遗传算法 (2)

合集下载

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。

遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。

本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。

2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。

其基本原理可以概括为:选择、交叉和变异。

(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。

(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。

交叉算子的选择及实现方式会对算法效果产生很大的影响。

(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。

通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。

3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。

(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。

(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。

(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。

b. 计算适应度:根据适应度函数,计算每个个体的适应度值。

c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。

d. 交叉操作:对父代进行交叉操作,生成新的个体。

e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。

遗传计算题的解题方法(二)

遗传计算题的解题方法(二)

遗传计算题的解题方法(二)遗传计算(Genetic Algorithm)是一种基于生物进化原理的优化算法,已经被广泛应用于各种领域,包括工程、商业、金融等。

遗传计算题是指利用遗传计算算法来解决一些优化问题,例如旅行商问题、背包问题等。

遗传计算的基本思想遗传计算的基本思想是将问题转换成一个由二进制编码的染色体,并通过交叉、变异等操作来产生一代一代的后代,直到达到最优解或者算法收敛。

遗传计算主要包括下面几个步骤:1.初始化种群2.评估适应度3.选择优秀个体4.交叉与变异5.更新种群6.终止算法解决遗传计算题的方法方法一:遗传算法遗传算法是遗传计算的一种常见实现方式,它利用遗传算子(交叉和变异)来生成新的个体,并保留一定数量的优秀个体进入下一代。

