[资料]例谈高中数学一题多解和一题多变的意义
“一题多解与一题多变”在培养学生思维能力中的应用

探索篇誗方法展示在高中数学课标中,要求数学教师注重培养学生的数学思维能力,并把它作为重要的教学内容。
培养思维能力,既能提高学生的理解能力,又能提高学生分析解决问题的能力,还能提高教学效益。
“一题多解与一题多变”是培养高中学生的数学思维能力,特别是发散思维能力的好方法。
数学教师在讲解数学例题时,不仅要讲解题方法,最重要的是教给学生如何正确理解题意,抓住解题的关键,如何开拓解题思路,也就是培养学生的思维能力。
一、“一题多解与一题多变”的教学价值1.“一题多解”的教学价值“一题多解”就是从多个视角去分析思考数学问题,用多种方法途径去解答数学问题。
这种方法可以拓宽解题思路,增强数学知识之间的联系,培养学生学会运用多种方式多种方法解题和灵活多变的思考方式,而灵活的思维方式正是创新能力的基础。
教师在教学中,要运用“一题多解”的方式进行教学,就要培养学生在解答数学问题时善于从多角度观察感知和思考问题,运用多种方法推导验证问题,多方面寻找运用关联条件,不但要考虑条件本身,还要考虑条件之间的联系,用多种方式进行表述,只有这样才能培养学生数学思维的灵活性。
2.“一题多变”的教学价值“一题多变”是指在数学解题练习中,将原来数学题目中的一些已知条件进行变换,或者把要求解答的问题与题目一个或者几个条件变换后,再去求解问题的结果;也可能是给出问题的部分条件,让学生去补充另外一些条件;也可能是对数学问题的拓展,增加问题的难度或背景来训练学生的发散思维能力。
采用“多变”的方式进行教学,主要是对数学例题或习题进行多种变换,让学生从不同方面、不同情形、不同层次下对该数学问题进行重新求解或认识。
它是教学反思的一种方式,它要求学习者从出题人的视角去看问题,并对原来的数学问题有一个深刻的理解,才能做到“多变”。
“多变”解题能培养学生观察问题、归纳类比、概括抽象、运算能力、空间想象、构建与反思等多种数学思维能力。
二、“一题多解与一题多变”在培养数学思维能力上的应用1.培养开放性思维方式数学教学离不开数学解题,搞“题海战术”仅能得到“一对一”的解题方法和思路,不是科学的解题方法。
一题多解与一题多变在数学中的应用

一题多解与一题多变在数学中的应用摘要:数学这门学科在当代素质教育和学术教育统一的义务教育中占有重要地位,它是一门自由学科,但同时也是既复杂困难又富有逻辑的学科。
也许对大部分学生来说,数学这门学科是一道难题。
因此,数学学科的教育传授者在教学中如何传授这门学科的方法、方式,就显得尤为重要。
关键词:一题多解;一题多变;数学一、一题多解与一题多变在数学中的应用的重要性数学学习最重要的是逻辑性问题,并且经过对比分析,发散思维,一题多解与一题多变的方法的应用恰恰能达到这个目标和目的,他们能够不断提高学生们的逻辑思维能力,数学分析能力。
一题多解指的是面对一道数学题,因为有不同的角度进行思考,在脑海中搜寻不相同的解决方法,多种多样的思路,从而有多种多样的可用的解决方案,这样能够提高学生们的数学分析和解决能力。
在解决实际问题的过程中需要我们进一步掌握分析的方法,能用多种的方法思考问题,从中找到不同的解决策略。
下面我将用具体的习题,更好地解释一题多解。
