晶体类型的5种判断方法

晶体类型的5种判断方法
晶体类型的5种判断方法

晶体类型的5种判断方法

1.依据构成晶体的微粒和微粒间的作用判断

(1)离子晶体的构成微粒是,微粒间的作用是。

(2)原子晶体的构成微粒是,微粒间的作用是。

(3)分子晶体的构成微粒是,微粒间的作用为。

(4)金属晶体的构成微粒是,微粒间的作用是。

2.依据物质的分类判断

(1)金属氧化物(如K2O等)、强碱(NaOH、KOH等)和绝大多数的盐类是晶体。

(2)大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼等)、非金属氢化物、非金属氧化物(除SiO2外)、几乎所有的酸、绝大多数有机物(除有机盐外)是晶体。

(3)常见的原子晶体单质有、、等,常见的原子晶体化合物有、、、等。

(4)金属单质(注:汞在常温为液体)与合金是晶体。

3.依据晶体的熔点判断

(1) 晶体的熔点较高,常在数百至一千摄氏度以上。

(2) 晶体熔点高,常在一千摄氏度至几千摄氏度。

(3) 晶体熔点低,常在数百摄氏度以下至很低温度。

(4) 晶体多数熔点高,但也有相当低的。

4.依据导电性判断

(1 晶体溶于水形成的溶液及熔融状态时能导电。

(2 晶体一般为非导体。

(3) 晶体为非导体,而晶体中的电解质(主要是酸和强极性非金属氢化物)溶于水,使分子内的化学键断裂形成,也能导电。

(4) 晶体是电的良导体。

5.依据硬度和机械性能判断

(1)晶体硬度较大且脆。(2)晶体硬度大。

(3)晶体硬度小且较脆。(4)晶体多数硬度大,但也有较低的,且具有延展性。

注意:(1)常温下为气态或液态的物质,其晶体应属于晶体(Hg除外)。

(2)石墨属于混合型晶体,但因层内原子之间碳碳共价键的键长为1.42×10-10 m,比

金刚石中碳碳共价键的键长(键长为1.54×10-10 m) ,所以熔、沸点于金刚石。

(3)AlCl3晶体中虽含有金属元素,但属于晶体,其熔、沸点低(熔点190 ℃)。

(4)合金的硬度比成分金属,但熔、沸点比成分金属。

“两角度”比较晶体熔、沸点的高低

1.不同类型晶体熔、沸点的比较

(1)不同类型晶体的熔、沸点高低一般规律:晶体> 晶体> 晶体。

(2) 晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。

2.同种类型晶体熔、沸点的比较

(1)原子晶体

如熔点:金刚石碳化硅硅。

(2)离子晶体

一般地说,,,则离子间的作用力越强,晶格能越,其晶体的熔、沸点越高,如熔点:MgO>MgCl2,NaCl>CsCl。

(3)分子晶体

①分子间作用力越大,物质的熔、沸点越;具有的分子晶体熔、沸点反常高。如H2O>H2Te>H2Se>H2S。

②组成和结构相似的分子晶体,,熔、沸点越高,如SnH4>GeH4>SiH4>CH4。

③组成和结构不相似的分子晶体(相对分子质

量接近),,熔、沸点越高,

如CH3OH>CH3CH。

④同分异构体,,熔、沸点越低。

如CH3—CH2—CH2—CH2—CH3>

(4)金属晶体

金属离子,离子,其金属键越强,金属晶体的熔、沸点越高,如熔、沸点:Na<Mg<Al。

(完整word版)四种晶体类型的比较

物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr(固)>Br2>HBr(气)。 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。

B 、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO ,NaF>NaCl>NaBr>NaI 。 KF >KCl >KBr >KI ,CaO >KCl 。 C 、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na <Mg <Al ,Li>Na>K 。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D 、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H 2O >H 2Te >H 2Se >H 2S ,C 2H 5OH >CH 3—O —CH 3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH 4<SiH 4<GeH 4<SnH 4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点 CO >N 2,CH 3OH >CH 3—CH 3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C 17H 35COOH >C 17H 33COOH ;硬脂酸 > 油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸 点升高,如C 2H 6>CH 4, C 2H 5Cl >CH 3Cl ,CH 3COOH >HCOOH 。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如: CH 3(CH 2)3CH 3 (正)>CH 3CH 2CH(CH 3)2(异)>(CH 3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 针对性训练 一、选择题 1.下列性质中,可以证明某化合物内一定存在离子键的是( ) (A )溶于水 (B )有较高的熔点 (C )水溶液能导电 (D )熔融状态能导电 2.下列物质中,含有极性键的离子化合是( ) (A )CaCl 2 (B )Na 2O 2 (C )NaOH (D )K 2S 3.Cs 是IA 族元素,F 是VIIA 族元素,估计Cs 和F 形成的化合物可能是( ) (A )离子化合物 (B )化学式为CsF 2 (C )室温为固体 (D )室温为气体 4.某物质的晶体中含A 、B 、C 三种元素,其排列方式如图所示(其中前后两面心上的B 原子未能画出),晶体中A 、B 、C 的中原子个数之比依次为( ) (A )1:3:1 (B )2:3:1 (C )2:2:1 (D )1:3:3 6.在NaCl 晶体中与每个Na +距离等同且最近的几个Cl -所围成的空间几何构型为( ) (A )正四面体 (B )正六面体 (C )正八面体 (D )正十二面体 7.如图是氯化铯晶体的晶胞(晶体中最小的重复单元),已知晶体中2个最近的Cs +离子核间距为a cm ,氯化铯的式量为M ,NA 为阿伏加德罗常数,则氯化铯晶体的密度为( ) (A )3 8a N m A ?g·cm -3 (B )A N Ma 83 g·cm -3 (C )3 a N M A ?g·cm -3 (D )A N Ma 3 g·cm -3

