结构方程模型

合集下载

结构方程模型

结构方程模型

结构方程模型结构方程模型(Structural Equation Modeling, SEM)是一种统计分析方法,用于检验和建立变量之间的关系。

它融合了因果关系和潜在变量的概念,可以同时考虑观察变量和潜在变量之间的关系,从而更全面地理解研究对象之间的复杂关系。

SEM的基本概念SEM由测量模型和结构模型组成。

测量模型用来衡量潜在变量和观察变量之间的关系,而结构模型则用来探究不同变量之间的因果关系。

通过这两个模型的结合,我们可以深入了解变量之间的直接和间接影响。

SEM的应用领域SEM广泛应用于社会科学、心理学、经济学等领域。

研究者可以利用SEM分析复杂的数据结构,探究不同变量之间的关系,并验证理论模型的适配度。

通过SEM,研究者可以深入了解变量之间的关系,为理论研究和实证分析提供有力支持。

SEM的优势与传统的回归分析相比,SEM具有以下几点优势: - 能够同时建立多个因果路径,捕捉变量之间的复杂关系。

- 考虑到测量误差,提高了统计结论的准确性和稳定性。

- 可以估计观测变量和潜变量之间的关系,从而提高模型的解释力。

SEM的应用案例一个典型的SEM应用案例是研究心理学中的影响因素。

研究者可以构建一个包含认知、情绪和行为变量的模型,通过SEM分析这些变量之间的关系。

通过SEM,研究者可以发现不同变量之间的直接和间接影响,从而深入分析这些因素对人类行为的影响。

SEM的未来发展随着数据采集技术的不断进步和计算资源的提升,SEM将会在更多领域得到广泛应用。

未来,SEM可能在大数据分析、机器学习和预测模型等方面发挥更大的作用,为研究者提供更全面的数据分析工具。

结构方程模型是一个强大的统计分析方法,它可以帮助研究者深入理解变量之间的关系。

通过SEM,我们可以建立更加完备的理论模型,为学术研究和实证分析提供有力支持。

SEM的应用领域和发展前景广阔,相信它将在未来的研究中发挥重要作用。

结构方程模型

结构方程模型
③Ullman(1996)定义结构方程为“一种验证一个或多个自变量与一个或多个因变量之 间一组相关关系的多元分析程式,其中自变量和因变量既可以是连续的,也可以是离散 的”,突出其验证多个自变量与多个因变量之间关系的特点。
01 概念介绍
3.应用领域 SEM在心理学、社会学、行为科学等领域均得到广泛使用 ①在心理学领域,SEM可以应用于检验心理测量的信度、效度及解释测量中的一些问题, 为检验观察数据与基木行为结构之间的关系提供了一种有效的方法。 ②在社会科学及管理学等领域,许多变量是人们为了理解和研究问题而建立的假设概念, 是不能直接测量的,也不存在直接的测量方法。利用一些可观测变量作为潜在变量的 “标识”时,又往往包含大量的测量误差。运用SEM能够使研究人员在分析中处理测量 误差,探求潜在变量之间的结构关系。 ③在市场研究领域,SEM可以用于消费者满意度研究、对产品或服务的偏好以及购买行 为研究、行为和态度动机的探索、生活方式研究等。 ④新的应用:多重样本分析、交互作用效应的检验、均数差异检验、纵向设计
02 基本原理
1。.模型构建——参数 “未知”和“估计” ① 潜在变量自身:总体的平均数或方差。 ② 变量之间关系:因素载荷,路径系数,协方差。 参数类型: ① 自由参数:参数大小必须通过统计程序加以估计。 ② 固定参数:模型拟合过程中无须估计。
02 基本原理
1.模型构建——路径图
路径分析的最有用的一个工具,用图形形式表示变量之间的各种线性关系,包括直 接的和间接的关系。
② 当原始资料违反常态性假设时,样本 比例应提升为估计参数的15倍。
③ 以最大似然法(Maximum Likelihood, ML)评估,Loehlin (1992)建议样本数 至少为100 , 200较为适当。

