甘油生产方法研究进展

甘油生产方法研究进展
甘油生产方法研究进展

甘油生产方法研究进展

甘油又称丙三醇,分子式C3H5(OH)3,是一种粘稠液体,有甜味,所以称为甘油;能与水以任意比混溶,有强烈的吸湿性,是重要的基本有机原料。1779年,瑞典化学家谢勒(Scheele)偶然从橄榄油与一氧化铅的反应中获得了甘油,这是人们第一次知道甘油的存在。·

最早,人们只将甘油作为皮肤的滋润剂,至1846年,沙勃里罗(Sobrero)将甘油与硝酸反应,得到硝化甘油。20年以后,诺贝尔将硝化甘油与硅藻土制成了安全炸药,使硝化甘油能顺利地应用于达纳炸药的生产。现在,甘油的用途已经十分广泛,主要用于医药、化妆品、醇酸树脂、烟草、食品、饮料、聚氨基甲酸酯、赛璐珞、炸药、纺织印染等方面。大约有1700多种用途。

由于石油等不可再生能源的日益消耗,寻找清洁的可再生能源成为化学工作者义不容辞的责任,甘油,来源于自然界,无毒无害,是理想的化工原料。因此,如何很好地开发甘油,发现它的新用途成为研究热点。本文对甘油的生产方法作一个综述,希望对致力开发甘油新用途的化学工作者有所帮助。

甘油主要以甘油酯的形式广泛存在于自然界中。所以,长期以来,大部分甘油是从油脂皂化生产肥皂以及从油脂水解产生脂肪酸的过程中作为副产物取得的。直到1858年,人们才知道用发酵法也能制甘油。第一次世界大战时期的德国,由于甘油缺乏,首创用甜菜发酵制甘油。从1948年起,用丙烯合成甘油的方法已开始在工业上应用,产量逐年上升,发展趋势较快。现在,甘油的工业生产方法按甘油的来源可以分为3类,即天然甘油的生产,发酵甘油的生产,合成甘油的生产。其中前2类方法的原料都是可再生的。

1 天然甘油的生产

主要来自肥皂生产和油脂裂解过程的副产品;1948年以前,甘油全部从动植物油脂制皂的副产物中回收。直到目前,天然油脂仍为生产甘油的主要原料,其中约42%的天然甘油来自制皂副产,58%来自脂肪酸生产。

由于该方法以天然油脂为原料,且甘油是副产物,我国的化学工作者设想将其用于油脚的废水处理和利用上,既起到环保的作用,又得到一定的经济效应。如葛文光利用棉油脚生产脂肪酸后的废水回收甘油。安徽省应用技术研究所的冯立文等发表了动植物油脂及油脚生产油酸、甘油、硬脂酸、聚酰胺树脂的技术论文。国家脂肪酸技术研究推广中心的汪习生等介绍了《国家级科技成果重点推广计划》高效益环保项目”利用餐饮泔水油及废动植物

油生产油酸、甘油、硬脂酸”新工艺。

1.1 皂化甘油

皂化反应产物分成2层:上层主要是含脂肪酸钠盐(肥皂)及少量甘油:下层是废碱液,为含有盐类、氢氧化钠的甘油稀溶液,一般含甘油质量分数9%-16%,尤机盐质量分数8%-20%。

目前阔内提取甘油工艺主要采用传统蒸馏法,即将皂化废液经过澄清处理得到精废液,接着浓缩为质量分数40%的甘油,回收盐后浓缩为质量分数80%的甘油,再真空蒸馏、活性炭处理、压滤得到甘油产品。该法存在着产品质量低和能耗高等缺点,致使我国的低级甘油过剩,而98%以上的皂化或药用级甘油,尤其是99.9%的高纯度甘油,主要靠进口。

梁秉华等在采用传统工艺制得质量分数40%的甘油后,提出新的工艺流程。首先采用阳离子型高离子澄清剂进行中性条件下的第2步澄清处理,减少了副反应,除色和除臭效果好;第2步为色谱分离,使离子物和非离子物的盐、胶体和有色物从甘油中排除;最后进行树脂脱色、脱盐和真空浓缩,制得高纯度甘油。整个生产过程在100℃下进行,浓缩阶段也在110℃下进行,杂质少、能耗低,可制得低成本相当药用二级甘油。并且小试和中试对比了新、旧工艺在质量、技术经济指标和环保方面的特点和优势。分析了工业化规模的可行性

1.2 油化甘油

油化甘油指的是用油脂水解法生产的甘油。油脂水解的主产品是硬脂酸、油酸等油化产品,甘油是副产品。油脂水解得到的甘油水,其甘油含量比制皂废液高,质量分数约为14%-20%,无机盐的质量分数0%-0.2%。近年来已普遍采用连续高压水解法,反应不使用催化剂,所得甘油中一般不含无机酸,净化方方法比处理废碱液简单。我国油化甘油生产能力已突破万吨。

无论是制皂废液,还是油脂水解得到的甘油水所含的甘油量都不高(质量分数10%左右),而且都含有各种杂质。所以,需要净化、浓缩的过程先得到粗甘油,然后将粗甘油进行蒸馏,脱色、脱臭的精制过程才能得到天然甘油。

2 合成甘油的生产

从丙烯合成甘油的多种途径可归纳为2大类,即氯化和氧化。现在工业上仍在使用丙烯氯化法及丙烯过乙酸氧化法。

2.1 丙烯氯化法

这是合成甘油中最重要的生产方法,共包括4个步骤,即丙烯高温氯化成氯丙烯、氯丙烯次氯酸化成二氯丙醇、二氯丙醇皂化得环氧氯丙烷以及环氧氯丙烷水解成甘油。

2.2 丙烯过乙酸氧化法

丙烯与过乙酸作用合成环氧丙烷,环氧丙烷发生异构化为烯丙醇,然后在过乙酸氧化下生成环氧丙醇(即缩水甘油),水解生成甘油。或者烯丙醇在双氧水氧化下直接生成甘油。

过乙酸的生产不需要催化剂,乙醛与氧气气相氧化,在常压、150-160℃、接触时间24s 的条件下,乙醛转化率11%,过乙酸选择性83%。

上述后2步反应在特殊结构的反应精馏塔中连续进行。原料烯丙醇和含有过乙酸的乙酸乙酯溶液送人塔后,塔釜控制在60-70 ℃,13-20KPa。塔顶蒸出乙酸乙酯溶剂和水,塔釜得到甘油水溶液。此法选择性和收率均较高,采用过乙酸为氧化剂,可不用催化剂,反应速度较快,简化了流程。生产每吨甘油消耗烯丙醇1.001 t,过乙酸1.184t,副产乙酸0.974t。

2.3 环氧氯丙烷法

用环氧氯丙烷合成的甘油,是一种工艺成熟、产品质量好的生产方法。1980年我国就引进了生产装置,目前我国合成甘油的年产能力在5kt以上,但长期以来受原料环氧氯丙烷货紧价高的影响,使合成甘油的生产能力尤法发挥。国外合成甘油产量很大,美国年产甘油300kt,其中合成甘油150kt。