第三章《晶体结构与性质》《晶体的常识》教学设计

第三章《晶体结构与性质》《晶体的常识》教学设计 一、教学目标 1、知识与技能 (1)知道获得晶体的几种途径 (2)理解晶体的特点和性质及晶体与非晶体的本质区别 (3)初步学会确定一个晶胞中平均所含粒子数的方法 2、过程与方法 (1)收集生活素材,结合已有知识和生活经验对晶体与非晶体进行分类 (2)学生通过观察、实验等方法获取信息 (3)学会运用比较、分类、归纳、概括等方法对获取的信息进行加工 3、情感态度与价值观 (1)培养学生科学探究的方法 (2)培养学生的动手能力、观察能力、自主学习的能力,保持对生活中化学的好奇心和探知欲,增强学生学习化学的兴趣。 二、教学重点 1、晶体的特点和性质及晶体与非晶体的本质区别 2、确定一个晶胞中平均所含粒子数的方法 三、教学难点 1、确定一个晶胞中平均所含粒子数的方法 四、教学用品 课前学生收集的各种固体物质、玛瑙耳坠和水晶项链、蜂巢、晶胞实物模型、乒乓球、铁架台、酒精灯、蒸发皿、圆底烧瓶、碘、水、多媒体等 五、教学过程 1.新课导入: [教师]上课前,我已经请同学们收集了一些身边的固体物质,大家都带来了吗?(学生:带来了)你们都带来了哪些固体呢?(学生七嘴八舌,并展示各自的固体)[教师]同学们带来的固体物质可真是琳琅满目啊!但是,我们每个人可能只带了几样,想知道别人收集了哪些固体物质吗?(学生:想)下面我们请前后四个同学组成一个小组,然后互相交流一下收集的各种固体物质,并讨论如何将这些固体物质进行分类呢? [分组讨论]互相交流各自所带的物品,并分类(教师进行巡视) [教师]:请这组同学将你们带来的固体和交流的结果汇报一下。 [学生汇报]:(我们讨论后觉得将粗盐、明矾、樟脑丸分为一类;塑料、玻璃片、橡胶分为另一类。教师追问:你们为什么会这样分呢?生:根据这些有规则的几何外形,而另一些没有。) [教师总结]这组同学收集的物品很丰富,并通过组内讨论确定了分类依据,然后进行了恰当的分类。其实,同学们也许没有留心观察,我们身边还有许多美丽的固体,当然也有的可能是我们日常生活中不易接触到的。下面,我们就一起欣赏一下这些美丽的固体。 [视频投影]雪花放大后的形状、烟水晶、石膏、毒砂、绿柱石、云母等晶体实物(并配以相应的解说,给学生了解到这些固态物质都有规则的几何外形。) [教师讲述]我们就将这些有规则几何外形的固体称之为晶体,而另一些没有规则几何外形的固体称之为非晶体。 [板书]一、晶体与非晶体 设计意图:课前请同学收集身边的固态物质,然后在课堂上展示,并分组交流讨论,最后进行分类,并在课堂上汇报。这样从学生身边的固体入手,直观、简洁地引入课题,潜移默化

反馈的概念及判断方法,负反馈放大电路的四种基本组态

1.反馈与反馈通路 放大电路输出量的一部分或全部通过一定的方式引回到输入回路,影 响输入,称为反馈。 基本放大电路的放大倍数 ' i o X X A =;反馈系数 o f X X F = 反馈放大电路的放大倍数 i o f X X A = 利用PPT演示方块图 基本放大电路主要功能为 放大信号,反馈网络的主 要功能为传输反馈信号。 o X 输出量 ' i X 静输入量 i X 输入量 f X 反馈量 f i ' i X X X - = 2、反馈的形式 (1)正反馈和负反馈 从反馈的结果来判断,凡反馈的结果使输出量的变化减小的为负反 馈,否则为正反馈;凡反馈的结果使净输入量减小的为负反馈,否则为正 反馈 利用PPT演示图2.4.2b, 重温 e R引入的负反馈作 用 (2)直流反馈和交流反馈 仅在直流通路中存在的反馈称为直流反馈,仅在交流通路中存在的反馈称 为交流反馈。 直流反馈的作用主要用于 稳定放大电路的静态工作 点 f R上既有直流反馈也有 交流反馈, 引入直流负反馈的目的: 稳定静态工作点; 引入交流负反馈的目的: 改善放大电路的性能

