遗传学三大规律总结
遗传学三大规律总结

遗传学三大规律总结遗传学是研究遗传信息传递和遗传变异的科学。
遗传学三大规律是指孟德尔的遗传规律、染色体学的遗传规律和分子遗传学的遗传规律。
下面将详细介绍这三大规律。
一、孟德尔的遗传规律孟德尔的遗传规律是遗传学的基础,他在豌豆杂交实验中发现了两性生殖体的遗传现象,并总结出以下三个规律:1.性状表现规律:孟德尔通过杂交实验发现,杂交(异交)后代的性状并非介于父本和母本之间,而是呈现一种明确的表型。
这表明个体的性状是由基因决定的,在杂交过程中,两个纯合亲本所带的基因以一定的比例参与了后代的表型表达。
2.隔离规律:孟德尔提出了性状分离的规律,即在杂交后代中,携带着两种性状的纯合基因会在有性繁殖中分离,而每个个体又只能将一种性状遗传给后代,即每个个体的两个基因互相独立地在生殖细胞中分配给后代。
这种分离规律为后来的基因分离定律奠定了基础。
3.独立规律:孟德尔通过多个杂交实验发现,不同基因对于性状的遗传是独立的,互不影响。
他称这些基因为“遗传因子”,并提出了基因的概念。
二、染色体学的遗传规律染色体学的遗传规律是在孟德尔的遗传规律基础上,随着染色体学的发展而形成的。
它包括以下两个规律:1. 染色体分离规律:根据Mitosis和Meiosis的观察和实验证明,染色体在有丝分裂和减数分裂过程中具有固定的数目和形态。
在减数分裂的第一次分裂中,染色体以同源染色体为单位发生分离,确保每个子细胞获得一对染色体。
这一规律称为李约瑟定律。
2.染色体间的基因连锁和自由组合规律:通过观察多个基因同时杂交所得的后代,发现染色体上的基因会因为染色体间的互联而不能独立分离,成为基因连锁。
然而,基因连锁并非永久的,基因之间可以通过染色体的重组而发生自由组合。
这一规律由摩尔根提出,也称为染色体交换规律。
三、分子遗传学的遗传规律分子遗传学的遗传规律是在分子生物学和基因工程的发展中建立起来的,主要涉及到基因和DNA的结构和功能。
1.DNA的复制与遗传稳定性规律:通过研究DNA的复制过程,发现DNA复制是基因遗传的基础,也是细胞分裂的基础。
孟德尔遗传学原理

孟德尔遗传学原理随着现代遗传学的发展,人们对于遗传学原理的了解越来越深入。
而最早发现遗传学规律的人便是孟德尔,他的遗传学原理被视为现代遗传学的基础。
孟德尔的遗传学原理,又称孟德尔定律,总结了他在豌豆植物的杂种实验中发现的三个遗传定律。
这三个定律为基因组成和遗传方式提供了基本框架。
以下是对孟德尔三大遗传定律的介绍。
一、基因分离定律基因分离定律是孟德尔第一个发现的遗传规律。
他发现,如果将纯合子(基因型完全相同)的双亲杂交,得到的杂合子(基因型不同)子代会表现出两个亲代的性状。
而这两个亲代的遗传信息,对于每个后代而言,只有一个能够表现出来。
孟德尔将这个过程称为“基因分离”。
基因分离定律说明,每个父代个体的两个基因会以等概率分配给它们的子代,这两条基因线路独立地存在。
二、掩盖定律掩盖定律是孟德尔发现的第二个遗传规律。
他发现,一个等位基因(同一位置上不同的基因)可以掩盖另一个等位基因的表现,即掩盖基因为“显性”,被掩盖基因为“隐性”。
掩盖定律说明,如果一个个体中同时拥有表现型相同的两个不同基因,其中一个显性(表现),而另一个隐性(不表现),那么只有显性基因会罢先显露在外。
三、基因独立定律基因独立定律指出,每个基因的性状(表现形式)对于其他基因的表现没有影响。
孟德尔通过实验发现,每个基因都相互独立并且不受其他基因的影响。
例如,豌豆植物的花色(黄色或绿色) 和豆荚的形状(充盈或收缩),这两个性状之间没有任何联系或者依赖关系。
结论综上所述,孟德尔遗传学原理成功地解释了遗传学的基本规律,并引领遗传学的发展方向,对现代遗传学的发展起到了重要的作用。
通过了解遗传基本规律,人们可以更好地预测下一代的性状表现,进而更好地进行遗传改良和基因工程研究,为人类带来更多的福利和利益。