结构方程模型结果报告

结构方程模型结果报告

结构方程模型结果报告结构方程模型(Structural Equation Modeling,SEM)是一种统计分析方法,用于检验复杂社会科学理论的拟合度。

这种模型广泛应用于心理学、教育学、经济学等领域,在研究领域中起着非常重要的作用。

本文将对一项使用SEM模型分析的研究进行结果报告。

研究题目:员工工作满意度的影响因素研究研究目的:探究员工工作满意度的影响因素,并建立一个相应的模型。

研究方法:采用SEM模型分析方法,使用AMOS软件进行模型拟合度的检验。

样本选择:通过在不同行业、不同职位的员工中进行随机抽样,在15个公司选取了1000名员工作为研究样本。

变量选择:通过文献综述和专家访谈,选择了五个潜变量作为研究模型的构成要素:工作环境、工作条件、薪酬待遇、领导风格和员工工作满意度。

每个潜变量通过多个指标进行衡量,如工作环境包括工作安全、工作氛围和工作压力等指标。

模型构建:根据研究目的和已有理论基础,建立了以下路径模型:工作环境、工作条件、薪酬待遇和领导风格作为自变量,员工工作满意度作为因变量。

同时,工作环境、工作条件和薪酬待遇对员工工作满意度产生直接和间接的影响,领导风格则只对其产生直接影响。

数据分析:使用AMOS软件对建立的路径模型进行验证。

先进行模型拟合度检验,再进行参数估计等分析。

模型拟合度检验结果如下:-卡方检验:χ^2(自由度)=150,p<0.05,表明模型存在显著度差异。

但卡方检验对大样本来说有较大的风险,因此需要结合其他拟合度指标综合判断。

-拟合指数:CFI=0.95,TLI=0.94,表明模型拟合良好。

-误差近似标准:RMSEA=0.06,表明模型较好地拟合数据。

参数估计结果如下:-工作环境对工作满意度的直接影响系数为0.24,p<0.05-工作条件对工作满意度的直接影响系数为0.18,p<0.05-薪酬待遇对工作满意度的直接影响系数为0.34,p<0.05-领导风格对工作满意度的直接影响系数为0.10,p<0.05结果分析:根据统计结果,可以得出以下结论:1.工作环境、工作条件、薪酬待遇和领导风格对员工工作满意度均有显著影响。

结构方程模型

结构方程模型

2. 应用结构方程模型的注意事项
• (1)通径图中 ,内源变量与外源变量间的 关系都是线性的。实际工作中的非线性偏 离被认为是可以忽略的 ,若有强的非线性关 系则应当设法对变量作变换 ,以便可以用线 性作近似;
• (2)结构方程不支持小样本。一般要求样 本容量在 200 以上 ,或是要估计的参数数目 的 5~20 倍;
• proc calis语句是必须的,且此语句还可添 加一些选项,这些选项主要包括:
• (1)数据集选项,如DATA= 使用的数据集 的名字;INRAM= 使用已存在的并被分析 过的模型;OUTRAM= 将模型的说明存入 输出数据集,备以后INRAM调用。
• (2)数据处理选项,如EDF= 在没有使用 原始数据且未指定样本数N时为模型指定自 由度;NOBS= 指定样本数N。
模型修正
• 模型的修正主要包括: • (1) 依据理论或有关假设 ,提出一个或数个合理的
先验模型; • (2) 检查潜变量与指标间的关系 ,建立测量方程模
型; • (3) 若模型含多个因子 ,可以循序渐进地 ,每次只检
验含两个因子的模型 ,确立测量模型部分合理后 , 最后再将所有因子合并成预设的先验模型 ,作总体 检验; • (4) 对每一模型 ,检查标准误、标准化残差、修正 指数、参数期望改变值、χ 2 及各种拟合指数 ,据此 修改模型。
一、结构方程模型简介 1、什么是结构方程模型 2、为什么使用结构方程模型 3、结构方程模型的结构 4、结构方程模型的优点 5、结构方程模型中的变量 6、结构方程模型常用图标
1、什么是结构方程模型 结构方程模型( Structural Equation Model)是基于变量
的协方差矩阵来分析变量之间关系的一种统计方法。所以,有 时候也叫协方差结构分析。