(3)局部反馈和级间反馈 (重点研究级间反馈或称总体反馈) PPT 上演示此图 只对多级放大电路中某一级起反馈作用的称为局部反馈3R 支路,将多级放大电 路的输出量引回到其输入级的输入回路的称为级间反馈4R 支路。 二、交流负反馈的组态 1.电压反馈与电流反馈 描述放大电路和反馈网络在输出端的连接方式 按取样方式划分——从输出端看 (PPT 上演示下图) 电压反馈:对交流信号而言,若基本放大电路、反馈回路、负载在取样端是并联连接,则称为并联取样。由于在这种取样方式下,f X 正比与输出电压, f X 反映的是输出电压的变化,所以又称为电压反馈。 稳定输出电压 电流反馈:对交流信号而言,若基本放大电路、反馈回路、负载在取样端是串联连接,则称为串联取样。由于在这种取样方式下,f X 正比与输出电流,f X 反映的是输出电流的变化,所以又称为电流反馈。 稳定输出电流 2. 串联反馈和并联反馈 描述放大电路和反馈网络在输入端的连接方式 按比较方式划分——从输入端看 (PPT 上演示下图) 串联反馈:对交流信号而言,信号源、基本放大电路、反馈网络在比较端是串联连接,则为串联反馈,反馈信号和输入信号以电压的形式进行叠加,产生净输入量。 f i i u u u -=' 减少净输入电压

高中化学四种晶体类型的比较

四种晶体类型的比较

物质熔沸点高低的比较方法 物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr (固)>Br2>HBr(气)。 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,原子半径越小,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。 B、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,①离子所带电荷越多,②离子半径越小,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO,NaF>NaCl>NaBr>NaI。KF>KCl>KBr>KI,CaO>KCl。 C、金属晶体:金属晶体中①金属价电子数越多,②原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al,Li>Na>K。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如:熔沸点CO>N2,CH3OH>CH3—CH3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C17H35COOH硬脂酸>C17H33COOH油酸。 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH>HCOOH。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。 如:CH3(CH2)3CH3(正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 【通过文字判断晶体类型】

晶体学基础知识点及思维导图教学内容

晶体学基础知识点及 思维导图

HOMEWORKS 知识点 晶体结构Crystal structure 点阵结构Lattice 晶胞Unit cells 晶系Crystal systems 布拉菲格子The Bravais lattices 点群 point group 空间群space group

关系Relationships/思维导图Mind mapping

具体中文解释 粒子抽象成点,形成了点阵结构,而这些点连接起来就形成了晶格,可以说点阵和晶格具有同一性,但区别于点阵具有唯一性,晶格不具有。同样我们需要区别“lattice”的意义 它在这应该准确的代表点阵结构而不是单单的点阵,点阵结构是具体的客观存在的而点阵是人为抽象出来的,相比于点阵对应的点阵点,点阵结构对应的就是结构基元。 晶胞堆砌成了点阵结构,晶胞又具有晶胞参数和晶胞内容两方面,也就是说可以这么表示晶胞=点阵格子+结构基元。根据晶胞的晶胞参数我们可以把晶体的结构从宏观上分为七个方面,也就是七大晶系.七大晶系结合晶胞类型产生了14种Bravais晶格 点群表示的是晶体中所包含所有点对称操作的(旋转、反应、反演)的集合。(晶体的宏观性质不变)。点群描述了分子结构和晶体的宏观对称性(后来老师讲点群只是对于结构基元里的原子的对称排布,我个人后来查阅思考了一下,这是局限的,点群所描述的对称性正是可以描述宏观的晶格以及肉眼可见 的晶体的对称性,所以它才被 引为宏观对称性。) 微观对称元素:点阵、滑移面、旋转轴(无数阶次) 而晶体的宏观对称元素和微观对称元素在内的全部对称元素的一种组合就构成晶体的一种微观对称类型也就是空间群,它反应的是内部微观结构的对称性(结构基元内部原子)或者是微观的晶胞堆积方式的不同。 晶体的宏观对称性就是晶体微观对称性的宏观表现。 晶系与对称的关系:七种晶系从宏观的对称操作来看,有旋转、反射、反演,这些构成的是32种点群。而晶系必须符合平移操作(晶体对称定律的要求),结合平移我们限定了它有14种Bravais 格子。再结合微观对称元素,就会得到230种空间群。