遗传学的三大定律知识点

遗传学的三大定律知识点一、知识概述《遗传学的三大定律》①基本定义:- 分离定律:简单说就是控制生物性状的一对等位基因在形成配子时会彼此分离,然后进入不同的配子。
比如,猫的毛色有白色和黑色基因,在繁殖产生配子(类似精子和卵子)时,白色基因和黑色基因会分开。
- 自由组合定律:当有两对或两对以上相对独立的等位基因时,在形成配子时,等位基因彼此分离,同时非等位基因可以自由组合。
例如,我们同时考虑豌豆的高矮和种子的圆皱这两对性状。
- 连锁与交换定律:处于同一条染色体上的基因大多会连在一起,并作为一个整体传递给后代。
但有时候同源染色体之间会发生染色体片段的交换,从而使基因重新组合。
就像是一排紧紧相连的小球串在两根绳子之间,偶尔两根绳子之间会交换一部分连着小球的片段。
②重要程度:在遗传学中是基石般的存在。
这三大定律就像是密码,帮我们理解生物的性状是怎样从亲代传到子代的,为什么生物会有这么多不同的形态等。
③前置知识:得了解生物的基本结构,知道基因大概是什么东西,还有雌雄配子结合这种最基础的生殖知识。
要是连基因在哪都不清楚,就很难理解遗传学定律了。
④应用价值:育种上大大有用。
比如说培育高产抗病的农作物品种,就可以利用这些定律研究农作物的性状遗传。
在医学上也有用,如果一种遗传病是符合相关定律的遗传模式,就能根据家族成员的发病情况来预测后代患病的概率。
二、知识体系①知识图谱:这三大定律是遗传学的核心内容,在学习遗传学的步步深入过程中,很多知识点都是从这三大定律展开或者以它们为基础进行研究的。
②关联知识:与基因结构、孟德尔豌豆实验、基因频率还有细胞的减数分裂等知识点都有联系。
像减数分裂过程产生配子这个环节就和三大定律紧密相关,因为这些定律其实就是对生殖细胞形成过程中基因行为的总结。
③重难点分析:- 重点:掌握定律里基因的行为模式、比例关系还有不同定律的适用范围等。
- 难点:对于连锁与交换定律,理解它的机制比较难。
因为染色体上的基因连锁和交换不是那么直观,不像分离定律中对等位基因分离看得那么清楚。
遗传学三大定律

3. 有丝分裂中,姐妹染色单体分开;减数分裂第一 次同源染色体配对并分离,减数分裂第二次姐妹染 色单体分离 4. 有丝分裂的结果:亲、子代细胞染色体数目相同; 经减数分裂,子代细胞只有亲代细胞染色体数目的 一半
⑴ 分离定律
Law of Segregation
• 在减数分裂过 程中,同源染 色体分离。
Mendel遗传学第二定律:自由组合定律
综右图,其遗传型为3n=32 =9种(1:1:1:1:2:2:2:2:4) (A+a)2=A2+2Aa+a2 (B+b) 2=B2+2Bb+b2
A2B2+2AaB2+a2 B2+2A2Bb+4AaBb+2a2Bb+A2b2+2Aab2+a2b2
其表现型为2n=22=4种(9:3:3:1) 用圆形黄色的品种和皱形绿色的品种共杂交 15个植株, 产生了 556个种子,其中: 315个圆形黄色(315/ 32=9.8) 所有的种子 101个皱形黄色(101/32=3.1) 次年都种下 108个圆形绿色(108/32=3.3) 了 32个皱形绿色(32/32=1) 在 315 个圆黄的种子中有 11 个没有产生植株,并且 3 个植株没有形成种子。在其余的里面: 38个有圆黄的 种子(AABB);65个圆黄和绿色的种子(AABb); 60个 圆黄和皱黄的种子( AaBB) ; 138 个圆黄和绿,皱黄和 绿的种子(AaBb)。 在101个皱黄的种子中,96株形 成 植 株 产 生 了 种 子 , 其 中 28 株 只 有 皱 黄 的 种 子 (aaBB);68株有皱黄和绿的种子 (aaBb)。 在 108个圆绿 的种子中,102株形成的植株结了子,其中 35株有圆绿 的种子( AAbb) ; 67 株有圆和皱绿的种子( Aabb) 。 在皱绿的30个种子中,长成了30个植株,只结皱绿种子; 它们保持了(aabb)的稳定性。