在环氧氯丙烷生产中,产生大量副产品三氯丙烷,可综合利用,通过加热水解制各甘油。

(1)水解。在反应养内加入1 mol三氯丙烷副产品(混合物,沸程130-170 ℃),加热回流,滴加醋酸钠水溶液(醋酸钠用量是三氯丙烷质量的3%),滴完后即开始滴加1.5 mol的质量分数20%氢氧化钠溶液,滴加时间约为2h,回流温度由100℃左右逐步因共沸作用而降低到900℃左右,此后,因水解作用沸点逐步上升,直到110℃为止,(在滴完后约1 h),抽样观察。反应物中油相消失,由二相变为一相,在110℃保持10min后,并在搅拌中逐步降温到70℃后继续搅拌1 h,开动真空泵,脱气10min,然后在常压条件下加热到85 c℃放料,用盐酸中和到pH为6为止,冷却。

(2)甘油水的纯化。经中和的产品是甘油水的饱和食盐溶液,加入少量多聚氯化铝净水剂,静置过夜,过滤去除不净杂质,去除表层浮油,如有结晶盐析出,必须用少量清水洗除盐表面所吸附的甘汕,再把洗液过滤后和第一次的滤液合并。所得产品为浅黄色的甘油食盐溶液。

(3)脱盐。把以上所制的产品在真空中(6.666-10.666kPa)脱水,沸点约50-60 ℃,当水馏出量约为总体积的1/6时,即把残液过滤脱盐,滤出的盐分必须先用未浓缩的甘油溶液来洗涤,再用淡水洗涤,洗液和浓缩液合并,重新真空蒸馏脱盐,如此反复5-6次,直到浓缩液中甘油的质量分数达80%以上,即可用为粗甘油处理。

(4)离子交换处理。把粗甘油用水稀释到质量分数20%左右,先用阴阳离子混合的离子交换柱处理,然后依次用阴离子树脂,阳离子树脂处理,如此反复3次,待甘油溶液中不含氯离子或钠离子,即可得去离子甘油水溶液。

(5)浓缩和蒸馏。把上述的甘油水溶液在13.332kPa,60℃左右浓缩到质量分数91.3%,用氢氧化钠把pH调节到8.5,然后在933.254h,170℃进行蒸馏,可得纯度在98%以上的纯甘油。

将天然油脂水解法和环氧氯丙烷法原料消耗作一粗略的对比,不难发现天然油脂水解法的优势,天然油脂水解法用的原料是肥皂废液,没有规格要求,价格便宜”习。就生产甘油总消耗的原料来看,天然油脂水解法也比环氧氯丙烷的要少。而且,合成法制甘油的设备投资大,成本又较高。然而,随着人们生活习惯的改变,肥皂的广阔市场逐渐被洗衣粉、洗涤剂等占领,肥皂的生产随之萎缩,肥皂废液回收甘油产量也相应减少。所以,许多化学工作者又将发酵法生产甘油作为努力的方向。

3 发酵甘油的生产

利用淀粉类原料(谷物、玉米、红薯等)或糖蜜原料,经微生物发酵而产生。

我国研究发酵法始于20世纪50年代中期,从60年代兴起的耐高渗透酵母菌种的研究和应用到70年代处于鼎盛时期,到1994年至1995年,开始进入工业生产,特别是山东、江苏、甘肃等地的企业较多。

为了解决当时有的工厂因发酵周期长、产甘油率低而停产的情况,李亚东等,采用回用酵母发酵生产甘油,以期缩短发酵周期,提高产甘油率、减低残糖含量。2001年,唐军等作了采用Candida krusei的分批培养与补料分批培养生产甘油的探索。2003年,刘听等做了以蜜糖为原料利用耐高渗透压酵母生产甘油的研究。2005年,刘桂香等研究了利用邑蕉芋葡掏糖浆发酵生产甘油,降低发酵法生产甘油的成本。

1993-1994年,国内城乡企业以酒糟土生产复合甘油。酿酒的发酵醪液中,经分析含有质量分数约 1.8%-3.5%的甘油成分,当蒸馏出乙醇后,所剩的酒糟巾即含行甘油。但所谓的从酒糟中生产甘油,并不是指这部分甘油,而是在酒糟中还含有未完全转化为乙醇的淀

粉及其中间产物(质量分数约8%-10%),利用这部分淀粉经糖化、催化发酵处理,生成甘油的方法。

以酒糟生产复合甘油工艺原料易得、成本低,但质量达不到要求,至1995年大部分企业停产。但是因该方法原料来源丰富,价格便宜,且绿色环保,我国化学工作者从未放弃对它的研究。许金木、熊联明等研究了利用酒糟来生产复合甘汕,以期代替甘油。然而,从酒糟中生产复合甘油巾于质量不高,用途很窄,不能完全代替精甘油。因此,化学工作者义对制精甘油的工艺进行了研究。其中,喻雪英等对废酒糟生产精甘油做了一些尝试。相信在不久的将来,此方法将会大大缓解我国甘汕紧张的局面。

4 结束语

甘油是油化学产品的重要副产品,又是其它化学产品的重要原料,主要用途有医药、化妆品、香烟、炸药及食品。随着我国国民经济的不断发展,作为国计民生重要化工产品的甘油市场需求量不断增长,尤其是在涂料、化妆品工业和医药工业的需求在逐年增加。因此,开发国内甘油的生产和应用,对我国石油化学工业的发展意义重大。

丙三醇 甘油的生产方法

生产方法 甘油的工业生产方法可分为两大类:以天然油脂为原料的方法,所得甘油称天然甘油; 以丙烯为原料的合成法,所得甘油称合成甘油。 天然甘油 1984年以前,甘油全部从动植物脂制皂的副产物中回收。至今为止,天然油脂仍为生产甘油的主要原料,其中约42%的天然甘油得自制皂副产,58%得自脂肪酸生产。制皂工业中油脂的皂化反应。皂化反应产物分成两层:上层主要是含脂肪酸钠盐(肥皂)及少量甘油,下层是废碱液,为含有盐类,氢氧化钠的甘油稀溶液,一般含甘油9-16%,无机盐8-20%。油脂反应。油脂水解得到的甘油水(也称甜水),其甘油含量比制皂废液高,约为14-20%,无机盐0-0.2%。近年来已普遍采用连续高压水解法,反应不使用催化剂,所得甜水中一般不含无机酸,净化方法比废碱液简单。无论是制皂废液,还是油脂水解得到的甘油水所含的甘油量都不高,而且都含有各种杂质,天然甘油的生产过程包括净化、浓缩得到粗甘油,以及粗甘油蒸馏、脱色、脱臭的精制过程。 合成甘油 从丙烯合成甘油的多种途径可归纳为两大类,即氯化和氧化。现在工业上仍在使用丙烯氯化法及丙烯不定期乙酸氧化法。 丙烯氯化法 这是合成甘油中最重要的生产方法,共包括四个步骤,即丙烯高温氯化、氯丙烯次氯酸化、二氯丙醇皂化以及环氧氯丙烷的水解。环氧氯丙烷水解制甘油是在150℃、1.37MPa 二氧化碳压力下,在10%氢氧化钠和1%碳酸钠的水溶液中进行,生成甘油含量为5-20%的含氯化钠的甘油水溶液,经浓缩、脱盐、蒸馏,得纯度为98%以上的甘油。 丙烯过乙酸氧化法 丙烯与过乙酸作用合成环氧丙烷,环氧丙烷异构化为烯丙基醇。后者再与过乙酸反应生成环氧丙醇(即缩水甘油),最后水解为甘油。过乙酸的生产不需要催化剂,乙醛与氧气气相氧化,在常压、150-160℃、接触时间24s的条件下,乙醛转化率11%,过乙酸选择性83%。上述后两步反应在特殊结构的反应精馏塔中连续进行。原料烯丙醇和含有过乙酸的乙酸乙酯溶液送入塔后,塔釜控制在60-70℃、13-20kPa。塔顶蒸出乙酸乙酯溶剂和水,塔釜得至甘油水溶液。此法选择性和收率均较高,采用过乙酸为氧化剂,可不用催化剂,反应速度较快,简化了流程。生产1t甘油消耗烯丙醇1.001t,过乙酸1.184t,副产乙酸0.947t。目前,天然甘油和合成甘油的产量几乎各占50%,而丙烯氯化法约占合成甘油产量的80%。我国天然甘油占总产量90%以上。 工业级甘油