判断反馈类型的好方法

摘要:反馈类型的判别是电子电路基础的一个重点和难点,如何才能更好地达到教学目的?在多年的教学实践中,针对近年来技校学生文化理论和专业基础普遍较差的特点,笔者总结出一种简单的直观判 别法有助于学生理解和接受。 关键词:反馈类型、判别方法、直观判别法 电子电路是电子、电工专业和电气维修等专业的专业基础课程。学好电子电路能很好地为今后学习专业课打好基础。而反馈部分是电子电路中的一个重点和难点。特别是反馈类型的判别是技校学生在学习 过程中的难点之一! 在多年的教学实践中,笔者摸索出一套克服有关反馈类型的判别知识难点的方法:借助多媒体辅助教学,将学生已学过的晶体三极管的各电极间的相对相位关系和电工基础的串并联电路及电容器导电性能等知识应用进来,并尽可能地使判别方法简单直观化,最后归纳总结,巧记关键知识要点。现将反馈类型的 直观判别方法逐一分析如下: 一、辨认电路中的反馈元件 一个电路是否存在反馈,要看该电路有没有反馈元件。要判别反馈类型,也首先要找到反馈元件的位置。因此,准确辨认电路中的反馈元件是十分重要的。 任何同时连接着输出回路和输入回路,并且影响着输入回路的元件,都是反馈元件。所以可以通过直接观察电路的方法,很快地辨认出电路的反馈元件。例如课件图1所示,图a)中电阻Rf是反馈元件;而图b)中电阻Rf就不是反馈元件,因为它只连接到输入端的接地点,并没有对输入端起到任何影响。 二、正反馈与负反馈的判别 首先,明确正反馈与负反馈的概念。 根据反馈极性的不同,可将反馈分为正反馈与负反馈。使放大器净输入量增大的反馈,称为正反馈; 反之称为负反馈。 考虑到技校学生的文化理论和专业基础都较差,为了方便学生的理解和判别,笔者把这一概念简单直观化,即通过课件图2,向学生形象地介绍:当反馈信号与输入信号加在放大器输入端的同一个电极时,

四种晶体类型的比较

四种晶体类型的比较 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

四种晶体类型的比较

物质熔沸点高低的比较方法 物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体> >HBr(气)。 液体>气体。例如:NaBr(固)>Br 2 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。 B、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。

例如:MgO>CaO ,NaF>NaCl>NaBr>NaI 。 KF >KCl >KBr >KI ,CaO >KCl 。 C 、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na <Mg <Al ,Li>Na>K 。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D 、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H 2O >H 2Te >H 2Se >H 2S ,C 2H 5OH >CH 3—O —CH 3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH 4<SiH 4<GeH 4<SnH 4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点 CO >N 2,CH 3OH >CH 3—CH 3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C 17H 35COOH >C 17H 33COOH ;硬脂酸 > 油酸

晶体的基本概念

第一章材料的结构 2006-09-16 11:50 第一章材料的结构 重点与难点: 在晶体结构中,最常见的面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)、金刚石型结构及氯化钠型结构。内容提要: 在所有固溶体中,原子是由键结合在一起。这些键提供了固体的强度和有关电和热的性质。例如,强键导致高熔点、高弹性系数、较短的原子间距及较低的热膨胀系数。由于原子间的结合键不同,我们经常将材料分为金属、聚合物和陶瓷3类。 在结晶固体中,材料的许多性能都与其内部原子排列有关。因此,必须了解晶体的特征及其描述方法。根据参考轴间夹角和阵点的周期性,可将晶体分为7种晶系,14种晶胞。本章重点介绍了在晶体结构中,最常见的面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)、金刚石型结构及氯化钠型结构。务必熟悉晶向、晶面的概念及其表示方法(指数),因为这些指数被用来建立晶体结构和材料性质及行为间的关系。在工程实际中得到广泛应用的是合金。合金是由金属和其它一种或多种元素通过化学键合而成的材料。它与纯金属不同,在一定的外界条件下,具有一定成分的合金其内部不同区域称为相。合金的组织就是由不同的相组成。在其它工程材料

中也有类似情形。尽管各种材料的组织有多种多样,但构成这些组织的相却仅有数种。本章的重点就是介绍这些相的结构类型、形成规律及性能特点,以便认识组织,进而控制和改进材料的性能。学习时应抓住典型例子,以便掌握重要相的结构中原子排列特点、异类原子间结合的基本规律。 按照结构特点,可以把固体中的相大致分为五类。 固溶体及金属化合物这两类相是金属材料中的主要组成相。它们是由金属元素与金属元素、金属元素与非金属元素间相互作用而形成。固溶体的特点是保持了溶剂组元的点阵类型不变。根据溶质原子的分布,固溶体可分为置换固溶体及间隙固溶体。一般来说,固溶体都有一定的成分范围。化合物则既不是溶剂的点阵,也不是溶质的点阵,而是构成了一个新的点阵。虽然化合物通常可以用一个化学式(如AxBy)表示,但有许多化合物,特别是金属与金属间形成的化合物往往或多或少由一定的成分范围。 材料的成分不同其性能也不同。对同一成分的材料也可通过改变内部结构和组织状态的方法,改变其性能,这促进了人们对材料内部结构的研究。组成材料的原子的结构决定了原子的结合方式,按结合方式可将固体材料分为金属、陶瓷和聚合物。根据其原子排列情况,又可将材料分为晶体与非品体两大类。本章首先介绍材料的晶体结构。基本要求: 1.认识材料的3大类别:金属、聚合物和陶瓷及其分类的基础。 2.建立原子结构的特征,了解影响原子大小的各种因素。

四种晶体比较表

四种晶体比较表 注:离子晶体熔化时需克服离子键,原子晶体熔化时破坏了共价键,分子晶体熔化时只克服分子间作用力,而不破坏化学键。 晶体熔沸点的比较 一、看常态:1、常态:固>液>气。