结构方程chisq

结构方程chisq

结构方程chisq
结构方程模型(Structural Equation Modeling, SEM)是一种统计分析方法,用于探索观察变量之间的因果关系。

它通过建立一组方程来描述变量之间的关系,并利用统计方法对这些方程进行检验和拟合。

在SEM中,研究者首先根据理论或经验构建一个模型,然后使用数据进行拟合和检验。

拟合指标中的一个重要指标是卡方(chisq),它用于衡量模型的拟合程度。

如果拟合优度指标(如卡方值)较小,说明模型与观测数据较好地吻合,即模型拟合良好。

然而,卡方值只是评估模型拟合优度的一个指标,还需要结合其他指标进行综合判断。

常用的拟合指标还包括均方根误差(Root Mean Square Error, RMSEA)、比较拟合指数(Comparative Fit Index, CFI)等。

除了拟合优度指标,SEM还可以用来估计变量之间的因果关系。

通过分析路径系数(path coefficient)可以了解各个变量之间的直接和间接影响。

路径系数越大,表示变量之间的关系越强。

在应用SEM进行研究时,研究者需要明确研究问题,并根据问题构建适当的模型。

同时,还需要收集足够的样本数据,以保证结果的可靠性。

研究者还要对模型进行合理的设定和检验,以确保模型的有效性和准确性。

结构方程模型是一种强大的统计工具,可以用于研究变量之间的因果关系。

通过构建模型并使用统计方法进行拟合和检验,可以得到关于变量之间关系的有效信息。

然而,在应用SEM时,研究者需要注意模型的构建和检验过程,以保证研究结果的可靠性和有效性。

结构方程模型

结构方程模型

1结构方程模型概述1.1结构方程模型的基本概念结构方程模型(Structural Equation Modeling,SEM) 早期又被称为线性结构方程模型(Linear Structural Relationships,简称LISREL)或称为工变数结构分析(Coratiance Strucyure Analysis)。

SEM起源于二十世纪二十年代遗传学者Eswall Wrihgt发明的路径分析,七十年代开始应用于心理学、社会学等领域,八十年代初与计量经济学密切相连,现在SEM技术己广泛运用到众多的学科。

结构方程模型是在已有的因果理论基础上,用与之相应的线性方程系统表示该因果理论的一种统计分析技术,其目的在于探索事物间的因果关系,并将这种关系用因果模式、路径图等形式加以表述。

与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个特定的因子结构,并检验它是否吻合数据。

另外,通过结构方程多组分析,我们还可以了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。

结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法。

1.2结构方程模型的优点(一) SEM可同时考虑和处理多个因变量在传统的回归分析或路径分析中,就算统计结果的图表中展示多个因变量,其实在计算回归系数或路径系数时,仍然是对每一因变量逐一计算。

表面看来是在同时考虑多个因变量,但在计算对某一因变量的影响或关系时,其实都忽略了其他因变量的存在与影响。

(二) SEM容许自变量及因变量项含测量误差例如在心理学研究中,若将人们的态度、行为等作为变量进行测量时,往往含有误差并不能使用单一指标(题目),结构方程分析容许自变量和因变量均含有测量误差。

可用多个指标(题目)对变量进行测量。

(三) SEM容许同时估计因子结构和因子关系要了解潜在变量之间的相关性,每个潜在变量都用多指标或题目测量,常用做法是首先用因子分析计算机每一潜在变量(即因子)与题目的关系(即因子负荷),将得到的因子得分作为潜在变量的观测值,其次再计算因子得分的相关系数,将其作为潜在变量之间的相关性,这两步是同时进行的。

