213.设集合A={1,a2−3},B={−4,a−1},若A⋃B中恰有3个元素,则a=________.【答案】−1【解析】【分析】本题考查了并集及其运算,熟练掌握交集的定义是解本题的关键.由A,B,以及A与B的交集恰有3个元素,确定出a的值即可.【解答】解:因为a2−3≥−3>−4,所以由题意得a2−3=a−1或a−1=1,解得a=2或a=−1.当a=2时,集合A中的两个元素重合,舍去,所以a=−1.四、解答题14.已知集合A={x∈R|mx2−2x+1=0},在下列条件下分别求实数m的取值范围.(1)A=⌀;(2)A恰有两个子集;.【答案】解:(1)若A=⌀,则关于x的方程mx2−2x+1=0没有实数解,则m≠0,且△=4−4m<0,所以m>1;(2)若A恰有两个子集,则A为单元素集,所以关于x的方程mx2−2x+1=0恰有一个实数解,,满足题意;讨论:①当m=0时,x=12②当m≠0时,△=4−4m,所以m=1.综上所述,m=0或m=1;,2)≠⌀,(3)若A∩(12,2)内有解,则关于x的方程mx2=2x−1在区间(12这等价于当x∈(12,2)时,求m=2x−1x2=1−(1x−1)2的值域,∴m∈(0,1].【解析】本题考查空集的概念、子集的个数问题以及含参数的集合运算问题,综合性较强,属于拔高题.(1)若A=⌀,则关于x的方程mx2−2x+1=0没有实数解,则m≠0,由此能求出实数m的取值范围.(2)若A恰有两个子集,则A为单元素集,所以关于x的方程mx2−2x+1=0恰有一个实数解,分类讨论能求出实数m的取值范围.(3)若A∩(12,2)≠⌀,则关于x的方程mx2=2x−1在区间(12,2)内有解,这等价于求m=2x−1x2,x∈(12,2)时的值域.15.设集合A={x|x2−3x+2=0},B={x|x2+(a−1)x+a2−5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.【答案】解:(1)由题意得A={x|x2−3x+2=0}={1,2}∵A∩B={2},∴2∈B∴22+(a−1)×2+a2−5=0,即4+2a−2+a2−5=0化简得:a2+2a−3=0,所以(a+3)(a−1)=0,解得:a=−3或a=1.检验:当a=−3时,B={x|x2−4x+4=0}={2},满足A∩B={2},当a=1时,B={x|x2−4=0}={−2,2},满足A∩B={2},∴a=−3或a=1;(2)∵A∪B=A,故B⊆A,①当B=⌀,则(a−1)2−4(a2−5)<0,即a2−2a+1−4a2+20<0,即−3a2−2a+21<0,即3a2+2a−21>0,即(3a−7)(a+3)>0,解得:a>73或a<−3,②当B为单元素集,则,即(a−1)2−4(a2−5)=0,得a=73或a=−3当a =73时,B ={−23}⊄A ,舍当a =−3时, B ={2}⊆A 符合,③当B 为双元素集,则B =A ={1,2}则有{1+2=1−a 1×2=a 2−5无解, 综上:a >73或a ≤−3【解析】本题主要查了交集、并集以及一元二次方程的解法,考查了学生分类讨论的思想,培养了学生的综合能力.(1)由A ∩B ={2},知2∈B ,将2代入求出a ,进而进行检验,得出集合B ,得出结论.(2)由A ∪B =A ,知B ⊆A ,再根据一元二次方程根的情况讨论B 的情况,得出a 的取值范围.16. 已知全集,集合M ={x|−2≤x ≤5},N ={x|a +1≤x ≤2a +1}. (Ⅰ)若a =2,求;(Ⅱ)若M ∪N =M ,求实数a 的取值范围.【答案】解:(Ⅰ)若a =2,则N ={x|3≤x ≤5},则或x <3}; 则;(Ⅱ)若M ∪N =M ,则N ⊆M ,①若N =⌀,即a +1>2a +1,得a <0,此时满足条件;②当N ≠⌀,则满足{a +1≤2a +12a +1≤5a +1≥−2,得0≤a ≤2,综上a ≤2,故a 的取值范围是(−∞,2].【解析】本题主要考查集合的基本运算,根据集合的基本关系以及基本运算是解决本题的关键,属于拔高题.(Ⅰ)根据集合的基本运算进行求解即可;(Ⅱ)根据M ∪N =M ,得N ⊆M ,讨论N 是否是空集,根据集合的关系进行转化求解即可.17. 已知集合A ={x |a −12<x <a 2},B ={x |0<x <1}(Ⅰ)若a =12,求A⋃(∁R B ).(Ⅱ)若A⋂B =⌀,求实数a 的取值范围.【答案】(Ⅰ)当a =12时A ={x|0<x <14},C R B ={x|x ≤0或x ≥1},∴A ∪(∁R B)={x|x <14或x ≥1};(Ⅱ)当A =ϕ时,即a −12⩾a 2解得a ⩾1,当A ≠ϕ时,需满足{a <1a −12⩾1或{a <1a 2⩽0,解得a ⩽0,综上a ⩽0或a ⩾1 .【解析】本题考查集合的运算以及集合的关系(1)当a =12时,得到集合A ,C R B 利用并集概念即可求出A ∪(∁R B); (2)分A =Φ和A ≠Φ两种情况即可求解,然后再求并集.。
高中数学必修一1.2 集合间的基本关系复习检测(人教A版,含解析)(72)