2、一般情况下,原子晶体>离子晶体(金属晶体)>分子晶体。 3、原子晶体:共价键(取决于原子半径)。 4、离子晶体:离子键(取决于离子半径和离子电荷) 5、金属晶体:金属键(取决于金属原子半径和价电子数) 6、分子晶体:①结构相似,分子量越大,熔沸点越高。 ②分子量相等,正>异>新。③氢键反常 二、看类型 三、分类比较 18.请完成下列各题: (1)前四周期元素中,基态原子中未成对电子与其所在周期数相同的元素有种。 (2)第ⅢA、ⅤA原元素组成的化合物GaN、GaP、GaAs等是人工合成的新型半导体材料,其晶体结构与单晶硅相似。Ga原子的电子排布式为。在GaN晶体中,每个Ga原子与个N原子相连,与同一个Ga原子相连的N原子构成的空间构型为。在四大晶体类型中,GaN属于晶体。 (3)在极性分子NCl3中,N原子的化合物为―3,Cl原子的化合价为+1,请推测NCl3水解的主要产物是(填化学式)。 19.生物质能是一种洁净、可再生的能源。生物质气(主要成分为CO、CO2、H2等)与H2混合,催化合成甲醇是生物质能利用的方法之一。 (1)上述反应的催化剂含有Cu、Zn、Al等元素。写出基态Zn原子的核外电子排布式。 (2)根据等电子原理,写出CO分子结构式。 (3)甲醇催化氧化可得到甲醛,甲醛与新制Cu(OH)2的碱性溶液反应生成Cu2O沉淀。 ①甲醇的沸点比甲醛的高,其主要原因是;甲醛分子 中碳原子轨道的杂化类型为。 ②甲醛分子的空间构型是;1mol甲醛分子中σ键的数 目为。 ③在1个Cu2O晶胞中(结构如图所示),所包含的Cu原子数目为。

。高中化学晶体的结构与性质知识点及相关例题讲解

高中化学晶体的结构与性质知识点及相关例题 讲解 自然界中的固体可以分为两种存在形式:晶体和非 晶体。晶体是经过结晶过程而形成的具有规则的几何外形的 固体。晶体中原子或分子在空间按一定规律周期性重复的排 列,从而使晶体内部各个部分的宏观性质是相同的,而且具 有固定的熔点和规则的几何外形。 一、晶体 固体可以分为两种存在形式:晶体和非晶体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数 是晶体。气体、液体和非晶体在一定条件下也可转变为晶体。 晶体是经过结晶过程而形成的具有规则的几何外形的 固体。晶体中原子或分子在空间按一定规律周期性重复的排 列,从而使晶体内部各个部分的宏观性质是相同的,而且具 有固定的熔点和规则的几何外形。 二、晶体结构 1.几种晶体的结构、性质比较 2.几种典型的晶体结构: (1)NaCl晶体(如图1):每个Na+周围有6个Cl-,每个Cl-周围有6个Na+,离子个数比为1:1。 (2)CsCl晶体(如图2):每个Cl-周围有8个Cs+,每个Cs+周围有8个Cl-;距离Cs+最近的且距离相等的Cs+

有6个,距离每个Cl-最近的且距离相等的Cl-也有6个,Cs+和Cl-的离子个数比为1:1。 (3)金刚石(如图3):每个碳原子都被相邻的四个碳原子包围,以共价键结合成为正四面体结构并向空间发展, 键角都是109o28',最小的碳环上有六个碳原子。 (4)石墨(如图4、5):层状结构,每一层内,碳原子以正六边形排列成平面的网状结构,每个正六边形平均拥有 两个碳原子。片层间存在范德华力,是混合型晶体。熔点比 金刚石高。 (5)干冰(如图6):分子晶体,每个CO2分子周围紧邻其他12个CO2分子。

XRD,以及晶体结构的相关基础知识

XRD,以及晶体结构的相关基础知识(ZZ) Theory 2009-10-25 17:55:42 阅读355 评论0 字号:大中小 做XRD有什么用途啊,能看出其纯度?还是能看出其中含有某种官能团? X射线照射到物质上将产生散射。晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。 绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。晶体微观结构的特征是具有周期性的长程的有序结构。晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息。用少量固体粉末或小块样品便可得到其X射线衍射图。 XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大 小等)最有力的方法。 XRD 特别适用于晶态物质的物相分析。晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析; XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构)...等等,应用面十分普遍、广泛。 目前XRD主要适用于无机物,对于有机物应用较少。 关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。 如何由XRD图谱确定所做的样品是准晶结构?XRD图谱中非晶、准晶和晶体的结构怎么严格区分? 三者并无严格明晰的分界。 在衍射仪获得的XRD图谱上,如果样品是较好的"晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的"最小宽度")。如果这些"峰"明显地变宽,则可以判定样品中的晶体的颗粒尺寸将小于300nm,可以称之为"微晶"。晶体的X射线衍射理论中有一个Scherrer公式,可以根据谱线变宽的量估算晶粒在 该衍射方向上的厚度。 非晶质衍射图的特征是:在整个扫描角度范围内(从2θ 1°~2°开始到几十度)只观察到被散射的X 射线强度的平缓的变化,其间可能有一到几个最大值;开始处因为接近直射光束强度较大,随着角度的增加强度迅速下降,到高角度强度慢慢地趋向仪器的本底值。从Scherrer公式的观点看,这个现象可以视为由于晶粒极限地细小下去而导致晶体的衍射峰极大地宽化、相互重叠而模糊化的结果。晶粒细碎化的极限就是只剩下原子或离子这些粒子间的"近程有序"了,这就是我们所设想的"非晶质"微观结构的场景。非晶质衍射图上的一个最大值相对应的是该非晶质中一种常发生的粒子间距离。