结构方程模型

精品课件
2. 应用结构方程模型的注意事 项
• (1)通径图中 ,内源变量与外源变量间的 关系都是线性的。实际工作中的非线性偏 离被认为是可以忽略的 ,若有强的非线性 关系则应当设法对变量作变换 ,以便可以 用线性作近似;
• (2)结构方程不支持小样本。一般要求样 本容量在 200 以上 ,或是要估计的参数数 目的 5~20 倍;
精品课件
• (6)当模型与数据拟合时 ,说明数据并不排斥模 式 ,不能说数据可以确认模式 ,也不能证明某一 理论基础;
• (7) 用同一样本数据 ,以相同数目的待估参数 和不同的组合形式可以产生许多不同模型 ,这些 等同模型哪一个更适合于研究问题 ,应按照模式 表达的意义从专业角度来鉴别;
• (8)) SEM 不能验证变量间的因果关系。同其他 统计方法一样 ,当模型与样本拟合时 ,只能说该 模型是可供考虑的模型 ,是目前为止尚未被否定 的模型。只有经严格的实验设计控制其他变量的 影响 ,才能探讨主要变量的因果效应。绝不能因 为使用了 SEM 便说证明模型正确。严格地说 ,尽 管 SEM 不能证明因果关系 ,但它的生命力在于能 寻找变量间最可能的因果关系。
approximation ,近似误差均方根) 、SRMR ( standardized
root mean square residual , 标准化残差均方根) 、
GFI (goodness of fit index ,拟合优度指数) 、A GFI
(adjusted goodness of fit index ,调整拟合优度指数) ,
传统的统计方法不能有效处理这些潜变量,而结构方程模型则能同时处理 潜变量及其指标。传统的线性回归分析容许因变量存在测量误差,但是要假设自变量 是没有误差的。如:

结构方程模型介绍

结构方程模型介绍随着社会科学研究方法的不断发展和进步,结构方程模型(Structural Equation Modeling,简称SEM)作为一种多元统计分析方法逐渐被学者们所重视和应用。

SEM不仅可以用于检验理论模型的拟合度,还可以用于检验因果关系的存在性,并进行预测和模拟分析。

本文将从SEM的基本概念、应用领域、建模流程和常用软件等方面进行介绍。

一、基本概念1. 结构方程模型(SEM)的定义结构方程模型是一种通过变量之间的潜在关系来描述现象的统计模型。

它将观测变量和潜在变量作为模型的构成部分,通过变量之间的因果关系来解释变量之间的关系。

SEM可以用于探究变量之间的关系、检验理论模型的拟合度、预测未来变量的发展趋势等。

2. SEM的基本组成SEM由三部分组成:测量模型、结构模型和误差项。

其中测量模型包括潜在变量和观测变量,结构模型包括潜在变量和观测变量之间的因果关系,误差项则是指观测变量中不受潜在变量和结构模型影响的随机误差。

3. SEM的优势相较于传统的多元回归分析和路径分析等方法,SEM具有以下优势:(1)可以同时处理多个因变量和自变量之间的关系;(2)可以同时考虑测量误差和模型误差的影响;(3)可以将潜在变量和观测变量之间的关系纳入到模型中,更加贴近实际研究问题;(4)可以通过模型拟合度指标来评估研究模型的适应性;(5)可以进行模型的预测和模拟分析。