一题多解案例分析例题:已知:f(某)=某3+a某2+(a-1)某+1,若在区间[1,4]单调递减,求a范围?方法一:解题思路问题转化为导函数f"(某)≤0在区间[1,4]恒成立,f"(某)≤0解集为A,只需[1,4]是集合A的子集解:f"(某)=某2+a某+(a-1)因为f(某)在区间[1,4]单调递减所以f"(某)≤0在区间[1,4]恒成立某2+a某+(a-1)≤0(某+1)[某+(a-1)]≤01.当a<2时,f"(某)≤0解集为[-1,1-a]所以[1,4]是[-1,1-a]的子集4≤1-a解得a≤–32.当a≥2时,f"(某)≤0解集为[1-a,-1]不满足[1,4]是[1-a,-1]的子集所以解集是空集综上所述:a≤-3方法二:解题思路问题转化为导函数f"(某)≤0在区间[1,4]恒成立,导函数y=f"(某)为开口向上的二次函数,只需f"(4)≤0,f"(1)≤0同时成立即可解:f"(某)=某2+a某+(a-1)因为f(某)在区间[1,4]单调递减所以f"(某)≤0在区间[1,4]恒成立由二次函数图像可知,只需即解得所以a≤–3一题多变例题例题:已知椭圆标准方程+=1,A(0,3),直线l:y=k某-3与椭圆相交于C,D两点,若|AC|=|AD|,求k的值?解题思路:直线与椭圆联立,消元,设C(某1,y1)D(某2,y2),韦达定理:因为|AC|=|AD|,取C,D中点M,则AM垂直CD,即KAMKCD=-1解:消y得:(9+25k2)某2-150k某=0,Δ>0设C(某1,y1)D(某2,y2),由韦达定理得:某1+某2=某1某2=0y1+y2=k(某1+某2)-6=k2-6=设M(某0,y0)为CD中点,则某0=(某1+某2)=,y0=(y1+y2)=因为|AC|=|AD|,所以AM垂直CD,即KAMKCD=-1k=-1整理得:=-,k2=,k=在一题多变的思维下,我们可以将|AC|=|AD|改成以下两种形式:1.以AC,AD为邻边做平行四边形为菱形2.(AC+AD)CD=0这两种已知虽然与原例题有很大区别,但通过转化最终都能转化为AM垂直CD,解题思路与过程非常相似,结果一样。
一题多解与一题多变在高中数学教学中的运用

一题多解与一题多变在高中数学教学中的运用一题多解和一题多变是高中数学教学中常常运用的教学策略。
它们旨在培养学生的创新思维能力和解决问题的能力,并激发学生的兴趣,提高学习效果。
接下来,我将探讨这两种教学策略的具体运用和重要性。
一题多解是指在一个数学问题中,可以有多种方法或角度来解决问题。
这样的设计可以激发学生的创造力和解决问题的能力。
通过多样的解法,学生能够体验到数学的多样性,培养他们的思维灵活性和创新思维能力。
例如,对于一个简单的方程题,学生可以选择代入法、消元法或配方法等多种解法来解决,而不仅仅依赖于固定的解题顺序。
这样,学生在解题中会产生一种自主思考和探索的意识,从而提高他们的创造力和解决问题的能力。
一题多变是指通过改变题目中的条件或参数,从而使得问题具有不同的情境和挑战性。
这样的设计可以提高学生的应变能力和灵活思维。
通过处理不同版本的问题,学生能够培养他们的思维逻辑,培养他们从不同角度思考和解决问题的能力。
例如,在一个几何问题中,通过改变图形的形状、增加限制条件或改变性质,可以设计出多个相关的问题,从而激发学生不同层次的思考和解决问题的能力。
在高中数学教学中,一题多解和一题多变的运用是十分重要的。
首先,它们可以激发学生的自主学习兴趣和主动学习探索的能力。
通过多种不同的解法和问题情境,学生可以展开自主思考和探索,从而培养他们的学习兴趣和学习动力。
其次,它们能够提高学生的解决问题的能力和思维能力。
通过面对多样的解法和不同版本的问题,学生需要灵活运用知识和技巧,培养他们的应变能力和解决问题的能力。
同时,这种培养的能力也是他们今后在现实生活中解决问题的重要能力之一要充分运用一题多解和一题多变的教学策略,教师需要合理设置问题,鼓励和引导学生思考。
教师可以设计一些具有挑战性的问题,引导学生尝试不同的解法和思路。
此外,教师还可以通过提供不同版本的问题,或者给定一些开放式的问题,鼓励学生从不同的角度思考和解决问题。
《一题多解与一题多变在中学数学中的应用开题报告2000字》

[4] 黄跃惠. 一题多解与一题多变在初中数学教学中的运用[J]. 试题与研究:高考版, 2019(28):1.