甘油介绍

EINECS号: 200-289-5

17.9℃,相对密度1.2613。与水可无限混溶,无水甘油有强烈的吸水性。 甘油有微弱酸性,能与碱性氢氧化物作用,如与氢氧化铜作用可生成颜色鲜艳的蓝色甘油铜(可用来鉴别多元醇)。甘油与硝酸作用生成三硝酸甘油酯,又名硝化甘油,是一种烈性炸药。 由于甘油有吸水性,故常用于化妆品、皮革、烟草、食品及纺织品的吸湿剂和滋润剂。甘油还有润肠作用,可用于灌肠或制成栓剂医治便秘。硝酸甘油酯有扩张冠状动脉的作用,可用于治疗心绞痛。硝化甘油可用作炸药和推进剂。甘油与二元酸反应可得醇酸树脂,广泛用于油漆和涂料中。 自然界中,甘油以酯的形式广泛存在。如各种动植物油脂都是甘油的羧酸酯,水解油脂便可得到脂肪酸和甘油。目前,甘油的主要来源之一是制皂工业的副产物(油脂在碱性条件下水解),另一来源是由石油裂解气丙烯制备。 图为甘油结构式。

图甘油的酯化图。 工业上制备甘油单酯、甘油二酯的重要方法是利用油酯和甘油直接反应,得到甘 油单酯、甘油二酯和甘油三酯的混合物,再用蒸馏方法将甘油单酯分离出来,此 法能制得纯度达90%的甘油单酯。在实验中,将脂肪酸经过酰氯,再与甘油反应 来制取甘油酯。 甘油和无机酸也能发生酯化反应,最重要的是和硝酸反应。需在严格冷却的条件 下,将甘油滴入浓硝酸和浓硫酸的混合酸中进行反应,生成三硝酸甘油酯(参见“硝 酸甘油酯”)。 含量分析高碘酸钠溶液的制备取偏高碳酸钠(NaIO4)60g,溶于含有120mL0.1mol/L硫醪的水溶液中,并用水定容至1000ml,溶解时不要力加热。如溶液不澄明,则经一 烧结玻璃漏斗过滤。将世溶液贮存于一有玻璃塞的遮光容器中。按如下方法检验 本试液的适用性。 吸取10ml放入一250ml量瓶中,用水定容后混合。取甘油约550mg溶于50ml 水中,用移液管加人上述稀高碘酸液50ml。另取稀高碘酸液50ml,加入盛有50 ml水的烧瓶中,以此作为对照。将各溶液静置30min,各加5ml盐酸和10ml碘 化钾试液(TS-192),旋动混合。再静置5min,加水100ml,用0.1mol/L硫代硫 酸钠液滴定,不断摇动,临将终点时加淀粉试液(TS-235)数滴,再滴定至终点。 耗用于甘油/高碘酸盐混合液和空白试液的0.1mol/L硫代硫酸钠的容积之比,如 在0.750~0.765之间,则符合适用要求。 操作准确称取试样约400mg,放入一600ml烧杯中,加水50ml稀释,加溴百里 酚试液(TS-56)数滴,并用0.2mol/L硫酸酸化到明显的绿色或绿黄色。用0.05mo l/L氢氧化钠中和至明显的蓝色终点(无绿色)。另用水50ml按上述操作进行中和, 以此作为空白试验。用移液管吸取上述高碘酸钠溶液50ml,加入到各烧杯中,缓

对甘油制备1,3-丙二醇工艺进行设计

对甘油制备1,3-丙二醇工艺进行设计 -发酵法制备1,3-丙二醇 摘要:本设计以甘油为原料,在无氧条件下,利用克雷伯氏菌发酵生产1,3-丙二醇,符合绿色化学的特点。通过测定菌体生物量、葡萄糖浓度、蛋白质浓度、甘油脱水酶、丙醛的浓度,可以初步判定发酵进行程度。设计实验对克雷伯氏菌发酵特性进行研究,分别研究温度、PH、甘油初始浓度、氮源对菌体生长和 1,3-PD 合成的影响。 关键词:1,3-丙二醇、甘油、克雷伯氏菌、厌氧发酵 1 前言 1,3-丙二醇(1,3-PD)是一种重要的化工原料,它可作为化学和医药工业中多种润滑剂、有机溶剂和前体的合成原料。它作为聚酯、聚醚和聚氨酯的重要单体原料合成的聚合物具有生物可降解性、安全无毒、可循环利用等优点,不仅在服装和工程塑料领域得到了广泛应用,在食品、药品和化妆品等领域也开始崭露头角。以 1,3-丙二醇为原料合成的食品添加剂丙二醇酯,是世界六大食品乳化剂之一,目前已被美国、日本和中国等国家及欧盟,联合国粮农组织和世界卫生组织批准使用[]1。20世纪90年代中期,工业上成功开发出了以1,3-PD为原料的新型聚酯材料-聚对苯二甲酸丙二醇酯(PTT), PTT性能优良,因此研究开发低成本的1, 3-PD生产技术成为关注的热点。1,3-PD的生产方法有化学法和生物转化法。 生物法合成 1,3-PD 符合“绿色化学”的特点,利用甘油或葡萄糖等可再生资源为原料,生产清洁,对环境无污染,符合我国可持续发展的需要。近几年,随着以大豆油与菜籽油为原料生产生物柴油产量的迅速增长,产生了大量副产物甘油;用甘油合成附加值更高的 1,3-丙二醇有利于资源的综合利用,引起了如杜邦公司、陶氏化学公司、亨斯迈公司等公司的关注[]2。发酵工程作为生物法合成 1,3-PD 的关键环节更是人们关注的热点。2003 年美国环境保护机构向杜邦授予“绿色化学总统奖”,专门用于表彰该公司对生物基 1,3-PD 工艺开发所作的研究。