二、应用领域SEM广泛应用于社会科学领域,如心理学、教育学、管理学、社会学等。

具体应用领域包括但不限于以下方面:1.心理学领域SEM可用于探究心理学中的各种潜在变量之间的关系,如人格因素与心理健康、社会支持与应对策略等。

2.教育学领域SEM可用于探究教育学中的各种潜在变量之间的关系,如教育投入与学生成绩、学习动机与学习成绩等。

3.管理学领域SEM可用于探究管理学中的各种潜在变量之间的关系,如领导风格与员工绩效、组织文化与员工满意度等。

4.社会学领域SEM可用于探究社会学中的各种潜在变量之间的关系,如社会支持与幸福感、社会资本与社会信任等。

结构方程模型

通常在AMOS和LISREL模型假定的测量模型估计中,观察 变量通常是潜在变量的反映性指标,如果将其设定为形成 性的,则模型程序与估计会较为复杂。
反映性指标回归方程:
X1=β1η+ε1 X2=β2η+ε2 形成性指标回归方程: η=γ1X1+ γ2X2+ δ
内因变量与外因变量
测量模型在SEM模型中就是一般的验证式因素分析 (confirmatory factor analysis,CFA),用于检验数 个测量变量可以构成潜在变量的程度,即模型中观察 变量X与其潜在变量ξ间的因果模型是否与观察数据 契合。
整体模型是陪读检验就是检验总体的协方差矩阵(Σ 矩阵),与假设模型隐含的变量间的协方差矩阵(Σ (θ)矩阵)的差异。因为我们无法得知总体方差与协方 差,因而用样本数据得到的参数估计代替总体参数, 即用样本协方差矩阵S矩阵代替总体的Σ矩阵。
二、测量模型
测量模型由潜在变量与观察变量组成,就数学定义而 言,测量模型是一组观察变量的线性函数。
Amos
LISREL (Linear Structure Relationship)即线性结构关系 的缩写,由统计学者Karl G. Joreskog与Dag Sorbom 二人结合矩阵模型的分析技巧,用以处理协方差结构 分析的一套计算机程序。
Amos是Analysis of Moment Structure(矩结构分析)的 简称,可以验证各式测量模型、不同路径分析模型; 此外还可以进行多组群分析、结构平均数检验,单组 群或多组群多个竞争模型或选替模型的优选。
测量模型与结构模型
SEM分析模型中,只有测量模型而没有结构 结构模型的回归关系,即验证性因素分析;只 有结构模型没有测量模型,则潜在变量间因果 关系讨论,相当于传统的路径分析。

结构方程模型的原理与应用pdf

结构方程模型的原理与应用一、什么是结构方程模型•结构方程模型(Structural Equation Modeling,简称SEM)是一种多变量统计方法,用于分析观测变量之间的关系以及变量与潜变量之间的关系。

•SEM通过建立数学模型来描述变量之间的关系,并基于数据对模型进行拟合和评估。

它可以帮助研究者探索和解释变量之间的复杂关系,以及验证理论模型是否与实际数据一致。

二、结构方程模型的基本原理•结构方程模型由测量模型和结构模型组成。

测量模型用于描述潜变量与观测变量之间的关系,结构模型则描述了变量之间的因果关系。

•在测量模型中,潜变量是无法直接观测到的,而观测变量是可以被测量到的。

通过观测变量与潜变量之间的关系,可以推断潜变量的存在和性质。

•结构模型描述了变量之间的因果关系,包括直接效应和间接效应。

直接效应表示一个变量对另一个变量的直接影响,而间接效应表示通过其他变量中介作用的影响。

•结构方程模型的参数可以使用最大似然估计或者最小二乘估计来进行估计。

估计得到的参数可以用于验证理论模型是否与实际数据拟合良好。

三、结构方程模型的步骤1.模型规范化:确定潜变量和观测变量,并选择合适的测量指标。

2.建立测量模型:通过测量指标与潜变量之间的关系建立测量模型。

3.建立结构模型:根据理论假设或先验知识,建立变量之间的结构模型。

4.模型拟合:对建立的模型进行拟合,通过比较实际数据和模型估计值,评估模型的拟合度。

5.参数估计:使用最大似然估计或最小二乘估计方法,对模型参数进行估计。

6.模型诊断:通过模型拟合度指标,对模型的各项指标进行诊断,判断模型是否合理。

7.模型修正:如果模型拟合不好,可以对模型进行修正,使用修正指数修正模型。

四、结构方程模型的应用•结构方程模型广泛应用于社会科学研究和教育评估领域。

下面列举一些常见的应用场景:1.教育研究:结构方程模型可以用于研究教育因素对学生学业成绩的影响,分析各个因素之间的关系,以及评估教育政策的有效性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构方程模型(Structural·Equation·Modeling,SEM) 结构方程模型是社会科学研究中的一个非常好的方法。

该方法在20世纪80年代就已经成熟,可惜国内了解的人并不多。

“在社会科学以及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。

20世纪80年代以来,结构方程模型迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。

目录
结构方程模型的优点
三种分析方法对比
结构方程模型假设条件
结构方程模型的优点
(一)同时处理多个因变量结构方程分析可同时考虑并处理多个因变量。

在回归分析或路径分析中,就算统计结果的图表中展示多个因变量,其实在计算回归系数或路径系数时,仍是对每个因变量逐一计算。

所以图表看似对多个因变量同时考虑,但在计算对某一个因变量的影响或关系时,都忽略了其他因变量的存在及其影响。

(二)容许自变量和因变量含测量误差态度、行为等变量,往往含有误差,也不能简单地用单一指标测量。

结构方程分析容许自变量和因变量均含测量误差。

变量也可用多个指标测量。

用传统方法计算的潜变量间相关系数,与用结构议程分析计算的潜变量间相关系数,可能相差很大。

(三)同时估计因子结构和因子关系假设要了解潜变量之间的相关,每个潜变量者用我个指标或题目测量,一个常用的做法是对每个潜变量先用因子分析计算潜变量(即因子)与题目的关系(即因子负荷),进而得到因子得分,作为潜变量的观测值,然后再计算因子得分,作为潜变量之间的相关系数。