三大遗传定律及其细胞学基础

三大遗传定律是指孟德尔遗传定律,包括以下三个方面:
定律一:单因素遗传规律,也称分离规律。
孟德尔通过对豌豆花的杂交实验,发现性状表现会按照一定比例分离出现在子代中。
这个比例是3:1。
它的细胞学基础是在有丝分裂时,染色体成对分离,每个子细胞获得一份染色体。
定律二:双因素遗传规律,也称自由组合规律。
孟德尔通过对豌豆花的杂交实验,发现两个性状会同时遗传,而不是分别遗传。
它的细胞学基础是在减数分裂过程中,染色体成对分离,每个子细胞获得一份染色体,因此可以随意组合。
定律三:连锁遗传规律,也称联锁规律。
这个定律是由摩尔根通过对果蝇的杂交实验发现的。
他发现,某些基因是联锁的,它们位于同一条染色体上,因此有时会一起遗传。
它的细胞学基础是染色体在减数分裂过程中并不总是成对分离,有时会发生染色体互换,导致基因的连锁性发生变化。
高中生物“遗传的基本规律”知识点总结

遗传的基本规律在自然界中,生物体的性状是如何从父母传递给后代的?这一问题自古以来就困扰着人类。
直到19世纪,奥地利科学家孟德尔通过豌豆杂交实验,提出了遗传的三大基本定律,即分离定律、自由组合定律和连锁与交换定律,为遗传学的发展奠定了基础。
孟德尔的三大定律孟德尔的分离定律表明,在有性生殖过程中,成对的遗传因子在形成配子时会分离,每个配子只携带一个遗传因子。
例如,豌豆的花色和豆荚形状这两个性状,分别由不同的遗传因子控制,它们在生殖细胞形成时会分离,使得不同的配子携带不同的花色和豆荚形状基因。
自由组合定律进一步阐释了不同性状的遗传因子在形成配子时是独立分离的,除非它们位于同一染色体上。
这意味着一个生物体的多个性状可以独立地遗传给后代。
例如,豌豆的花色和豆荚形状可以自由组合,产生多种不同的后代。
连锁与交换定律则描述了位于同一染色体上的基因在遗传过程中的连锁和交换现象。
这一定律的发现,为理解染色体上的基因如何相互作用提供了理论基础。
例如,某些遗传疾病,如血友病和色盲,常常发现在同一家族中,这是因为这些疾病的基因与性别决定基因连锁在一起。
基因突变基因突变是遗传信息改变的一种方式,它可以是单个碱基的改变,也可以是基因片段的插入、缺失或重排。
突变是生物多样性的来源之一,也是许多遗传性疾病的基础。
例如,镰状细胞贫血症就是由于血红蛋白基因的单个碱基突变导致的。
这种突变虽然导致了疾病,但在某些环境中,如疟疾高发区,它却能提供一定的保护作用,减少疟疾的感染率。
基因重组基因重组是指在有性生殖过程中,亲本的基因重新组合形成新的基因型。
这个过程在杂交育种中尤为重要,可以产生新的遗传变异,增加种群的遗传多样性。
例如,通过将不同品种的水稻进行杂交,可以培育出既高产又抗稻瘟病的新品种。
基因工程技术中的基因重组则可以按照人们的意愿,将不同来源的基因组合在一起,创造出具有特定性状的生物体。
例如,通过将乙肝病毒的表面抗原基因插入酵母的基因组中,可以制造出乙肝疫苗;将人类胰岛素基因插入大肠杆菌的基因组中,可以生产出治疗糖尿病的人胰岛素。
解读遗传的基本规律
解读遗传的基本规律
基因遗传规律有三大规律,分别是基因分离定律,基因自由组合定律,和基因连锁、交换定律。
第一规律,分离定律是遗传学中最基本的一个规律,它从本质上阐明了控制生物性状的遗传物质是以自成单位的基因活动的,基因作为遗传单位在体细胞中是成双的,它在遗传上具有高度的独立性,因此在减数分裂的配子形成过程中,成对的基因在杂种细胞中能够彼此互不干扰,独立分离,通过基因重组,在子代继续表现各自的作用,这一规律从理论上说明了生物界由于杂交和分离所出现的变异的普遍性。