甘油环氧树脂大生产工艺

甘油环氧树脂大生产工艺 概述 甘油环氧树脂又称水溶性甘油环氧树脂,固化所得产物核心性能优异,耐冲击强度较理想。甘油环氧树脂粘度低,色泽淡,既可作稀释剂,与含氢硅油配合使用是很好的纺织物处理剂,可以起到防水、防皱、提高光洁度的作用。 大生产工艺 一.投料比例 二.操作步骤 1.开环反应。在常温下将甘油192kg投入反应釜中,开动搅拌,然后徐徐加入1000ml三氟化硼乙醚,搅拌10min。升温至55℃,开始滴加精制环氧氯丙烷600kg,温度控制在55~65℃,于9h内加完。滴加完毕,再60~65℃保温反应4h,即为开环反应结束。 2.环化反应。加入适量乙醇,加完后搅拌30min,使上述开环物溶

解于乙醇之中。静置30min后全部用真空抽入环化反应釜。翻釜毕,环化釜再酌情补加乙醇,使釜内酒精总量约为1400~1500kg。然后控制在25℃±2℃每0.5h加固体轻氢氧化钠一次,每次约15kg,最后一次加17kg,共12次加完,总计固碱186kg。 加碱完毕,升温至30℃±2℃,保温反应,在保温过程中须逐次将釜底尚未反应的碱粒放出回加,直至不发现碱粒为止。再在该温度下继续保温反应6h。 保温反应毕,静置0.5h,然后将上层酒精树脂溶液抽吸至贮槽或缸内,尽量抽尽下层残液,残脚又加乙醇约600kg在30左右溶解30min,静置30min,又抽吸至贮槽或缸内。再加乙醇溶解如此循环三次,最后吸尽酒精树脂液后,残余乙醇减压蒸馏进行回收,蒸至温度约70~80℃基本上无乙醇蒸出时,停止蒸馏。残脚(氯化钠)加水冲洗弃去。 缸内酒精树脂溶液用真空抽入脱酒精釜中进行减压蒸馏回收酒精,当液温达100℃左右,真空度达93.3kpa左右,而视镜中酒精馏出甚少时,再继续蒸馏30min,最高温度不超过110℃即可停止蒸馏,冷却至65℃左右,趁热放料过滤装听。 总收率286%(按甘油汁)。

国食药监保化[2011]500号-关于印发化妆品用乙醇等3种原料要求的通知

关于印发化妆品用乙醇等3种原料要求的通知-国食药监保化[2011]500号 2011年12月23日发布 各省、自治区、直辖市食品药品监督管理局(药品监督管理局): 为规范化妆品原料技术要求,进一步提高化妆品质量安全,化妆品用乙醇等3种原料要求已经国家食品药品监督管理局化妆品标准专家委员会审议通过,现予印发。 附件:1.化妆品用乙醇原料要求 2.化妆品用滑石粉原料要求 3.化妆品用甘油原料要求

附件1: 化妆品用乙醇原料要求 为规范化妆品原料技术要求,提高化妆品卫生质量安全,根据我国化妆品监管相关规定,编写《化妆品用乙醇原料要求》,本要求针对性地规定了乙醇的安全性要求及检验方法,其他相关要求及检验方法按相应规定执行。 1. 基本信息 1.1 名称 乙醇 1.1.1 INCI名称及其ID号 ALCOHOL ID:65 1.1.2 INCI标准中文译名 乙醇 1.1.3 化学名称 乙醇(Ethanol) 1.1.4 《中国药典》中名称 2010年版《中国药典》(二部)中名称:乙醇 1.1.5 常见别名 酒精 1.2 登记号 1.2.1 CAS登记号 64-17-5 1.2.2 EINECS登记号 200-578-6

1.3 分子式、结构式及分子量 分子式:C2H6O 结构式: CH3CH2OH 分子量:46.07 1.4 性状及理化常数 无色澄清液体,具有特征性气味,味灼烈;易挥发,易燃烧,燃烧时显淡蓝色火焰。与水、甘油、三氯甲烷或乙醚能任意混溶。乙醇(95%)沸点:78.2℃,乙醇(95%)凝固点:-114.1℃,乙醇(95%)相对密度:0.8129(20℃)。 2. 技术要求 2.1 原料使用目的 乙醇在化妆品产品中可作为溶剂、消泡剂、粘度调节剂、收敛剂等使用。 2.2 原料适用范围 乙醇广泛用于化妆品中。 2.3 限量要求 2.3.1 乙醇含量要求 乙醇(φ/%)≥95.0(20℃)。 2.3.2 乙醇中相关组分限量要求 乙醇中甲醇体积分数(φ/%)≤0.2。 3. 检验方法 3.1 乙醇鉴别试验方法 参见2010年版《中国药典》(二部)所载乙醇的鉴别试验方法(见附1)。

甘油法环氧氯丙烷生产技术进步

甘油法环氧氯丙烷生产技术进步 The production processes of epoxy chloropropane from glycerol 摘要:环氧氯丙烷生产工艺对比分析,通过工程实例对现有工艺中存在的原料消耗高、氯化反应周期长、废水COD高等问题,针对性的提出并实施技改方案,使得问题得到良好的解决,实现了经济效益和环境效益的双赢。 关键词:甘油法环氧氯丙烷;生产技术改进;清洁生产技术; Abstract:Epoxy chloropropane production process comparison analysis. Through the project example for existing process in the presence of raw materials consumption, chlorination reaction cycle is long, COD higher, according to the proposed and implemented technological transformation scheme, making the problem solved good, to achieve a win-win economic and environmental benefits of. Key words: epoxy c hloropropane from glycerol ; The progress of production technology;Clean production technology; 概述: 环氧氯丙烷(ECH)别名表氯醇,化学名称为1-氯-2,3-环氧丙烷,分子式C3H5OCl,分子量,是一种易挥发、不稳定的无色油状液体,能与多种有机溶剂混溶,可与多种有机液体形成共沸物。 环氧氯丙烷是一种重要的有机化工原料和精细化工产品,用途十分广泛,主要用于生产环氧树脂、合成甘油、氯醇橡胶、硝化甘油炸药、玻璃钢、电绝缘制品。同时还可用作纤维素酯、树脂和纤维素醚的溶剂,也是生产增塑剂、稳定剂、表面活性剂及氯丁橡胶的原料[1]。 环氧氯丙烷最早于1854年由Berthelot用盐酸处理粒甘油,然后用碱液水解时首先发现的[2]。数年后,Reboul提出这一物质可由二氯丙醇以苛性钠经水解反应直接制取。在此基础上,美国Shell公司于1948年建成了世界上第一座丙烯高温氯化法合成甘油的生产装置,环氧氯丙烷作为中间产物,开始大规模工业化生产[3]。目前,工业上环氧氯丙烷的生产方法主要有丙烯高温氯化法和醋酸丙烯酯法2种。当前世界上80%以上的环氧氯丙烷采用丙烯高温氯化法进行生产[4]。 近几年,随着世界范围内生物柴油产业的蓬勃发展,相应的副产甘油也在急剧增多,价格随之下降。老工艺甘油法环氧氯丙烷技术经济和环保上优势得到大力的体现,一度成为市场投资追逐的热点。国际上只有陶氏、苏威2家拥有甘油氯化法技术,其中,苏威2006年2月初在法国T a v a u x建立甘油氯化法环氧氯丙烷工厂,先后在泰国和中国泰兴投资建设环氧氯丙烷项目并运行。 国内先后有江苏扬农、连云港益海嘉里、福建豪邦,江西全球,宁波环洋等多家建设甘油法环氧氯丙烷项目,并成功运行。但是除前两家产能较大外,其余装置产能都较小,技术水平参差不齐,还不具备产业优势。项目目前作为氯碱平衡或者消化副产氯化氢还是个不错的选择,也更加具有资源和价格竞争优势,如作为氯碱化工配套、氟化工、亚磷酸等项目的配套。 一、工艺技术概述和比较: 1、丙烯高温氯化法: 丙烯高温氯化法是工业上生产环氧氯丙烷的经典方法,它的特点是生产过程灵活,工艺成熟,操作稳定。缺点是原料氯气引起的设备腐蚀严重,对丙烯纯度和反应器的材质要求高,能耗大,氯耗高,副产物多,产品收率低;生产过程产生大量的含氯化钙和有机氯化物的废水,处理费用高,清焦周期短[5]。 2、醋酸丙烯酯法