1.2 集合间的基本关系一、单选题1.设集合M =x|-1≤x<2},N =x|x -k≤0},若(∁R M)⊇(∁R N),则k 的取值范围是( ) A .k≤2 B .k≥-1 C .k>-1D .k≥22.若集合{}1A x x =>-,则( ) A .0A ⊆ B .{}0A ⊆ C .{}0A ∈ D .A ∅∈ 3.已知集合{|1}M x x =>-,那么( )A .0M ⊆B .{0}M ∈C .M ∅∈D .{0}M ⊆4.已知集合2|10Ax x ,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆. A .1个 B .2个 C .3个 D .4个5.下列集合关系表示正确的是( )A .{}{}11,2,3∈B .{}0∅=C .R ∅⊆D .0N *∈6.若集合|24M x x k k Z ππ⎧⎫==⋅-∈⎨⎬⎩⎭,,|42N x x k k Z ππ⎧⎫==⋅+∈⎨⎬⎩⎭,,则( )A .M=NB .M ⊆NC .N ⊆MD .没有包含关系 7.若集合A=1,3,x},B=x 2,1},且B ⊆A ,则满足条件的实数x 的个数是( ) A .1B .2C .3D .48.已知{}{}224,1A x x B x x b =<<=<<,若A B ⊆,则实数b 的取值范围( ) A .()1,2B .(]1,2C .()2,+∞D .[)2,+∞9.已知集合{}4,5,6P =,{}1,2,3Q =,定义{},,P Q x x p q p P q Q ⊕==-∈∈,则集合P Q ⊕的所有非空真子集的个数为 A .32 B .31C .30D .以上都不对10.设集合{}1A x x a =-=,{}1,3,B b =-,若A ⊆B ,则对应的实数对(,)a b 有A .1对B .2对C .3对D .4对二、填空题1.设t 是实数,集合{}260M x x x =--=,{}20N y ty =-=,若N M ⊂,则符合条件的实数t组成的集合是______.2.下列各组中的两个集合相等的有__________. A 、{}2,P x x n n Z ==∈,(){}21,Q x x n n Z ==-∈;B 、{}21,P x x n n N *==-∈,{}21,Q x x n n N *==+∈;C 、{}20P x x x =-=,()11,2nQ x x n Z ⎧⎫+-⎪⎪==∈⎨⎬⎪⎪⎩⎭. 3.集合{}21,3,A a =,集合{1,2}B a a =++,若B A A ⋃=,则实数a =________4.已知集合{1,3,}A m =,{3,5}B =,且B A ,则实数m 的值是____. 5.集合{1,2,3,,2015,2016}⋅⋅⋅的子集个数为________ 三、解答题1.已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,且C B ⊆,求a 的取值范围.2.已知集合{}25A x x =-<<,{}121B x m x m =+≤≤-,若B A ,求实数m 的取值范围.3.已知集合{}2|320A x x x =-+=,{}2|40B x x ax =-+=,若A B A ⋃=,求实数a 的取值范围.4.判断下列两个集合之间的关系:(1){|0}A x x =<,{|1}B x x =<; (2){|3,}A x x k k ==∈N ,{|6,}B x x z z ==∈N ;(3){,|A x x =∈N 是4与10的公倍数},{|20,}B x x m m +==∈N .5.已知集合713A xx ⎧⎫=⎨⎬-⎩⎭,2{|9140}B x x x =-+<,{|52}C x m x m =-<<. (1)求A B ,()R C A B ⋃;(2)若x C ∈是()x A B ∈⋂的充分不必要条件,求实数m 的取值范围.参考答案一、单选题 1.D 详解:由()()M N ⊇R R 可知M N ⊆ ,则k 的取值范围为2k ≥.故选D.2.B解析:集合{}0、∅与集合A 之间的关系用⊆或,元素0与集合A 之间的关系用∈或∉,ACD 选项都使用错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单含参集合的应用
一、单选题(共10道,每道10分)
1.已知集合,若,则x的值是( )
A.0
B.-4
C.0或-4
D.0或±4
答案:C
解题思路:
试题难度:三颗星知识点:集合中元素的确定性、互异性、无序性
2.已知集合,若,则实数a的取值个数是( )
A.0
B.1
C.2
D.3
答案:D
解题思路:
试题难度:三颗星知识点:集合性质的综合应用
3.集合,若A=B,则实数x的取值集合是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:集合的相等
4.已知,若集合,则的值是( )
A.-2
B.-1
C.1
D.2
答案:B
解题思路:
试题难度:三颗星知识点:集合的相等
5.已知集合,,若,则实数x,y的值为( )
A.,或
B.
C.或
D.或
答案:B
解题思路:
试题难度:三颗星知识点:集合性质的综合应用
6.已知,且,集合,
,若,则的值是( )
A.5
B.4
C.25
D.10
答案:A
解题思路:
试题难度:三颗星知识点:集合的相等
7.已知关于x的方程的解集为P,则P中所有元素的和可能是( )
A.3,6,9
B.6,9,12
C.9,12,15
D.6,12,15
答案:B
解题思路:
试题难度:三颗星知识点:集合中元素的确定性、互异性、无序性
8.设全集,集合,,若
,则( )
A.-4
B.8
C.6
D.6或8
答案:C
解题思路:
试题难度:三颗星知识点:含参数的集合(有限集)
9.已知集合,.若,则下列选项正确的是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:集合性质的综合应用
10.集合,.若,,则的值为( )
A.5
B.-5
C.-2
D.2
答案:B
解题思路:
试题难度:三颗星知识点:集合性质的综合应用。