[5] 宫代印. 浅谈"一题多解"和"一题多变"在高中数学教学中的应用[J]. 试题与研究:教学论坛, 2019(2):1.
[6] 王菊香. 一题多变和多解成就智慧课堂[J]. 考试周刊, 2019(87):2.
[13] 江猷敏. "一题多解和一题多变"在培养学生数学思维能力的应用策略探析[J]. 考试周刊, 2020(66).
[14] 章勇. "一题多解"与"一题多变"在培养学生思维能力中的应用[J]. 新教育时代电子杂志(学生版), 2020(24):2.
八.指导教师意见
指导教师签字:
年 月 日
九.系意见
系主任签字:
年 月 日
十.学院毕业论文(设计)工作领导小组意见
负责人签字:
年 月 日
[7] 颜天伦. 初中数学教学中"一题多变","一题多解"渗透[J]. 中学课程辅导:教学研究, 2019.
[8] 张海玲. 谈利用"一题多解与一题多变"培养学生的思维能力[J]. 新智慧, 2021(6):2.
一题多解、一题多变与多题一法教学例谈

d l . j 仅, b-O B, 为锐角 ,化为三角不等式 =sl 2 -S C 证 )。这里不 一一 举例丫 ,如几何 的证明题 .方程 的应用题,求函数的极值 ,排列与组合的应用题等: ( ) 二 一题多变 所谓 一题多变 .是 指两方面 的情况 。一方面 是条件不变.还可以推出哪些结论 ,这些结论之间
≥(+ ) 【 )4 2 赤 ( 肺 =志 】 2 +
≥2( 一 ) ] 【 2 : +4
证 .运用 式 兰 ≥半 ) : 法4( 不等 芋 f z )
令= { yh 运 不 式 x + ,=+ a 古, 用 等
例1 a , >,+=’ . > b a1 求证: ++ ≥ i O O ll  ̄ ( ( 雩 a b +
2 ) ( J + ) 【 【 + ( 1 ,,
用 比如不等式的证明的教学可举 一个例子 ,把分 析法 、综合法 、反证法 ,运用重要的不等式直接证 的方法等 ,在这一 个题的各种证法中串讲 ,既能证 明这个 题 ,又能复习巩固证明不等式的基本知 识与 基本技能 :
运 用a =l 有 +b 就
≥ (告 b ) ( 专a + 亡= 1 + + + {
≥ 14= {( ) +
本例还有一些 别的证法 、 三角代换法 ( 如 令
f 2ba 1 I0 l a)2 +) 五b > 一 (b 一
丑 2 al一 lal一4 h D —4 3’ 5 a ≥0 1 2 1
教 学 研 究
●辽宁朝 阳广播电视大学 附属电视中专
刘继英
一
题多解\一题多变与多题一法教学例谈
由于 t - . 面的推理 每一步都可逆 .