甘油催化转移氢解制备丙二醇及其反应机理

第40卷第3期2012年6月 浙江工业大学学报 JOURNAL OF ZHEJIANG UNIVERSITY OF  TECHNOLOGYVol.40No.3 Jun.2012 收稿日期:2011-03- 04基金项目:浙江省钱江人才计划基金资助项目(2006R10017 )作者简介:李 菲(1986—),女,山西太原人,硕士研究生,研究方向为生物能源,E-mail:lifeil_290@sohu.com. 通信作者:计伟荣教授,E-mail:weirong.ji@zj ut.edu.cn.甘油催化转移氢解制备丙二醇及其反应机理 李 菲,夏 燕,应惠娟,计伟荣 (浙江工业大学化学工程与材料学院,浙江杭州310032 )摘要:以Raney  Ni为催化剂,甲醇为供氢体,水为溶剂,对甘油催化转移氢解反应进行了研究,探讨了反应温度和甘油浓度对氢解反应的影响, 并对甘油催化转移氢解反应机理进行了初步探索.与传统氢解方法相比,甘油催化转移氢解在较为温和的条件下得到了1,2-丙二醇.在温度为210℃,甘油初始浓度为0.64mol/L,反应时间为12h的条件下,甘油转化率达到54.7%,1,2-丙二醇的选择性为74.1%.一般情况下,在Raney Ni的催化作用下,甘油优先脱去伯位的羟基生成丙酮醇,随后加氢生成1,2-丙二醇. 关键词:甘油;甲醇;1,2-丙二醇;转移氢解;Raney Ni中图分类号:TQ028.4 文献标志码:A 文章编号:1006-4303(2012)03-0275- 04The study  of catalytic transfer hydrogenolysis of glycerol topropy lene glycol and it s mechanismLI Fei,XIA Yan,YING Hui-juan,JI Wei-rong (College of Chemical Engieering &Materials Science,Zhejiang University  of Technology,Hangzhou 310032,China)Abstract:Catalytic transfer hydrogenolysis(CTH)of glycerol was carried out over Raney Nicatalyst in aqueous media with methanol as the hydrogen donor.The effects of the temperatureand initial molar concentration of glycerol on the reaction were investig ated.A reactionmechanism was proposed.In comparison with the glycerol hydrogenolysis using hydrogen gas,the CTH of glycerol could be carried out under relatively mild reaction conditions.At 210℃a54.7%conversion of glycerol was achieved after 12hour reaction with an initial gly cerolconcentration of 0.64mol/L,and the selectivity of 1,2-propylene glycol was up to 74.1%.Ingeneral,the cleavage of the primary hydroxyl group was in preference to the secondary  one overRaney Ni catalyst to produce acetol,which could be hydrogenated further to become 1,2-propylene gly cerol.Key words:glycerol;methanol;1,2-propylene glycerol;transfer hydrogenolysis;Raney Ni 近年来, 生物柴油产业的发展使得其副产物甘油大量生成,导致目前甘油市场严重过剩[1- 3].寻找甘油利用的新途径,对降低生物柴油成本,提高生物 柴油产业链的经济效益有重要意义[4- 5]. 目前,国内外已有许多关于甘油催化氢解生产高附加值产品的 报导,其主要产物为1,2-丙二醇和1,3-丙二醇.1,2-丙二醇和1,3-丙二醇都是重要的化工原料,常作为抗冻剂、溶剂、保护剂等应用于食品、医药、化妆品和涂料等行业中.此外,1,3-丙二醇还是合成新型聚酯 PTT的单体之一[6].早在1987年,Celanese公司[7 ]

甘油生产工艺

甘油的生产工艺 1理化性质 甘油又名丙三醇,外观与性状:无色粘稠液体, 无气味, 有暖甜味, 能吸潮。可混溶于乙醇,与水混溶。可溶解某些无机物。无毒,不刺激皮肤,眼睛,易燃烧。 2原料来源 本工艺的主要原料为丙烯,是有机化工的基本原料,源于石油,是通过炼油厂提炼石油过程中蒸馏分离出来的烯烃,通过再提炼而得,还有一部分是通过对石油提炼出来的重油等物质进过催化剂的裂解而得来的。 3产品用途 广泛用于纺织、印染、造纸、印刷、洗涤剂、日化、制酒、食品、卷烟、玻璃纸、搪瓷、石油、电子、橡胶、塑料、制革、化学、化纤等行业。主要用作保湿剂、保润剂、吸湿剂、润滑剂、柔软剂、软化剂、增稠剂、增塑剂、稀释剂、防冻剂等。 4生产工艺: 4.1在钯催化剂下,丙烯与氧在常压,160—180℃下与醋酸反应生成醋酸丙烯酯,反应式为: CH2=CHCH2 + 1/2O2 + CH3COOH CH2=CHCH2OCOCH3 + H2O 4.2在常压,60—80℃下以强酸性阳离子交换树脂为催化剂醋酸丙烯酯经水解生成烯丙醇,反应式为: CH2=CHCH2OCOCH3 + H2O CH2=CHCH2OH + CH3COOH 4.3在0.1—0.3MPa,0—10℃下,烯丙醇和氯气生成二氯丙醇反应视为: CH2=CHCH2OH + Cl2CH2ClCHClCH2OH 4.4二氯丙醇与氢氧化钙发生造化反应生成环氧丙烷,反应式为: CH2ClCHClCH2OH + 1//2Ca(OH)2CH2CHCH2Cl + 1/2CaCl2 + H2O O

4.5环氧丙烷经90℃水解一小时用盐酸中和到为6为止冷却生成粗甘油,反应式为: CH2OH CH2 CHCH2Cl + H2O CHOH O CH2OH 4.6纯化,经中和的产品是甘油水的饱和食盐溶液加入少量多聚氯化铝净水剂静置过夜过滤去除不净杂质去除表层浮油再经浓缩,精馏得到产品 SiH4