遗传算法需要确定种群大小、交叉率、变异率等参数,同时也需要选择合适的适应度函数来评价个体的表现。

方法二:进化策略进化策略是一种基于遗传算法的改进版,它利用自适应进化策略(如选择适应度共享、自适应个体调整等)来提高算法的性能和收敛速度。

进化策略相比于遗传算法具有更强的寻优性能。

方法三:遗传规划遗传规划是一种利用遗传算法来实现规划任务的方法。

遗传规划通常包括问题建模(将决策变量编码成染色体)、适应度评价、遗传操作等步骤。

遗传规划在实际应用中已经被广泛应用于许多领域。

方法四:遗传表达式编程遗传表达式编程(Genetic Programming)是一种将遗传计算应用于自动编程的方法。

它将程序表示为一棵树状结构,并通过交叉和变异操作来生成新的程序,直到达到某种特定的效果。

遗传表达式编程适合于解决一些复杂的问题,例如图像识别、自动控制等。

总结遗传计算是一种强大的优化算法,它已经被成功应用于解决许多复杂的问题。

在实际应用中,要根据具体的问题选取合适的遗传计算方法,并合理设置各种参数,以达到最优的解决效果。

注意事项遗传计算虽然拥有很强的优化能力,但它也存在一些注意事项:1.初始种群的构建不能过于随意,需要按照一定的规则来生成。

遗传算法教程GA2

遗传算法教程GA2

遗传算法教程GA2遗传算法教程GA2遗传算法(Genetic Algorithm,GA)是一种模拟自然进化过程的优化算法。

它模拟了自然界中的遗传和进化过程,通过适应度函数评价个体的优劣,通过选择、交叉和变异等操作,不断迭代最优解。

遗传算法的基本过程包括初始化种群、计算适应度、选择、交叉、变异和更新种群。

下面将详细介绍这些步骤。

首先是初始化种群。

种群是指问题的解空间中的一个个体集合,每个个体代表问题的一个可能解。

种群的初始化可以随机生成,也可以根据问题的特点进行设计。

通常情况下,种群的大小越大,空间越广,但计算量也会增加。

接下来是计算适应度。

适应度函数是用来评价个体优劣的指标,它根据问题的具体要求进行设计。

适应度函数应该能够对个体的解进行量化评价,并且能够反映个体与最优解之间的差距。

适应度越高,个体越好。

然后是选择操作。

选择是根据个体的适应度来决定哪些个体被选择作为下一代的父代。

选择操作通常采用轮盘赌算法或排名选择算法。

轮盘赌算法根据个体适应度的比例来决定个体被选中的概率,适应度越高的个体被选中的概率越大。

排名选择算法则根据个体适应度的等级来决定个体被选中的概率。

接下来是交叉操作。

交叉是指将两个父代个体的染色体进行配对,通过染色体上的其中一种操作(如交换、重组等),生成两个子代个体。

交叉操作可以增加种群的多样性,避免陷入局部最优解。

然后是变异操作。

变异是指对个体的染色体进行随机的变换,从而产生新的个体。

变异操作能够引入种群的新解,并且有助于跳出当前空间的局部最优解。

最后是更新种群。

通过选择、交叉和变异操作生成的新个体替代原来的个体,形成下一代的种群。

这样不断进行迭代,直到满足终止条件为止,终止条件可以是达到最大迭代次数、找到满意解或达到收敛条件等。

遗传算法在实际应用中有广泛的应用。

例如,在旅行商问题中,遗传算法可以用来寻找最短路径;在机器学习中,遗传算法可以用来优化神经网络的权重和偏差;在工程设计中,遗传算法可以用来优化系统的参数等。

遗传算法变异策略

遗传算法变异策略

遗传算法变异策略遗传算法是一种基于生物进化原理的优化算法,在解决复杂问题上具有很好的适应性和鲁棒性。

变异策略是遗传算法中的一个重要步骤,它通过引入随机扰动来增加搜索空间,使得算法能够更好地探索问题的解空间。

本文将重点讨论遗传算法中的变异策略。

一、遗传算法简介遗传算法是一种模拟生物进化过程的优化算法,它通过模拟自然界的选择、交叉和变异等过程,逐步优化问题的解。

遗传算法通常由三个基本操作组成:选择、交叉和变异。

其中,变异是遗传算法中的一个重要步骤,它通过引入随机扰动来增加搜索空间,以避免陷入局部最优解。

二、变异策略的意义在遗传算法中,变异策略的主要作用是引入随机扰动,使得算法能够更好地探索解空间。

如果只使用选择和交叉操作,那么算法可能会陷入局部最优解,无法找到全局最优解。

而变异操作能够通过改变个体的某些基因值,打破局部最优解,增加搜索的多样性,从而提高算法的全局搜索能力。

三、常用的变异策略在遗传算法中,常用的变异策略包括基本变异、非均匀变异和自适应变异等。

下面将分别介绍这三种变异策略。

1. 基本变异基本变异是最简单的一种变异策略,它通过随机改变个体的某个基因值来引入扰动。

具体步骤如下:(1) 随机选择一个个体;(2) 随机选择一个基因位进行变异;(3) 根据设定的变异概率,决定是否改变该基因位的值;(4) 如果改变了基因位的值,则将变异后的个体加入到下一代种群中。

2. 非均匀变异非均匀变异是一种根据适应度函数调整变异概率的策略,它可以使得变异概率随着进化过程的进行逐渐减小。

具体步骤如下:(1) 计算种群中每个个体的适应度值;(2) 根据适应度值计算每个个体的变异概率;(3) 对于每个个体,根据其变异概率进行基本变异操作;(4) 将变异后的个体加入到下一代种群中。

3. 自适应变异自适应变异是一种根据个体的适应度动态调整变异策略的方法,它能够根据问题的特点自适应地改变变异概率和变异方式。

具体步骤如下:(1) 计算种群中每个个体的适应度值;(2) 根据适应度值调整变异概率和变异方式;(3) 对于每个个体,根据调整后的变异概率和变异方式进行变异操作;(4) 将变异后的个体加入到下一代种群中。

nsga2拥挤度计算公式

nsga2拥挤度计算公式

nsga2拥挤度计算公式
【引言】
在多目标优化领域,遗传算法是一种广泛应用的求解方法。

其中,NSGA-II(Non-dominated Sorting Genetic Algorithm II)作为一种高效的遗传算法,具有较强的全局搜索能力。

在NSGA-II中,拥挤度计算公式起着关键作用,它决定了个体在下一代中的繁殖概率。

本文将详细介绍NSGA-II拥挤度计算公式及其应用。

【NSGA-II拥挤度计算公式原理】
SGA-II拥挤度计算公式主要基于两个核心思想:非支配排序和拥挤度计算。

首先,通过非支配排序将解集划分为不同层次,层次内解的排序依据是其目标函数值。

然后,在同一层次内,根据拥挤度计算公式对个体进行排序,确定其在下一代中的繁殖概率。

【公式具体实现】
SGA-II拥挤度计算公式如下:
1.计算个体i与同一层次内其他个体的目标函数差值的绝对值之和,记为Si。

2.计算所有个体目标函数差值的绝对值之和,记为S。

3.计算个体i的拥挤度:CI(i) = Si / S。

【公式应用示例】
假设一个多目标优化问题有三个目标函数,分别记为f1(x),f2(x)和
f3(x)。

当前代个体数为10,经过非支配排序后,得到两个非支配层。

03第三章 遗传算法

03第三章 遗传算法

第三章遗传算法习题与答案1.填空题(1)遗传算法的缩写是,它模拟了自然界中过程而提出,可以解决问题。

在遗传算法中,主要的步骤是、、。

(2)遗传算法的三个算子是、、。

解释:本题考查遗传算法的基础知识。

具体内容请参考课堂视频“第3章遗传算法”及其课件。

答案:(1)GA,生物进化,全局优化,编码,计算适应度函数,遗传算子(2)选择,交叉,变异2.对于编码长度为7的二进制编码,判断以下编码的合法性。

(1)[1020110](2)[1011001](3)[0110010](4)[0000000](5)[2134576]解释:本题考查遗传算法的二进制编码的合法性。