・
浅谈一题多解与一题多变

周刊浅谈一题多解与一题多变许国能(浙江省天台平桥二中,浙江台州317203)摘要:数学是一门必修学科,它具有整体性、逻辑性和复杂性的特点,会使学生在学习过程中觉得有点吃力。
但是,高中 数学是高考中的一个重要组成部分,其分值也比较大,对学生的升学产生直接的影响。
所以,必须在高中数学教学中提升教学的有效性。
高中数学教师要根据学生的实际情况,及时地改变数学的教学方法,不断地探索新的、更加有效的教学模式,例如一题多解和一题多变的教学,这种教学方法不但可以巩固学生的基础知识,还能培养学生的思維和创新精神,提升学生的解题技能。
本篇文章主要从现阶段高中数学的教学情况开始分析,提出在高中数学学习中运用一题多解和一题多变的教学方法的建议和措施。
关键词:一题多解;一题多变;高中数学;教学方法一、 高中数学教学现状虽然新课改已经实行了许多年,但是高中数学教学受到传统教育理念和教学模式的影响还比较严重,使得学生在学习过程中依然要面对作业繁重的问题,需要承受高考所带来的压力。
究其原因,一方面由于受应试教育模式的影响,使 得学生必须参加高考,使得教师在高中数学的教学过程中为了提高学生的学习成绩,使其能在高考中取得高分,往往采用习题教学,让学生通过做大量的习题来巩固所学的知识,但是同样存在着巨大的弊端。
单调繁重的习题练习,会使得学生在这样的学习中造成思维的固化,还会对数学学习产生疲劳感,使得对数学的学习停留在表面,缺少深入的钻研。
另一方面,由于社会竞争的越来越激烈,使得教师和家长在无形中将这种压力传给孩子,使得学生在学习中往往更加在意分数的高低和排名的前后,而不是在每次的学习和考试中总结自己的学习情况:解题思路是否更加简答、快捷?知识的掌握是否全面和深入。
这些原因使得高中数学的教学更加机械化和表面化,为了追求分数,而忽略了对数学知识的整体把握,也忽视了对学生数学思维和学习能力的培养。
二、 高中数学学习中运用一题多解与一题多变的必要性(一) 激发学生的创新意识如果一题多解、一题多变在高中数学学习中能够得到灵活地运用,那么数学的教学就会更加地全面和深入。
例谈“一题多解”在高考数学复习中的作用共3页word资料

例谈“一题多解”在高考数学复习中的作用能力。
在高三数学复习过程中,教师感到内容多,负担重,有讲不完的题目,学生也经常对教师讲过的内容印象不够深刻,记不住。
要真正减轻学生的负担,必须从精讲精练开始。
每做一道题都要发挥这道题的最大作用,“一题多解”可以使解题收效更为明显。
解题后要认真总结,摸索规律,举一反三,通过这一教学模式,能对数学本质的了解、学习难点的突破、知识技能的巩固、思想方法的掌握、思维的拓展和迁移等教学目标的实现起到事半功倍的效果。
在我校高三年级的一次联考试卷中,一道数列题涉及对以下不等式的证明。
当k>7且k∈N*时,证明:对任意n∈N*都有下面提供证明这道不等式的四种解法和简要分析。
证法一:∵k>7= + +……+ + > ×(n+1)+ ×n+……+ ×n= + + + + + > + + + + + = >证法分析:利用放缩法证明不等式,需要做到“放缩有度”。
本题若直接将每一项放小至,得到的结果则是不等式的左边大于 > ,放缩过度,不能达到证明的目的,所以采用了“分组放缩法”,同时证明过程中也需考虑尽量使得计算简便。
证法二:记S= + +…… +则S= + +…… +∴2S=( + )+( + )+……+( + )∴2S> ×(nk-n)= > > >3∴S> 即证。
证法分析:证法二的过程中利用了以下基本不等式:若x>0,y>0则有+ ≥ (当且仅当x=y时等号成立)。
同时,关注到左边不等式中第k项的分母与倒数第k项的分母之和均为nk+n-1,所以类比等差数列求和中采用的“倒序求和法”进行证明,方法巧妙,过程简洁。
证法三:先证明不等式+ + +…… > + ……(*)下面采用数学归纳法证明此不等式。
(1)当n=1时,左边=1+ + + + + + >1+ > +1,不等式成立。
开展“一题多解”,探究“一题多变”——一道解析几何题的破解