甘油MSDS

化学品安全技术说明书 (使用说明书) 第一部分化学品及企业标识 化学品中文名称:丙三醇 化学品俗名或商品名:甘油 化学品英文名:glycerol ;glycerin 企业名称:广州####公司 地址:广州市####路#号 邮编: 传真号码: 企业应急电话: 化学品安全技术说明编号: 生效日期: 主要用途:用于气相色谱固定液及有机合成, 也可用作溶剂、气量计及水压机减震剂、软化剂、抗生素发酵用营养剂、干燥剂等。 第二部分危险性概述 危险性类别:轻微刺激液体 图形符号:不使用 警示词:不使用 侵入途径:吸入,皮肤接触,食入,眼睛接触。 健康危害:急性危害— 吸入:对身体有害。 眼睛接触:可能会造成轻微眼睛刺激。 皮肤接触:皮肤吸收后对身体有害。 食入:不预期会对人体造成危害或有不适当的症状。 慢性危害-- 目前尚无适当的数据显示会对人体造成慢性危害。 环境危害: 燃爆危险:遇明火、高热可燃。 第三部分成分/组成信息 ?纯品?混合物 化学品名称:丙三醇 有害物成分:丙三醇含量:≥99.5%CAS No.:56-81-5 第四部分急救措施 皮肤接触:脱去被污染的衣着,用流动清水冲洗。污染衣物须经清洗后方可再用。 眼睛接触:提起眼睑,用流动清水或生理盐水彻底冲洗。如有红肿疼痛现像,立即送医治疗。吸入:在正常情况下,不预期会因吸入造成人体危害。可至空气新鲜处,如呼吸困难,给输氧。 或就医。 食入:在正常情况下,不预期会因食入造成人体危害。可饮足量温水,催吐。或就医。

危险特性:遇明火、高热可燃。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法和灭火剂:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的 容器若已变色或从安全泄压装置中产生声音,必须马上撤离。用水喷射逸出 液体,使其稀释成不燃性混合物,并用雾状水保护消防人员。水、雾状水、 抗溶性泡沫、干粉、二氧化碳、砂土。 灭火注意事项:未穿着适当防护具不可进入火场,消防人员应着自给式空气呼吸器,或正压式呼吸器,以避免暴露有害气体中。灭火时保持安全距离,使用水雾进行冷却。 第六部分泄漏应急处理 应急处理:泄漏时应限制人员出入,并管制火源。处理人员应穿着防护衣进入泄漏处理场。止漏并用吸收绵吸收泄漏液,避免用水清洗,以防泄漏区域扩大,防止泄漏液流入下 水道。使用后之吸收绵应放入处理桶内,所有装有泄漏液之容器应贴上标签。并依 相关规定进行通报,泄漏时地板湿滑,处理人员应注意不要跌倒。 除污方法:除污时,应先移除火源,注意温度,氧气等相关爆炸条件,穿戴适当之安全防护器具。 第七部分操作处置与储存 操作注意事项:密闭操作,注意通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防毒物渗 透工作服,戴橡胶手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通 风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类接触。搬 运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏 应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。应与氧化剂、酸类分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合 适的收容材料。 第八部分接触控制和个体防护 最高容许浓度:中国MAC(mg/m3)未制定标准 前苏联MAC(mg/m3)未制定标准 美国TLVTN:ACGIH 10mg/m3(蒸气) 美国TLVWN:未制定标准 监测方法:个人采样分析。 工程控制:使用局部排气通风设备,以保持工作地点空气中有害气体浓度低于标准。 呼吸系统防护:在正常操作下不预期会有吸入危害。呼吸系统防护具无特殊规定。 眼睛防护:使用安全眼镜及防溅面罩,以防止化学品喷溅。 身体防护:使用化学防护性连身工作围裙。 手防护:戴防化学品手套如橡胶手套、合成橡胶手套、乙烯橡胶手套。 其它防护:工作场所应设有紧急冲身洗眼器。

甘油质量标准

上海标准文件 标题:甘油质量标准 分发部门:总经理室、质量技术部、生产制造部、物资部、行政部(存档) 甘油质量标准 本品为1,2,3-丙三醇。含C3H8O3不得少于95.0%。 【性状】本品为无色、澄明的黏稠液体;味甜,随后有温热的感觉。 相对密度本品的相对密度在25℃时不小于1.2569。 【鉴别】(1)取本品数滴,加硫酸氢钾0.5g,加热,即发生丙烯醛的刺激性臭气。 【检查】颜色取本品50ml,置50ml纳氏比色管中,与对照液(取比色用重铬酸钾液0.2ml ,加水稀释至50ml制成)比较,不得更深。 氯化物不得大于0.0015%。 硫酸盐不得大于0.002%。 脂肪酸与酯类消耗的氢氧化钠滴定液(0.1mol/L)不得过4.0ml 。 丙烯醛、葡萄糖与铵盐取本品5ml ,加10%氢氧化钾溶液5ml ,在60℃放置5分钟,不得显黄色或发生氨臭。 易炭化物取本品5ml ,在振摇下逐滴加入硫酸5ml,此时温度不得超过20℃,静置1小时后,如显色,与对照溶液(取比色用氯化钴溶液0.2ml、比色用重铬酸钾溶液1.6ml 与水8.2ml制成)比较,不得更深。 炽灼残渣遗留残渣不得过2mg 。 铁盐不得大于0.0002%。 重金属不得过百万分之二。 【含量测定】取本品0.1g,精密称定,加水45ml,混匀,精密加入2.14%(W/V) 高碘酸钠溶液25ml,摇匀,暗处放置15分钟后,加50%(W/V)乙二醇溶液5ml,摇匀,暗处放置20分钟,加酚酞指示液0.5ml,用氢氧化钠滴定液(0.1mol/L)滴定,并将滴定的结果用

2/2 甘油质量标准QA-QS-010 空白试验校正。每1ml氢氧化钠滴定液(0.1mol/L)相当于9.21mg的C3H8O3。 【贮藏】密封,在干燥处保存。 【有效期】自生产日期起两年。 【原辅料生产厂报告单检验项目】采购的原料供应商必须提供出厂检验报告,报告单上至少包括性状、鉴别、相对密度、脂肪酸与酯类、氯化物、硫酸盐、易炭化物、炽灼残渣、铁盐、重金属的项目 【原辅料进厂检验项目】性状、相对密度、炽灼残渣。 【原辅料进厂验收标准】应符合表1 表1

甘油生产工艺流程设计

海南大学 化学工程与工艺专业 化工工艺课程设计 说明书 题目年产5000 吨甘油生产工艺流程设 学 号: 姓名 : 年级 : 指导教 师: 完成日 期: 2012 年月日

目录 1. 总论?????????????????????????????6 1.1 概述????????????????????????????6 1.1.1 甘油的性质?????????????????????????6 1.1.2 产品用途??????????????????????????7 1.1.3 甘油在国民经济中的重要性??????????????????7 1.1.4 甘油的市场需求???????????????????????7 1.2 设计的目的和意义?????????????????????8 1.2.1 设计的目的?????????????????????????8 1.2.2 设计的意义?????????????????????????8 1.3 项目设计依据和原则????????????????????8 1.3.1 设计依据??????????????????????????8 1.3.2 设计原则??????????????????????????8 1.4 设计范围??????????????????????????9 1.5 甘油生产能力及产品质量标准????????????????9 1.5.1 生产能力??????????????????????????9 1.5.2 产品质量标准????????????????????????9 2. 生产方案选择??????????????????????10 2.1 生产方法??????????????????????????10 2.1.1 以天然油脂为原料的生产???????????????????10 2.1.2 合成甘油的生产???????????????????????11 2.1.3 发酵甘油的生产???????????????????????14 2.2 生产方案确定??????????????????????16 3. 生产工艺流程设计与说明????????????????17 3.1 生产工艺流程图???????????????????????17 3.2. 生产工艺流程说明??????????????????????19 4. 工艺计算??????????????????????????22 4.1 物料衡算??????????????????????????22 4.1.1 原辅物料的计算???????????????????????22 4.1.2 物料衡算汇总列表??????????????????????26 4.1.3 水、电、煤的用量计算????????????????????27 4.2 热量衡算??????????????????????????28