第二规律,是自由组合定律,就是当具有两对或者更多对相对性状的亲本杂交,在此一代产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。
第三个定律,就是连锁与互换定律,连锁与互换定律是指原来为同一亲本所具有的两个性状,在f2中常常有连系在一起遗传的倾向,这种现象成为连锁遗传。
连锁遗传定律的发现,证实了染色体是控制性状遗传基因的载体,通过交换的测定,进一步证明了基因在染色体上具有一定的距离的顺序,呈直线排列。
遗传学三大基本定律
遗传学三大基本定律分离规律、(1)分离规律分离规律是遗传学中最基本的一个规律。
它从本质上阐明了控制生物性状的遗传物质是以自成单位的基因存在的。
基因作为遗传单位在体细胞中是成双的,它在遗传上具有高度的独立性,因此,在减数分裂的配子形成过程中,成对的基因在杂种细胞中能够彼此互不干扰,独立分离,通过基因重组在子代继续表现各自的作用。
这一规律从理论上说明了生物界由于杂交和分离所出现的变异的普遍性。
以孟德尔的豌豆杂交试验为例(表9-2):可见,红花与白花杂交所产生的F1植株,全开红花。
在F2群体中出现了开红花和开白花两类,比例3∶1。
孟备尔曾反过来做白花为花的杂交,结果完全一致,这说明F1 和F2的性状表现不受亲本组合方式的影响,父本性状和母本性状在其后代中还将是分离的。
独立分配规律(2)独立分配规律该定律是在分离规律基础上,进一步揭示了多对基国间自由组合的关系,解释了不同基因的独立分配是自然界生物发生变异的重要来源之一。
按照独立分配定律,在显性作用完全的条件下,亲本间有2对基因差异时,F2有22=4种表现型;4对基因差异,F2有24=16种表现型。
设两个亲本有20对基因的判别,这些基因都是独立遗传的,那么F2将有220=1048576种不同的表现型。
这个规律说明通过杂交造成基因的重组,是生物界多样性的重要原因之一。
独立分配定律是指两对以上独立基因的分离和重组,是对分离规律的发展。
因此分离定律的应用完全适用于独立分配规律。
连锁遗传(3)连锁遗传规律1900年孟德尔遗传规律被重新发现后,人们以更炎的动植物为材料进行杂交试验,其中属于两对性状遗传的结果,有的符合独立分配定律,有的不符。
摩尔根以果蝇为试验材料进行研究,最后确认所谓不符合独立遗传规律的一些例证,实际上不属独立遗传,而属另一类遗传,即连锁遗传。
于是继孟德尔的两条遗传规律之后,连锁遗传成为遗传学中的第三个遗传规律。
所谓连锁遗传定律,就是原来为同一亲本所具有的两个性状,在F2中常常有连系在一起遗传的倾向,这种现象称为连锁遗传。
遗传学三大基本规律
遗传学三大基本规律第一大基本规律:孟德尔的遗传规律孟德尔是遗传学的奠基人之一,他通过对豌豆杂交实验的研究,总结出了遗传学的第一大基本规律,即“一对性状的遗传是相互独立的”。
这一规律表明,每个个体的性状遗传是由父母亲所携带的基因决定的,而且每一对基因在配子中的分离和随机结合。
这种随机性使得基因在后代中的组合呈现出多样性,为生物的进化提供了物质基础。
第二大基本规律:染色体遗传规律染色体遗传规律是遗传学的第二大基本规律,它揭示了基因在有丝分裂和减数分裂过程中的行为。
在有丝分裂中,染色体会发生复制、缩短、分离和迁移等过程,从而保证每个子细胞都能得到完整的染色体组。
而在减数分裂中,染色体的交换和随机分离则使得基因在子代中的组合更加多样。
染色体的行为规律不仅让我们了解到基因在细胞遗传中的作用,也为基因工程和遗传改良提供了理论基础。
第三大基本规律:基因突变规律基因突变是指基因发生突变或变异的现象。
基因突变规律是遗传学的第三大基本规律,它揭示了基因突变的发生与遗传变异的关系。
基因突变可以是点突变、插入突变、删除突变等,它们的发生会导致基因序列的改变,从而引起遗传特征的变异。
基因突变规律的研究不仅有助于我们理解遗传病的发生机制,也为遗传改良提供了重要的理论指导。