2023年9月上半月㊀试题研究㊀㊀㊀㊀开展 一题多解 ,探究 一题多变一道解析几何题的破解◉江苏省海安高级中学㊀朱函颍㊀㊀摘要: 一题多解 ,可以开阔解题思路㊁发散学生思维; 一题多变 ,可以拓展数学知识㊁聚合学生思维.合理解题探究与变式拓展可以很好提升解题效益,避免题海战术.结合一道抛物线问题实例,通过 一题多解 与 一题多变 ,在研究中寻找通法,在探究中升华能力,促使学生形成良好的数学品质.关键词:抛物线;准线;直线;斜率;变式㊀㊀根据现代思维的科学研究,问题是展开思维与应用的起点, 疑 是根本, 解疑 是目标,最容易引起定向探究反射与问题的深入思考.而在数学教学与数学学习过程中,更要合理培养与形成探究意识,从问题的内涵㊁问题的解法㊁问题的深入与问题的探究等多方面入手,合理拓展思维的深度与广度,进行必要合理创新应用,从而形成良好的数学品质.1问题呈现问题㊀ 燕博园2023届高三年级综合能力测试(C A T)数学(新高考Ⅰ卷)试卷 已知抛物线y2=a x 的焦点为F,准线l交x轴于点Q,过点F的直线交抛物线于M,N两点,则直线Q M与直线Q N的斜率之和为.该题以抛物线为问题场景,对直线与抛物线的位置关系加以合理创设.借助过焦点的动直线的变化,以 动 态创设场景,利用两直线的斜率之和为常数,以 静 态形式设问,巧妙融合解析几何与平面几何中的相关知识,难度中等.利用圆锥曲线这一主干知识,抓住直线与圆锥曲线位置关系这一热点问题,合理创设,巧妙 动 与 静 变化, 数 与 形 融合,构建一幅完美的画卷.实际破解问题时,抓住问题内涵与实质,从问题根本入手,可以借助解析几何思维㊁平面几何思维与特殊情况思维等来展开,从不同的技巧方法视角来切入,实现问题的巧妙转化与应用.2问题破解2.1通性通法方法1:解析几何思维法.解析:依题知,焦点F(a4,0),准线方程为x=-a4,Q(-a4,0).设过焦点F的直线方程为x=m y+a4,M(x1,y1),N(x2,y2).联立x=m y+a4,y2=a x,{消去参数x,整理可得y2-a m y-a24=0,则y1+y2=a m,y1y2=-a24.于是有㊀k Q M+k Q N=y1x1+a4+y2x2+a4=x1y2+x2y1+a4(y1+y2)(x1+a4)(x2+a4)=(my1+a4)y2+(m y2+a4)y1+a4(y1+y2)(x1+a4)(x2+a4)=2my1y2+a2(y1+y2)(x1+a4)(x2+a4)=2mˑ(-a24)+a2ˑa m(x1+a4)(x2+a4)=0.所以直线Q M与直线Q N的斜率之和为0.故填答案:0.解后反思:在解决直线与圆锥曲线的位置关系问题中,最基本的 通性通法 就是解析几何思维法.通过设置相关的点的坐标㊁直线的方程㊁圆锥曲线的方程等,联立直线与圆锥曲线方程,结合函数与方程思维来进一步分析与转化,进而实现问题的解决.解析几何思维法的缺点之一就是数学运算量大,它也是制约部77Copyright©博看网. All Rights Reserved.试题研究2023年9月上半月㊀㊀㊀分学生深入分析与应用的一个重要因素.2.2数形结合法方法2:平面几何思维法.图1解析:不失一般性,如图1所示,过M ,N 两点分别作准线l 的垂线,垂足分别为A ,B ,由于M A ʊF Q ʊN B ,因此可得|M F ||N F |=|A Q ||B Q |.根据抛物线的定义,可得|M A |=|M F |,且|N B |=|N F |,则|M A ||N B |=|A Q ||B Q |,可得әM A Q ʐәN B Q ,于是øM Q A =øN Q B ,所以øM Q F =øN Q F .所以直线Q M 与直线Q N 的倾斜角互补,即直线Q M 与直线Q N 的斜率之和为0.故填答案:0.解后反思:回归曲线的本质,结合平面几何图形的基本性质与特征,数形结合,逻辑推理,这是解决解析几何综合应用问题比较常用的一种技巧与方法,也是平面几何思维法处理的关键.2.3巧技妙法方法3:特殊情况法.解析:当过点F 的直线垂直于x 轴时,根据抛物线y 2=a x 关于x 轴对称,可知点M ,N 关于x 轴对称,则知直线Q M 与直线Q N 的倾斜角互补.所以直线Q M 与直线Q N 的斜率之和为0.故填答案:0.解后反思:结合矛盾的普遍性寓于特殊性之中,通过填空题这一特殊形式的设置,借助 动 直线在运动变化过程中的某一特殊情况,以特殊代替一般,又从特殊回归到一般,实现解决问题的 巧技妙法 .特殊思维法在解决解析几何 运动 问题中经常用到,借助点㊁直线㊁角或相关元素的运动变化情况,以特殊代替一般,实现问题的普遍性与特殊性的辩证转化.3变式拓展3.1类比拓展圆锥曲线中的不同曲线之间具有一定的相似性与可类比性,在以上抛物线背景下,改变圆锥曲线的类型以及对应曲线的场景,借助其焦点与相应准线的位置关系,也有类似的变式问题.