四种晶体类型的比较

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr(固)>Br2>HBr(气)。

2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。 B、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO,NaF>NaCl>NaBr>NaI。KF>KCl>KBr>KI,CaO>KCl。 C、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al,Li>Na>K。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高)如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点CO>N2,CH3OH>CH3—CH3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C17H35COOH>C17H33COOH;硬脂酸>油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH>HCOOH。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。 如:CH3(CH2)3CH3(正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 针对性训练 一、选择题 1.下列性质中,可以证明某化合物内一定存在离子键的是() (A)溶于水(B)有较高的熔点(C)水溶液能导电(D)熔融状态能导电 2.下列物质中,含有极性键的离子化合是() (A)CaCl2(B)Na2O2(C)NaOH (D)K2S 3.Cs是IA族元素,F是VIIA族元素,估计Cs和F形成的化合物可能是()(A)离子化合物(B)化学式为CsF2(C)室温为固体(D)室温为气体 4.某物质的晶体中含A、B、C三种元素,其排列方式如图所示(其中前后两面

晶体结构,配合物结构知识点与习题1-1

晶体结构 一、基本概念(The Basic Concepts ): 1.晶体(Crystals ): (1)物质的质点(分子、离子或原子)在空间有规则地排列而成的、具有整齐外形的、以多面体出现的固体物质,称为 晶体。 (2) 晶体有同质多象性 由同样的分子(或原子)可以以不同的方式堆积成不同的晶体,这种现象叫做同质多象性。但 同一种物质的气态、液态只存在一种结构。 (3) 晶体的几何度量和物理效应常随方向不同而表现出量上的差异,这种性质称为各向异性。 2.晶格(Crystal lattices ) (1) 以确定位置的点在空间作有规则的排列所具有一定的几何形状,称为晶体格子,简称为晶格。 Fig. 8.10 The 14 Bravais unit cells 3.晶胞(Unit cells ) (1) 在晶格中,含有晶体结构,具有代表性的最小单元,称为单元晶胞,简称晶胞。 (2) 在晶胞中的各结点上的内容必须相同。 (3) 晶胞参数 晶胞参数:a 、b 、c 、α、β、γ (4) 分数坐标 用来表示晶胞中质点的位置 例如: 简单立方 立方体心 立方面心 (0, 0, 0) , (0, 0, 0), ( 21,21,21) (0, 0, 0) (21,21,0), (21,0,21), (0,21,2 1 ) 在分数坐标中,绝对不能出现1,因为1即0。这说明晶胞是可以前后、左右、上下平移的。等价点只需要一个坐标来表 α βγb c a

118 示即可,上述三个晶胞中所含的质点分别为1、2、4,所以分数坐标分别为1组、2组和4组。 (5) 晶面指数 晶面在三维空间坐标上的截距的倒数(h 、k 、l )来表示晶体中的晶面,称为晶面指数,如立方晶系中 (100),(110),(111)面分别为 (100) (110) (111) l Fig. 8.12 Selected planes and their Miller indices for cubic system 用X-ray 的衍射可以测量晶体中的面间距,2d ·sin θ = n ·λ。 d -晶体的面间距,θ-衍射角,n -衍射级数,λ-X-ray 的波长。 对于立方晶系,面间距(d )晶胞参数(a )之间的关系式: 222l k,h,/l k h a d ++= 4.根据晶体中质点内容的不同,晶体可分类成:金属晶体(metallic crystals )、离子晶体(ionic crystals)、原子晶体(atomic crystals)、分子晶体(molecular crystals)、混合晶体(mixture crystals) 二、金属键与金属晶体(Metallic Bond and Metallic Crystals ) 1.金属键理论(Metallic bond ) (1) 改性的共价键理论 (2) 能带理论(band theory )(以分子轨道理论为基础) (a) 能带理论的基本要点 (i) 按照分子轨道理论,把整个金属晶体看作一个大分子,把金属 中能级相同的原子轨道线性组合(原子轨道重叠)起来,成为整个金属晶体共有的若干分子 轨道,合称为能带(energy band),即金属晶体中的n 个原子中的每一种能量相等的原子轨道重叠所形成的n 个分子轨道,称为一个 能带; Fig. 8.15 Bands of molecular orbitals in a metal crystal. Fig 8.14 Arrangement of atoms in a lithium crystal