遗传学的三大基本规律为我们认识和理解生物界的遗传变异和遗传规律提供了基础。
通过对孟德尔的遗传规律、染色体遗传规律和基因突变规律的研究,我们可以更好地理解生物的进化和遗传性疾病的发生机制。
同时,这些规律也为基因工程和遗传改良提供了理论基础,为人类创造更好的生活条件提供了可能。
遗传学的发展将继续为人类解开生命奥秘提供新的思路和方法,为人类的健康和幸福作出更大的贡献。
遗传学三大规律总结课件
减数分裂时发生
多个等位基因组合
在自由组合定律中,多个等位基因可 以自由组合,形成多种基因型组合的 配子。
基因自由组合定律在减数分裂过程中 发生,随着非同源染色体的分离,非 等位基因也自由组合。
适用范围
01
02
03
真核生物
基因自由组合定律适用于 真核生物,包括动植物和 人类。
非同源染色体
定律适用于位于非同源染 色体上的基因,这些基因 在减数分裂时会发生自由 组合。
实质的比较
基因分离定律的实质是等位基因随配子的分离,基因自由组合定律的实质是非等位基因随配子的自由组 合,连锁定律的实质是等位基因和连锁基因随配子的连锁遗传。
05
三大定律在遗传学研究中的 应用
基因定位与作图
基因定位
通过遗传学三大定律,科学家们能够 确定基因在染色体上的位置,这对于 理解基因功能和疾病关联至关重要。
传学规律的理解。
表观遗传学与疾病研究
表观遗传学在疾病研究中的应用逐渐广泛,例如在肿瘤、神经性疾病等领域。研究表观 遗传学机制有助于发现新的疾病标记和药物靶点,为疾病诊断和治疗提供新的思路。
基因编辑技术的挑战与机遇
基因编辑技术的挑战
基因编辑技术虽然带来了巨大的机遇,但也面临着伦理、法律和技术上的挑战。如何合理、合法、安全地应用基 因编辑技术,避免潜在的风险和负面影响,是需要深入思考和解决的问题。
基因组编辑技术
基因组编辑技术如CRISPR-Cas9等的 发展,使得科学家能够更加精确地编 辑基因,纠正遗传缺陷,治疗遗传性 疾病,为遗传学应用开辟了新的途径。
表观遗传学的影响
表观遗传学研究
表观遗传学研究揭示了基因表达的调控机制,包括DNA甲基化、组蛋白修饰等。这些 机制可以影响基因的表达,进而影响生物体的性状。表观遗传学的发展将深化我们对遗
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
香豌豆花色遗传中有两种白花品种,杂交F1代开紫花, F2代分离出9/16紫花和7/16白花。如下图分析 P 白花CCpp×CCPP白花 ↓ F1 紫花CcPp ↓ F2 9紫花(C_P_):7白花(3C_pp+3ccP_+1ccpp) 属于二对独立基因的互补作用 F1和F2的紫花植株和它们的野生祖先的花色相同。 返祖遗传:在杂种后代重现祖先的某些性状。
二、独立分配规律
(一)、两对相对性状的遗传
在一对相对性状遗传的分 离规律基础上,孟德尔继续研 究两对和多对因子杂交的遗传 规律,提出独立分配规律,也 称自由组合定律。
(一)、两对相对性状的遗传
P F1
F2
黄色、圆粒 × 绿色、皱粒 ↓ 黄色、圆粒 ↓
黄色、圆粒 :黄色、皱粒 : 绿色、圆粒 : 绿色、皱粒 总数
实质:控制这两对性 状的是两对等位基因, 分布在不同的同源染色 体上的每一对等位基因 发生分离,而位于非同 源染色体的基因之间可 以自由组合。
两对基因自由组合的细胞学示意图
两 对 同 源 染 色 体 及 其 载 荷 基 因 的 独 立 分 配 示 意 图
(五)、多对相对性状的遗传
1、三对相对性状的遗传
第二章 遗传学三大规律
一、分离规律
(一)、概念
1、杂交:不同遗传组成的两亲本之间的交配。 2、性状:是生物体所表现的形态特征和生理 特性的总和。 3、相对性状:是指不同品种之间表现出有差 异的一对性状,叫一对相对性状。如红花 和白花,高茎与矮茎。
一对相对性状--花色
富贵竹的一 对相对性状