具体内容请参考课堂视频“第3章遗传算法”及其课件。

答案:(1)[1020110]不合法,不能出现“2”(2)[1011001]合法(3)[0110010]合法(4)[0000000]合法(5)[2134576]不合法,不能出现0、1以外的数字3.下图能够基本反映生物学遗传与优胜劣汰的过程。

理解该图,联想计算类问题求解,回答下列问题。

(1)下列说法正确的是_____。

(多选)A)任何一个生物个体的性状是由其染色体确定的,染色体是由基因及其有规律的排列所构成的,因此生物个体可由染色体来代表。

B)生物的繁殖过程是通过将父代染色体的基因复制到子代染色体中完成的,在复制过程中会发生基因重组或基因突变。

基因重组是指同源的两个染色体之间基因的交叉组合,简称为“杂交/交配”。

基因突变是指复制过程中基因信息的变异,简称“突变”。

C)不同染色体会产生不同生物个体的性状,其适应环境的能力也不同。

D)自然界体现的是“优胜劣汰,适者生存”的丛林法则。

不适应环境的生物个体将被淘汰,自然界生物的生存能力会越来越强。

解释:本题考核对生物遗传观点以及所给图片的理解。

具体内容请参考课堂视频“第3章遗传算法”及其课件。

答案:A、B、C、D关于生物遗传进化的基本观点如下:(1)生物的所有遗传信息都包含在其染色体中,染色体决定了生物的性状。

遗传算法的C语言实现(二)-----以求解TSP问题为例

遗传算法的C语言实现(二)-----以求解TSP问题为例

遗传算法的C语⾔实现(⼆)-----以求解TSP问题为例上⼀次我们使⽤遗传算法求解了⼀个较为复杂的多元⾮线性函数的极值问题,也基本了解了遗传算法的实现基本步骤。

这⼀次,我再以经典的TSP问题为例,更加深⼊地说明遗传算法中选择、交叉、变异等核⼼步骤的实现。

⽽且这⼀次解决的是离散型问题,上⼀次解决的是连续型问题,刚好形成对照。

⾸先介绍⼀下TSP问题。

TSP(traveling salesman problem,旅⾏商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增⼤按指数⽅式增长,到⽬前为⽌还没有找到⼀个多项式时间的有效算法。

TSP问题可以描述为:已知n个城市之间的相互距离,某⼀旅⾏商从某⼀个城市出发,访问每个城市⼀次且仅⼀次,最后回到出发的城市,如何安排才能使其所⾛的路线最短。

换⾔之,就是寻找⼀条遍历n个城市的路径,或者说搜索⾃然⼦集X={1,2,...,n}(X的元素表⽰对n个城市的编号)的⼀个排列P(X)={V1,V2,....,Vn},使得Td=∑d(V i,V i+1)+d(V n,V1)取最⼩值,其中,d(V i,V i+1)表⽰城市V i到V i+1的距离。

TSP问题不仅仅是旅⾏商问题,其他许多NP完全问题也可以归结为TSP问题,如邮路问题,装配线上的螺母问题和产品的⽣产安排问题等等,也使得TSP问题的求解具有更加⼴泛的实际意义。

再来说针对TSP问题使⽤遗传算法的步骤。

(1)编码问题:由于这是⼀个离散型的问题,我们采⽤整数编码的⽅式,⽤1~n来表⽰n个城市,1~n的任意⼀个排列就构成了问题的⼀个解。

可以知道,对于n个城市的TSP问题,⼀共有n!种不同的路线。

(2)种群初始化:对于N个个体的种群,随机给出N个问题的解(相当于是染⾊体)作为初始种群。

这⾥具体采⽤的⽅法是:1,2,...,n作为第⼀个个体,然后2,3,..n分别与1交换位置得到n-1个解,从2开始,3,4,...,n分别与2交换位置得到n-2个解,依次类推。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用遗传算法优化BP神经网络的Matlab编程实例由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。