这是两个独立的步骤。

在结构方程中,这两步同时进行,即因子与题目之间的关系和因子与因子之间的关系同时考虑。

(四)容许更大弹性的测量模型传统上,我们只容许每一题目(指标)从属于单一因子,但结构方程分析容许更加复杂的模型。

例如,我们用英语书写的数学试题,去测量学生的数学能力,则测验得分(指标)即从属于数学因子,也从属于英语因子(因为得分也反映英语能力)。

传统因子分析难以处理一个指标从属多个因子或者考虑高阶因子等有比较复杂的从属关系的模型。

(五)估计整个模型的拟合程度在传统路径分析中,我们只估计每一路径(变量间关系)的强弱。

在结构方程分析中,除了上述参数的估计外,我们还可以计算不同模型对同一个样本数据的整体拟合程度,从而判断哪一个模型更接近数据所呈现的关系。

三种分析方法对比
线性相关分析:线性相关分析指出两个随机变量之间的统计联系。

两个变量地位平等,没有因变量和自变量之分。

因此相关系数不能反映单指标与总体之间的因果关系。

线性回归分析:线性回归是比线性相关更复杂的方法,它在模型中定义了因变量和自变量。

但它只能提供变量间的直接效应而不能显示可能存在的间接效应。

而且会因为共线性的原因,导致出现单项指标与总体出现负相关等无法解释的数据分析结果。

结构方程模型分析:结构方程模型是一种建立、估计和检验因果关系模型的方法。

模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。

结构方程模型可以替代多重回归、通径分析、因子分析、
协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。

简单而言,与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可比较及评价不同的理论模型。

与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个特定的因子结构,并检验它是否吻合数据。

通过结构方程多组分析,我们可以了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。

”目前,已经有多种软件可以处理SEM,包括:LISREL,AMOS, EQS, Mplus.
结构方程模型假设条件
·合理的样本量(James Stevens的Applied Multivariate Statistics for the Social Sciences一书中说平均一个自变量大约需要15个case;Bentler and Chou (1987)说平均一个估计参数需要5个case就差不多了,但前提是数据质量非常好;这两种说法基本上是等价的;而Loehlin (1992)在进行蒙特卡罗模拟之后发现对于包含2~4个因子的模型,至少需要100个case,当然200更好;小样本量容易导致模型计算时收敛的失败进而影响到参数估计;特别要注意的是当数据质量不好比如不服从正态分布或者受到污染时,更需要大的样本量)·连续的正态内生变量(注意一种表面不连续的特例:underlying continuous;对于内生变量的分布,理想情况是联合多元正态分布即JMVN)·模型识别(识别方程)(比较有多少可用的输入和有多少需估计的参数;模型不可识别会带来参数估计的失败)·完整的数据或者对不完整数据的适当处理(对于缺失值的处理,一般的统计软件给出的删除方式选项是pairwise和listwise,然而这又是一对普遍矛盾:pairwise式的删除虽然估计到尽量减少数据的损失,但会导致协方差阵或者相关系数阵的阶数n参差不齐从而为模型拟合带来巨大困难,甚至导致无法得出参数估计;listwise不会有pairwise的问题,因为凡是遇到case中有缺失值那么该case直接被全部删除,但是又带来了数据信息量利用不足的问题——全杀了吧,难免有冤枉的;不杀吧,又难免影响整体局势)·模型的说明和因果关系的理论基础(实际上就是假设检验的逻辑——你只能说你的模型不能拒绝,而不能下定论说你的模型可以被接受)。

相关文档
最新文档