(二)、孟德尔的豌豆杂交试验
用双亲之一与 杂种一代杂交 叫回交
用双亲中的隐性亲 本与杂种一代杂交 叫测交
测交法验证分离规律原理
测交法验证分离规律
2、自交法
F2自交验证分离规律
(八)、分离规律的细胞学基础
1)基因在染色体的位置称为基因位点。 2)遗传学上把位于同源染色体上相同位 置上的一对基因,称为等位基因。
基因分离示意图
紫 茉 莉
紫 茉 莉
不 完 全 显 性
2)共显性:是指双亲性状 同时在个体上表现出来。
人类MN血型的遗传
3)显隐性和环境条件的关系:
生物性状的发育决定于基因型,一 般情况下,性状表现不受环境条件 的影响。但生物是不能脱离环境而 生存的,有时性状的表现受到环境 条件的影响而表现不同。
金 பைடு நூலகம் 草
2
2 2 n 2
3:1
2 (3:1) n (3:1)
(六)、独立分配规律的应用
1、通过杂交造成基因重组,引 起生物丰富的变异类型,有 利于生物进化 2、在杂交育种中有目的的组合 两个亲本的优良性状,预测 后代中优良性状组合的比例
P F1 F2
无芒抗病 × 有芒感病 AARR aarr AaRr
同时出现两种性状的概率: 黄子叶、圆粒=3/4×3/4=9/16 黄子叶、皱粒=3/4×1/4=3/16 黄子叶、圆粒=1/4×3/4=3/16 绿子叶、皱粒=1/4×1/4=1/16
也可以用另一种方式表达: 黄子叶3/4:绿子叶1/4 × 圆种子3/4:皱种子1/4
黄圆9/16:黄皱3/16:绿、圆3/16:绿、皱1/16
对互补作用的解释
2、积加作用
两种显性基因同时存在时 产生一种性状,单独存在时则 能分别表现相似的性状。
南瓜果形遗传:圆球形对扁盘形为隐性,长 圆形对圆球形为隐性。 P 圆球形AAbb×圆球形aaBB ↓ F1 扁盘形AaBb ↓ F2 9扁盘形(A_B_):6圆球形 (3A_bb+3aaB_ ):1长圆形(aabb)
2、图解
两对相对性状杂交过程中基因的分离和组合
F2基因型和表现型的比例
(三)、独立分配规律 的验证
1、测交法 用F1与双隐性纯合体测交。当 F1形成配子时,不论雌配子或 雄配子,都有四种类型,即YR 、Yr、yR、yr,而且出现的比 例相等,即1:1:1:1
表4-3
豌豆黄色、圆粒 绿色、皱粒的F1和双隐性 亲本测交的结果
787高的
207顶生
277矮的
3.14:1
2.84:1
孟德尔豌豆一对相对性状杂交试验的结果
孟德把F1代表现出来的亲本性状称为显性性状。 而把F1不表现出来的亲本的性状称为隐性性状。 通过F1自交,在F2群体中,既出现显性性状的 个体,又出现隐性性状的个体;这种现象称 为性状分离。 一对性状的分离现象表现出一定的规律性,即 F1表现显性性状,F2发生性状分离,显性与 隐性之比接近于3:1。
P YYRRCC × yyrrcc
F1
YyRrCc
F2
27:9:9:9:3:3:3:1
64组合、8表型、27基因型
2、多对相对性状的遗传
杂合基 F2表型 F1配子 F2基因 F2纯合 因对数
(完全显性)
F2表型 比例
种类
型
基因型
1 2 n
2
2 2 ……… n 2
2
2 2 n 2
3
2 3 n 3
实粒数 理论比例
315 9
101 :3
108 : 3 :
32 1
556 16
1)F2出现的四种类型:圆形、 黄色和皱形、绿色两类是和亲本一 样的性状组合;另两类,圆形、绿 色,皱形、黄色是不同于亲本的新 的性状组合,即性状重新组合的类 型。
2)若将两对性状分别考虑:
(1)粒形:圆形=315+108=423 占76% 皱形=101+32=133 占24% 圆形:皱形=3:1 (2)粒色:黄色=315+101=416 占74.8% 绿色=108+32=133 占25.2% 黄色:绿色=3:1
3、重叠作用