放大电路中反馈的基本概念与类型判断方法

页脚内容壹 放大电路中反馈的基本概念与类型判断方法(教案) 反馈在电路中的应用十分广泛,特别是在精度、稳定性等方面要求较高的场合,往往通过引入含有负反馈的放大电路,以达到提高输出信号稳定度、改善电路工作性能(例如,提高放大倍数的稳定性、改善波形失真、增加频带宽度、改变放大电路的输入电阻和输出电阻等)的目的。 反馈是指将电路输出信号(电压或电流)的一部分或全部,通过一定形式的反馈网络送回到输入回路,使得净输入信号发生变化从而影响输出信号的过程。 引入反馈的放大电路称为反馈放大电路,它由基本放大电路A 和反馈网络F 构成,如图所示。 图1 反馈放大电路的组成框图 反馈放大电路中,i x 是反馈放大电路的原输入信号,o x 为输出信号,f x 是反馈信号,id x 是基本放大电路的净输入信号。基本放大电路A 实现信号的正向传输,反馈网络F 则将部分或全部输出信号反向传输到输入端。 判断一个放大电路中是否存在反馈的方法是:观察放大电路中有无反馈通路,即观察放大电路输出回路与输入回路之间是否有电路元件起桥梁作用。若有,则存在反馈通路,即电路为反馈放大电路;反之,则无反馈通路,即电路为开环放大电路。

根据反馈信号与原输入信号的合成类型(相加或相减,反馈极性),可将反馈电路分为正反馈与反馈;根据反馈信号中所含成分的不同,可将反馈电路分为直流反馈与交流反馈;根据反馈信号与原输入信号在放大电路输入端合成方式的不同,可将反馈电路分为串联反馈与并联反馈;根据输出信号反馈端采样方式的不同,可将反馈电路分为电压反馈与电流反馈。为了正确分析反馈对电路性能的影响,首先必须知道如何来区别和判断反馈的类型。 1.直流反馈与交流反馈的判断 仅在放大电路直流通路中存在的反馈称为直流反馈。直流反馈影响放大电路的直流性能,如直流负反馈能稳定静态工作点。 仅在放大电路交流通路中存在的反馈称为交流反馈。交流反馈影响放大电路的交流性能,如增益、输入电阻、输出电阻及带宽等。 在放大电路交直流通路中均存在的反馈,称为交直流反馈。 例: 图2 直流反馈放大电路 页脚内容贰

放大电路中反馈类型的判断技巧

放大电路中反馈类型的判断技巧 【摘要】反馈是电子线路中的重要内容,反馈的类型判断包括交、直流反馈的判断,正、负反馈的判断,电压、电流反馈的判断,串联、并联反馈的判断,迅速,准确判断反馈的类型,有利于我们正确的分析电路的功能,有利于我们在电路设计中利用反馈来改善电路的性能。 【关键词】电子线路;反馈;判断;反馈类型 负反馈在电子电路中的应用非常广泛,引入负反馈后,虽然放大倍数降低了,但是换来很多好处,在很多方面改善了放大电路的性能。例如,提高了放大倍数的稳定性;改善了波形失真;尤其是通过选用不同类型的负反馈,来改变放大电路的输入电阻和输出电阻,以适应实际的需要。在电子技术的教学中,负反馈的判断一直是一个重点和难点内容。以下为反馈类型的判断方法。 1.判断反馈回路的元件 电路的放大部分就是晶体管或运算放大器的基本电路。而反馈是把放大电路输出端信号的一部分或全部引回到输入端的一条回路。这条回路通常是由电阻和电容构成。寻找这条回路时,要特别注意不能直接经过电源端和接地端,例如图1如果只考虑极间反馈则放大通路是由T1的基极到T1的集电极再经过T2的基极到T2的集电极;而反馈回路是由T2的集电极经R1至T1的发射极。反馈信号Uf=Ve1影响净输入电压信号ube1。 任何同时连接着输出回路和输入回路,并且影响着输入回路的元件,都是反馈元件。所以可以通过直接观察电路的方法,很快地辨认出电路的反馈元件。例如课件图2所示,图2a)中电阻Rf是反馈元件;而图2b)中电阻Rf就不是反馈元件,因为它只连接到输入端的接地点,并没有对输入端起到任何影响。 2.反馈类型的判断 2.1 交直流的判断 根椐电容“隔直通交”的特点,我们可以判断出反馈的交直流特性。如果反馈回路中有电容接地,则为直流反馈,其作用为稳定静态工作点;如果回路中串联电容,则为交流反馈,改善放大电路的动态特性;如果反馈回路中只有电阻或只有导线,则反馈为交直流共存。如图3所示: 2.2 正负反馈的判断 正负反馈的判断使用瞬时极性法。瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。这个信号通过放大电路和反馈回路回到输入端。反馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。在