变式1㊀已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右准线l :x =a 2c交x 轴于点Q ,过点F 的直线交椭圆C 于M ,N 两点,则直线Q M 与直线Q N 的斜率之和为.(答案:0.)变式2㊀已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,右准线l :x =a 2c交x 轴于点Q ,过点F 的直线交双曲线C 于M ,N 两点,则直线Q M 与直线Q N 的斜率之和为.(答案:0.)以上两个变式问题的解析过程,可以参照原问题的方法1㊁方法3来展开,这里不多加赘述.当然,也可以将问题转化为探求两直线倾斜角的关系问题(两直线的倾斜角互补)进行探究.3.2逆向拓展在解题研究中,逆向思维也是变式拓展的一种基本思维方式.借助问题题设条件与结论之间的关系,通过数学思维的逆向操作与应用,合理加以探究与拓展,经常会有不错的收获.变式3㊀已知抛物线y 2=a x 的焦点为F ,过点F 的直线交抛物线于M ,N 两点,在x 轴上存在异于点F 的定点Q ,使得直线MN 变化时,直线Q M 与直线Q N 的斜率之和为0,则定点Q 的坐标为.变式4㊀已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过点F 的直线交椭圆C 于M ,N 两点,在x 轴上存在异于点F 的定点Q ,使得直线MN 变化时,直线Q M 与直线Q N 的斜率之和为0,则定点Q 的坐标为.变式5㊀已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的右焦点为F ,过点F 的直线交双曲线C 于M ,N 两点,在x 轴上存在异于点F 的定点Q ,使得直线MN 变化时,直线Q M 与直线Q N 的斜率之和为0,则定点Q 的坐标为.变式3~5的答案为:(-a 4,0),(a 2c ,0),(a2c,0).以上三个变式问题的解析过程也可以参照原问题的方法1.4教学启示在解决一些典型的数学综合应用问题时,要合理引导学生深入挖掘,适当探究拓展,充分掌握问题的本质与内涵,剖析对应的数学基础知识与数学基本能力,从而实现 一题多解 一题多研 一题多变 ,不断提升与拓展破解数学问题的基本技能与策略,提高数学思维品质的变通性,真正达成 一题多练 一题多得 .同时,有效调动学生数学解题的积极主动性与参与性,合理辨析概念㊁公式等的异同,深刻反思并有效拓展,努力培养发现问题的能力与深入质疑问题的探究精神.Z87Copyright ©博看网. All Rights Reserved.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[资料]例谈高中数学一题多解和一题多变的意义例谈高中数学一题多解和一题多变的意义
杨水长
摘要:高中数学教学中,用一题多解和一题多变的形式,可以使所学的知识得到活化~融会贯通~而且可以开阔思路~培养学生的发散思维和创新思维能力~从而达到提高学生的学习兴趣~学好数学的效果。
关键词:一题多变一题多解创新思维数学效果
很大部分的高中生对数学的印象就是枯燥、乏味、不4好学、没兴趣.但由于高考“指挥棒”的作用,又只能硬5cosα= 着头皮学.如何才能学好数学,俗话说“熟能生巧”,很
多人认为要学好数学就是要多做.固然,多做题目可以32使学生提高成绩,但长期如此,恐怕也会使学生觉得1,,cos5sinα== 数学越来越枯燥。
而在第三象限时: 我觉得要使学生学好数学,首先要提高学生的学4习兴趣和数学思维能力。
根据高考数学“源于课本,
高于课本”的命题原则,教师在教学或复习过程中可5cosa=- 以利用书本上的例题和习题,进行对比、联想,采取3一题多解与一题多变的形式进行教学.这是提高学生
数学学习兴趣和思维能力的有效途径。
下面举例说5sina=- 明: 分析:利用比例的性质和同角三角函数关系式,3解此题更妙:
,3sin4例题: 已知tanα= ,求sinα,cosα的值 4cos,分析:因为题中有
sinα、cosα、tanα,考虑他们法三tanα= = 之间的关系,最容易想到的是用同角三角函数关系式sin,,cos和方程解此题:
43,3sin?=
sin,,cos4cos,法一根据同角三角函数关系式tanα= = ,43且sina2α +
cos2α =1。
?= = ?