以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。

程序一:GA训练BP权值的主函数function net=GABPNET(XX,YY)%--------------------------------------------------------------------------% GABPNET.m% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%--------------------------------------------------------------------------%数据归一化预处理nntwarn offXX=premn mx(XX);YY=premn mx(YY);%创建网络net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');%下面使用遗传算法对网络进行优化P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度aa=ones(S,1)*[-1,1];popu=50;%种群规模initPpp=initializega(popu,aa,'gabpEval');%初始化种群gen=100;%遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 11],'maxGenTerm',gen,...'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%绘收敛曲线图figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold onplot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold onplot(trace(:,1),trace(:,2),'b-');xlabel('Generation');ylabel('Fittness');%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);net.LW{2,1}=W1;net.LW{3,2}=W2;net.b{2,1}=B1;net.b{3,1}=B2;XX=P;YY=T;%设置训练参数net.trainParam.show=1;net.trainParam.lr=1;net.trainParam.epochs=50;net.trainParam.goal=0.001;%训练网络net=train(net,XX,YY);程序二:适应值函数function [sol, val] = gabpEval(sol,options)% val - the fittness of this individual% sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation]load data2nntwarn offXX=premn mx(XX);YY=premn mx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度for i=1:S,x(i)=sol(i);end;[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);程序三:编解码函数function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x) load data2nntwarn offXX=premn mx(XX);YY=premn mx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度% 前R*S1个编码为W1for i=1:S1,for k=1:R,W1(i,k)=x(R*(i-1)+k);endend% 接着的S1*S2个编码(即第R*S1个后的编码)为W2for i=1:S2,for k=1:S1,W2(i,k)=x(S1*(i-1)+k+R*S1);endend% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1for i=1:S1,B1(i,1)=x((R*S1+S1*S2)+i);end% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2 for i=1:S2,B2(i,1)=x((R*S1+S1*S2+S1)+i);end% 计算S1与S2层的输出A1=tansig(W1*P,B1);A2=purelin(W2*A1,B2);% 计算误差平方和SE=sumsqr(T-A2);val=1/SE; % 遗传算法的适应值上述程序需要调用gaot工具箱,请从附件里下载!原创】蚁群算法最短路径通用Matlab程序(附图)下面的程序是蚁群算法在最短路中的应用,稍加扩展即可应用于机器人路径规划function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)%% ---------------------------------------------------------------% ACASP.m% 蚁群算法动态寻路算法% ChengAihua,PLA Information Engineering University,ZhengZhou,China % Email:aihuacheng@% All rights reserved%% ---------------------------------------------------------------% 输入参数列表% G 地形图为01矩阵,如果为1表示障碍物% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)% K 迭代次数(指蚂蚁出动多少波)% M 蚂蚁个数(每一波蚂蚁有多少个)% S 起始点(最短路径的起始点)% E 终止点(最短路径的目的点)% Alpha 表征信息素重要程度的参数% Beta 表征启发式因子重要程度的参数% Rho 信息素蒸发系数% Q 信息素增加强度系数%% 输出参数列表% ROUTES 每一代的每一只蚂蚁的爬行路线% PL 每一代的每一只蚂蚁的爬行路线长度% Tau 输出动态修正过的信息素%% --------------------变量初始化----------------------------------%loadD=G2D(G);N=size(D,1);%N表示问题的规模(象素个数)MM=size(G,1);a=1;%小方格象素的边长Ex=a*(mod(E,MM)-0.5);%终止点横坐标if Ex==-0.5Ex=MM-0.5;endEy=a*(MM+0.5-ceil(E/MM));%终止点纵坐标Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数%下面构造启发式信息矩阵for i=1:Nif ix==-0.5ix=MM-0.5;endiy=a*(MM+0.5-ceil(i/MM));if i~=EEta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;elseEta(1,i)=100;endendROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:Kdisp(k);for m=1:M%% 第一步:状态初始化W=S;%当前节点初始化为起始点Path=S;%爬行路线初始化PLkm=0;%爬行路线长度初始化TABUkm=ones(1,N);%禁忌表初始化TABUkm(S)=0;%已经在初始点了,因此要排除DD=D;%邻接矩阵初始化%% 第二步:下一步可以前往的节点DW=DD(W,:);DW1=find(DWfor j=1:length(DW1)if TABUkm(DW1(j))==0DW(j)=inf;endendLJD=find(DWLen_LJD=length(LJD);%可选节点的个数%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同while W~=E&&Len_LJD>=1%% 第三步:转轮赌法选择下一步怎么走PP=zeros(1,Len_LJD);for i=1:Len_LJDPP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);endPP=PP/(sum(PP));%建立概率分布Pcum=cumsum(PP);Select=find(Pcum>=rand);%% 第四步:状态更新和记录Path=[Path,to_visit];%路径增加PLkm=PLkm+DD(W,to_visit);%路径长度增加W=to_visit;%蚂蚁移到下一个节点for kk=1:N。

相关文档
最新文档