以甘油为原料两步法制备1,2-丙二醇的工艺研究

以甘油为原料两步法制备1,2-丙二醇的工艺研究利用生物质转化为高附加值的化学产品是绿色化学的一个重要研究方向[1,2]。绿色化学所追求的目标是化学过程不产生污染,并实现高效、高选择性的化学反应,尽可能不生成副产物,实现“零排放”,以达到“原子经济性”反应[3]。 甘油作为一种理想的可再生原料,以其为平台可以提供一条绿色且经济的生产大量化学产品的途径。它作为生物柴油的副产物大量生成,每生产9Kg生物柴油约产生1Kg粗甘油[4,5]。随着生物柴油持续升温,寻找和开发甘油的新用途,将其作为原材料加工成其他产品,不但可以降低生物柴油的生产成本,提高综合经济效益,还可以解决甘油的过剩问题。 目前国外两家公司作开发了利用微生物发酵甘油生成 1,3 -丙二醇的技术。国内清华大学和大连理工大学等单位也在生物发酵法制备 1,3-丙二醇方面进行了研究。并取得了一定成果。虽然微生物对甘油转化为1,3-丙二醇的选择性很高,且反应条件温和操作简单,但是在产率的提高和菌种的选择性上还存在着很多困难。 甘油催化氢解制备丙二醇的机理如下: 甘油催化氢解制备丙二醇的甘油催化氢解制备丙二醇的反应见下图。在催化剂作用和氢气存在的条件下,通过一次C-O断裂,甘油可以转化成1,2-丙二醇和1-3丙二醇。但是由于催化剂种类及反应参数的不同,可能发生以下副反应:在甘油过度氢解时,即经过2~3次C-O键断裂后,得到一元醇( 正丙醇、丙醇)和丙烷。如果经历1次C-C键的断裂则会生成乙二醇。经过2次C -C键的断裂将生成甲醇。甘油经过C-O键和C-C键同时或者交替的断裂可能得到正丙醇、丙醇、甲醇、和甲烷。 甘油的氢解反应甘油催化氢解的反应机理是比较复杂的,由于反应条件、催化剂的不同,甘油氢解制丙二醇的机理也存在着一定的差异。当反应在酸性或者中性条件下进行时,一般认为反应是下面的机理进行。脱水,生间产物烯醇及酮(醛)式互变异构体,之后中间产物进一步发生加氢反应生成1,2 -丙二醇或l,3-丙二醇。实验表明,反应体系中加入钨酸可以加快反应速率,变反应的选择性。但是在使用其他的无机酸如盐酸时,反应转率并不理想。这说明钨酸的酸性并不

化妆品用甘油原料要求

化妆品用甘油原料要求

化妆品用甘油原料要求 为规范化妆品原料技术要求,提高化妆品卫生质量安全,根据我国化妆品监管相关规定,编写《化妆品用甘油原料要求》,本要求针对性地规定了甘油的安全性要求及检验方法,其他相关要求及检验方法按相应规定执行。 1. 基本信息 1.1 名称 甘油 1.1.1 INCI名称及其ID号 GLYCERIN ID:1077 1.1.2 INCI标准中文译名 甘油 1.1.3 化学名称 1,2,3-丙三醇(Propane-1,2,3-triol) 1.1.4 《中国药典》中名称 2010年版《中国药典》(二部)中名称:甘油 1.1.5 常见别名 丙三醇 1.2 登记号 1.2.1 CAS登记号 56-81-5 1.2.2 EINECS登记号 200-289-5

1.3 分子式、结构式及分子量 分子式:C3H8O3 结构式: CH2CH CH2OH H O OH 分子量:92.09 1.4 性状及理化指标 无色、澄清的黏稠液体;味甜,有引湿性,水溶液(1→10)显中性反应;本品与水或乙醇能任意混溶,在丙酮中微溶,在三氯甲烷或乙醚中均不溶;相对密度在25℃时不小于1.2569。 2. 技术要求 2.1 原料使用目的 甘油在化妆品产品中可作保湿剂、降粘剂、变性剂等使用。 2.2 原料适用范围 甘油广泛用于化妆品中。 2.3 限量要求 2.3.1 甘油含量要求 甘油含量(w/%)≥95.0 2.3.2甘油中相关组分限量要求 甘油中二甘醇含量(w/%)≤0.1 3. 检验方法 3.1 甘油鉴别试验方法 甘油样品的红外光吸收图谱应与对照的图谱(《药品红外光谱集》77图)一致。 3.2 甘油含量测定方法 参见2010年版《中国药典》(二部)所载甘油含量的测定方法(见附1)。

工业化学品

第一类 用于工业、科学、摄影、农业、园艺和林业的化学品;未加工人造合成树脂;未加工塑料物质;肥料;灭火用合成物;淬火和焊接用制剂;保存食品用化学品;鞣料;工业用粘合剂。 【注释】 【0101】工业气体,单质 【0102】用于工业、科学、农业、园艺、林业的工业化工原料 【0103】放射性元素及其化学品 【0104】用于工业、科学的化学品、化学制剂,不属于其他类别的产品用的化学制品【0105】用于农业、园艺、林业的化学品、化学制剂 【0106】化学试剂 【0107】摄影用化学用品及材料 【0108】未加工的人造合成树脂,未加工塑料物质(不包括未加工的天然树脂)【0109】肥料 【0110】灭火用合成物 【0111】淬火用化学制剂 【0112】焊接用化学制剂 【0113】食品用化学品(不包括食品用防腐盐) 【0114】鞣料及皮革用化学品 【0115】工业用粘合剂和胶(不包括纸用粘合剂) 【0116】纸浆 【注释】 第一类主要包括用于工业、科学和农业的化学制品,包括用于制造属于其他类别的产品的化学制品。 本类尤其包括: ——堆肥; ——非食品防腐盐; ——某些特定的食品工业用添加剂(查阅按字母顺序排列的商品分类表)。 本类尤其不包括: ——未加工的天然树脂(第二类); ——医学科学用化学制品(第五类); ——杀真菌剂、除莠剂和消灭有害动物制剂(第五类); ——文具用或家用粘合剂(第十六类); ——食品用防腐盐(第三十类); ——褥草(腐殖土的覆盖物)(第三十一类)。