不同对基因互作时,对表现型 产生相同的影响,称为重叠作用。
荠菜果形的遗传: 常见果形为三角形蒴果,极少数为卵形蒴果。 P 三角形T1T1T2T2× 卵形t1t1t2t2 ↓ F1 三角形T1t1T2t2 ↓ F2 15三角形(9T1_T2_ +3T1_t2t2 + 3t1t1T2_) :1(1卵形 t1t1t2t2 )
5.萝卜块根有长形、圆形和椭圆形的,各 种类型的杂交产生以下结果: (1)长形×椭圆形一159长形,158椭圆 形; (2)椭圆形×圆形一203椭圆形,199圆 形; (3)长形×圆形一 176椭圆形; (4)椭圆形×椭圆形一121长形:242椭 圆形:119圆形。 试根据上述结果综合考虑,确定萝卜长 形,圆形和椭圆形的显隐性关系。
报春花眼大 小的遗传
百合花瓣上的斑点遗传
(三)、分离现象的解释
孟德尔用遗传因子来解释(基因) 1)生物的相对性状是由相对的基因所控制。 红花性状由红花基因C控制,白花性状由 白花基因c控制; 2)遗传因子在体细胞中成对存在,其中一 个来自雌配子,另一个别类自雄配子。 3)在形成配子时,成对的基因彼此分离, 结果每一个配子只含有成对基因中的一个。
4)雌雄配子受精结合形成的合子(受精卵) 中,含有C和c一对基因,所以体细胞中的 遗传基因又恢复成对。 5)C和c基因虽同处于一个细胞中,但彼此 不融合而保持相对的独立性,当杂种一代 形成配子时,C和c基因彼此分离,分别进 入配子,形成C和c两类配子,且数目相等, 雌雄配子自由结合,产生数目相等的四种 合子:CC Cc Cc cc。由于显性基因的 作用,CC,Cc开红花,只有cc开白花, 比例为3:1。
用 遗 传 因 子 来 解 释 分 离 规 律
(四)、分离定律
1、在一对相对性状的杂交试验中,成对 的因子在一起彼此不会发生影响而形成 配子,形成配子时各自分离,这些配子 在遗传上都是纯合的。 2、杂种所产生的两种配子数目相等、各 种不同配子的结合又有着相同的机会。
(五)、表现型和基因型
1)表现型:是生物个体所表现的各 种性状,包括形态特征和生理特征 等,是可以直接观察到或借助于其 他手段加以识认的。 2)基因型:是指生物个体的遗传组 成,是决定表现型的遗传基础。
等 位 基 因 分 离 事 例
(九)、显隐性关系及其与环境 的影响
1)完全显性:表现一对相对性状差别的 两个纯合体,亲本杂交后F1表现显性 性状,并且在表现程度上和显性亲本完 全一样。 不完全显性:F1性状表现介于显隐 性亲本之间,或稍偏向于显性亲本的显 性表现。F2将分离为三种基因型和三 种表现型.
作业 1.已知豌豆的红花(C)是白花(c)的显性, 试写出下列杂交子代基因型种类和比例, 表现型种类和比例。 (1)CC×cc (2)Cc×cc (3)Cc×Cc 2.在番茄中红果(R)是黄果(r)的显性,试 根据子代的表现型及比例,写出亲本的基 因型。如有几种可能时,只写出其中一种。 (1)红果×红果一 子代3红果:1黄果; (2)红果×红果— 子代全为红果; (3)红果×黄果— 子代全为红果; (4)红果×黄果一 子代1红果:1黄果。
红 花 圆 粒
种 子 性 状
子 叶 颜 色
黄色×绿色
黄 色
6022黄色
2001绿色
3.01:1
豆 荚 形 状
饱满×不饱满
饱 满
822饱满
299不饱满
2.95:1
未 熟 豆 荚 色 绿色×黄
绿 色
428绿色
152黄色
2.32:1
花 着 生 位 置 腋生×顶生
植 株 高 度 高的×矮的
腋 生
高 的
651腋生
(六)、纯合体和杂合体
1)纯合体:体细胞中所含的两个基 因是相同的,这种个体叫纯合体, 纯合体只产生一种配子,自交后代 与亲代表现相同,不出现分离现象。 2)杂合体:体细胞中所含的两个基 因不相同,产生两种配子的个体叫 杂合体,自交后代在性状表现上出 现分离现象。
(七)、分离规律的验证