16422,,,sincos525两式联立,得出:cos2α=,cosα= 或者22,43334
34555cosα= - ;而sinα=或者sinα=- 。
55分析:上面解方程组较难且繁
琐,充分利用用同?sinα=,cosα= 角三角函数关系式“1”的代换,不解方程
组,直接34求解就简洁些:
55或sinα=-,cosα=-3 分析: 上面从代数法角度解此题,如果单独考4法
二tanα=:α在第一、三象限虑sinα、cosα、tanα,可用定义来解此题。
初
中时,在第一象限时: 三角函数定义是从直角三角形引入的,因此我们可以
cos2α = 尝试几何法来解之: 2,13cos1622245,,1,,法四当α为锐角时,由于tana=,在直角?sincos25tan== ABC中,设α=A,a=3x,b=4x,则勾股定理,得,
c=5x
ACBC344x,,5ABAB5sinA= = ,cosA= = 5 ,334y,555,?sinα= ,cosα= ,或
两式联立,得出:344x,,55,或sinα= -,cosα= - 5 分析 :用初中三角函数定义
解此题,更应该尝,3试用三角函数高中的定义解此题,因为适用范围更y,,5,广: . 法五当α为锐角时,如下图所示,在单位圆中,443335555T点坐标是P(-, -)
P(, ) 4设α=?AOT,因为tanα= ,则T点坐标是T(1, 342
553,,?sinα= ,cosα= 1,35,,344,,44 ),由勾股定理得:OT== 55 或sinα= -,cosα= - OMOPMP
分析: 先考虑sinα、cosα两者之间的关系,容ATOAOT??OMP??0AT?== ,易
想到用三角函数辅助角公式来帮助解决此问题: 4433,3sin
5555OM=, MP =, p(, ),4cos, 解法七tanα= = 4sina-3cosa=0
由三角函数辅助角公式得,
34
555sin(a+φ)= 0,其中,sinφ= , cosφ= ?a+φ=kπ ,k?Z
sina=sin(kπ -φ)=sinφ α在第一、三象限
34
55?容易求出sinα= ,cosα= 344355或sinα=-,cosα= - 55?sinα= ,cosα=
分析: 仅仅从角度变换考虑,看一看,用二倍34角公式是否能解决此问题: 55或sinα=-,cosα= - 解法八,由二倍角公式,得,分析: 圆和直线已经放入直角坐标系中,肯定,可以尝试用解析几何法来解此题:2tan 2 解法六,如上图,易求出直线OT的方程和单位32,圆的方程,1tan342tanα==
4,,y= x;x2+y2=1
223tan2 +8tan-3=0
,,1
322?tan= -3,或tan=
,,2sincos
22,,,,22,sincos2222cos==2sinα=2sin,2tan2
,21,tan2 34
55?sinα= ,cosα=
34
55或sinα= -,cosα= -判别式此外,我们还可以尝试从向量的角度思考这个问
题,这里就不再赘述。
下面展示本题的变式与推广: 变式1: 已知tanα=-3,求sinαcosα的值变式2:已知tanα=m,求sinα,cosα的值变式3 :已知sinα=m,求cosα,tanα的值。