【0101】工业气体,单质 (一)氨* 010061,无水氨010066,氩010082,氮010092,一氧化二氮010093,氯气010183,氟010302,焊接用保护气体010326,工业用固态气体010328,干冰(二氧化碳)010333,氦010344,氢010359,氪010372,氖010401,氧010413,氡010457,氙010551 ※液体二氧化硫C010001,三氧化硫C010002,液体二氧化碳C010003 (二)碱土金属010039,锑010074,砷010084,砹010086,钡010101,铋010125,碳010148,镥010153,铈010161,铯010163,镝010250,铒010276,铕010287,化学用硫华010299,工业用石墨010305,钆010318,镓010321,钬010345,化学用碘010365,工业用碘010368,镧010375,锂010379,汞010387,准金属010390,碱土金属010392,钕010400,磷010430,钾010447,镨010449,铼010463,铷010466,钐010470,钪010473,硒010479,硅010483,钠010485,硫磺010493,锶010498,锝010516,碲010517,铽010519,稀土010526,铊010532,铥010534,镱010552,钇010553,碱金属010560,化学用溴010585 ※钙C010004,工业硅C010005,结晶硅C010006,海绵钯C010007 注: 1.本类似群各部分之间商品不类似; 2.氨,无水氨与0102第(二)部分工业用挥发碱(氨水),工业用氨水(挥发性碱)类似,与第九版及以前版本0102第(二)部分工业用挥发碱(氨),工业用氨(挥发性碱),工业用挥发性碱(氨水)交叉检索; 3.碱土金属与0601镁类似。 【0102】用于工业、科学、农业、园艺、林业的工业化工原料本类似群各部分之间商品不类似;每部分内的商品根据功能、用途确定类似商品。 (一)酸*010014,盐酸溶液010058,砷酸010085,硝酸010095,工业用硼酸010135,碳酸010150,盐酸010185,铬酸010191,氢氟酸010304,碘酸010367,无机酸010396,过硫酸010425,磷酸010433,磺酸010501,亚硫酸010502,硫酸010503,钨酸010541, 010678氯化铵溶液 ※蓄电池硫酸C010008,氯磺酸C010009,铬酸酐C010010,钼酸C010011,亚砒酸C010030 注:本部分为无机酸。 (二)碱010037,苛性碱010038,氢氧化铝010048,碱(化学制剂)010106,工业用苛性碱010489,工业用苛性钠010490,工业用挥发碱(氨水)010558,工业用氨水(挥发性碱)010558 ※氢氧化钾C010012,碳酸氢钠C010013,氢氧化锶C010014,氢氧化镁C010015,氢

甘油制备1.3-丙二醇

甘油制备1.3-丙二醇 l,3-丙二醇是一种重要的有机化工原料.广泛应用于增塑剂、洗涤剂、防腐剂、乳化剂、聚酯和聚氨酯的合。也可用作防冻剂、溶剂、保护剂等,其中最重要的应用是制备聚对苯二甲酸丙二醇酯(PTT)。PTT是一种性能优异的聚酯材料,是目前国际上合成纤维开发的热点,被专家预测为2l世纪最主要的新纤维品种之一。 世界上已实现工业化生产1。3一丙二醇的合成路线有两条:一种方法是Shell公司的环氧乙烷羰基化法;另一种方法是Degussa公司的丙烯醛水合氧化法。其中环氧乙烷羰基化法设备投资大.技术难度高.其催化剂体系相当复杂.制备工艺苛刻且不稳定.配位体还有剧毒。丙烯醛水合氢化法成本较高.特别是丙烯醛本身属剧毒、易燃和易爆物品,难于储存和运输。由此可见.研究开发以生物柴油副产甘油为原料制备l,3一雨二醇的技术很具竞争性和发展潜力。目前国内外做了大量的研究,主要形成催化氢解法和微生物发酵法两项技术。(1)催化氢解法甘油催化氢解制备1.3一丙二醇是一个较复杂和困难的过程.目前人们刚刚在这方面开始研究。在均相催化体系中加入钨酸和碱性物质如胺或酰胺等,在3lMPa的合成气压力和200℃的温度下反应24h,甘油催化氢解生成1.3丙二醇的产率为21%,选择性为45%。Schiaf等选用Ru配合物为催化剂,在四氢噻吩砜、甲苯和1一甲基吡咯烷酮的混合溶剂中,在5.2MPa的氢压力和110℃的温度下反应19h,l,3丙二醇的选择性为44%,但转化率仅为5%。Shell公司于2000年开发了一种均相体系合成1.3一丙二醇.该法以含铂系金属的配合物为催化剂.加入甲磺酸或i氟甲磺酸作添加物.在水或环丁砜的溶剂中甘油被氢解生成1.3一丙二醇.其选择性可达30.8%。Chaminand等采用氧化锌、活性炭或三氧化二铝负载的cu、Pd或Rh作为催化剂.以钨酸作添加物.在水、环丁砜或二氧杂环已烷等溶剂中研究了甘油催化氢解反应。当温度为180℃、氢压为8MF,a时,产物中1,3一丙二醇与1.2丙二醇的摩尔比最好时可达到2.并认为Fe和Cu等有利于提高1.3一丙二醇的选择性。根据目前的研究结果来看,利用甘油催化氢解制备1,3一丙二醇研究还相对较少,且存在甘油转化率低和产品选择性差的问题,结果不太理想.因此还有待进一步对高效催化剂研究和开发。 (2)生物发酵法与催化氢解法相比,生物发酵法生产1,3丙二醇具有选择性高、操作条件温和等优点,近年来受到特别的重视。德国国家生物技术研究巾心(GBF)、美国杜邦和Genencor 公司等投人大量人力物力研究1.3丙二醇的发酵生产技术。目前研究主要集中在两个方向:其一是从工业甘油出发研究发酵生产1,3一丙二醇;其二是运用现代基因1_程改造菌种.试图将转化葡萄糖为甘油和将甘油转化为1,3丙二醇的两组基因重组到同一细胞内.但基因重组困难,且重组后基因的传代稳定性还有待长时间考验。2001年DuaPont与Denencor申请了多项以葡萄糖为底物.用基因工程菌直接生产1.3丙二醇的专利,已投资建成年产j 万吨的发酵法生产l,3丙二醇的装置。 国内生物法生产l,3一丙二醇的研究起步较晚,研究重点多集中于菌种筛选和发酵工艺优化方面。清华大学、大连理工大学等单位开展生物发酵法生产1,3一丙二醇的研究.虽然比德、美等国起步晚,但研究水平已赶上甚至超过国际先进水平。清华大学以葡萄糖或粗淀粉(如木薯粉)为原料.采用双菌种两步发酵法生产1,3丙二醇的技术.避开了杜邦公司的专利,开发出了直接利用生物柴油的副产粗甘油发酵生产1,3一丙二醇的技术,该技术通过5000L发酵罐实验表明:1,3丙二醇浓度可达70g/L,实现了酶法制备生物柴油和生物柴油副产物甘油发酵生产l,3丙二醇的工艺耦合。在后提取的过程中.研究人员针对发酵过程副产大量的有机酸(盐)的特点.在国际上率先将电渗析脱盐技术引入提取T艺。通过絮凝、浓缩和精馏等工序,制得的1,3一丙二醇产品纯度达到99.92%.收率达80%以上.填补了我国生物法生产1,3一丙二醇的空白。大连理工大学也已在实验室采用膜过滤将脂肪酶催化甲醇与油脂反应生成生物柴油和微生物转化甘油为1,3丙二醇两个过程耦联起来开

相关文档
最新文档