晶体类型的判断与比较怎样比较熔点的高低

晶体类型的判断与比较,晶体结构的计算,怎样比较熔点的高低, 8晶体类型的判断与比较 1、判断晶体类型的方法 (1)依据物质的分类判断 金属氧化物(如K2O、Na2O2等),强碱(如NaCl、KOH等)和绝大多数的盐类是离子晶体。大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼外)、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除有机盐外)是分子晶体。常见的原子晶体单质有金刚石、石墨、晶体硅、晶体硼等;常见的原子晶体化合物有碳化硅、二氧化硅等。金属单质(除汞外)与合金都是金属晶体。 (2)依据物质的性质判断 离子晶体的熔点较高,常在数百至1000余度;原子晶体熔点高,常在100 0度至几千度;分子晶体熔点低,常在数百度以下至很低温度;金属晶体多数熔点高,但也有相当低的。 离子晶体水溶液及熔化时能导电,晶体不导电;原子晶体一般为非导体,但石墨等导电;分子晶体为非导体,而分子晶体中的电解质(主要是酸和非金属氢化物)溶于水,使分子内的化学键断裂形成自由移动的离子也能导电,但熔化不导电,金属晶体是良导体。 2、晶体中的几个不一定 (1)离子晶体除含离子键外不一定不含其他化学键。如氨盐中除含离子键,还含极性键和配位键;Na2O2中除含离子键还含非极性键。

(2)离子晶体不一定肯定含金属阳离子,如NH4Cl中含的阳离子是NH4+(凡是氨盐、肯定同时含离子键、极性键和配位键)。 (3)离子晶体的熔点不一定肯定低于原子晶体,如MgO的熔点高于SiO2。(4)含有阳离子的晶体不一定是离子晶体,如金属晶体中就含有金属阳离子。 (5)金属和非金属形成的晶体不一定都是离子晶体,如AlCl3就是含共价键的分子晶体 (6)具有金属光泽且能导电的单质不一定就是金属,如石墨具有金属光泽且能导电,却是非金属。 3、四类晶体的比较:

负反馈及类型的判断方法

放大电路中负反馈及类型的判断方法 段东兴 负反馈在电子电路中的应用非常广泛,引入负反馈后,虽然放大倍数降低了,但是换来很多好处,在很多方面改善了放大电路的性能。例如,提高了放大倍数的稳定性;改善了波形失真;尤其是通过选用不同类型的负反馈,来改变放大电路的输入电阻和输出电阻,以适应实际的需要。 在电子技术的教学中,负反馈的判断一直是一个重点和难点内容。学生对于这一部分内容较难理解。经过长期的教学实践,总结出以下的判断方法。该方法系统地给出了反馈的判别步骤,在教学中证明简单易学,易于理解。 1.反馈回路的判断 电路的放大部分就是晶体管或运算放大器的基本电路。而反馈是把放大电路输出端信号的一部分或全部引回到输入端的电路,则反馈回路就应该是从放大电路的输出端引回到输入端的一条回路。这条回路通常是由电阻和电容构成。寻找这条回路时,要特别注意不能直接经过电源端和接地端,这是初学者最容易犯的问题。例如图1如果只考虑极间反馈则放大通路是由T1的基极到T1的集电极再经过T2的基极到T2的集电极;而反馈回路是由T2的集电极经R f至T1的发射极。反馈信号u f=v e1影响净输入电压信号u be1。 图1 电压串联负反馈 2.交直流的判断 根据电容“隔直通交”的特点,我们可以判断出反馈的交直流特性。如果反馈回路中有电容接地,则为直流反馈,其作用为稳定静态工作点;如果回路中串连电容,则为交流反馈,

改善放大电路的动态特性;如果反馈回路中只有电阻或只有导线,则反馈为交直流共存。图1种的反馈即为交直流共存。 3.正负反馈的判断 正负反馈的判断使用瞬时极性法。瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。这个信号通过放大电路和反馈回路回到输入端。反馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。在这一步要搞清楚放大电路的组态,是共发射极、共集电极还是共基极放大。每一种组态放大电路的信号输入点和输出点都不一样,其瞬时极性也不一样。如图2所示。相位差1800则瞬时极性相反,相位差00则瞬时极性相同。运算放大器电路也同样存在反馈问题。运算放大器的输出端和同相输入端的瞬时极性相同,和反相输入端的瞬时极性相反。 图2 不同组态放大电路的相位差 依据以上瞬时极性判别方法,从放大电路的输入端开始用瞬时极性标识,沿放大电路、反馈回路再回到输入端。这时再依据负反馈总是减弱净输入信号,正反馈总是增强净输入信号的原则判断出反馈的正负。 在晶体管放大电路中,若反馈信号回到输入极的瞬时极性与原处的瞬时极性相同则为正反馈,相反则为负反馈。其中注意共发射极放大电路的反馈有时回到公共极——发射极,此时反馈回到发射极的瞬时极性与基极的瞬时极性相同则为负反馈,相反则为正反馈。图1中的瞬时极性判断顺序如下:T1基极(+)→T1集电极(-)→T2基极(-)→T2集电极(+)→经R f至T1发射极(+),此时反馈回到发射极的瞬时极性与基极的瞬时极性相同所以电路为负反馈。在运算放大器反馈电路中,若反馈回来的瞬时极性与同一端的原瞬时极性相同则为正反馈,相反则为负反馈;若反馈回来的瞬时极性与另一端的原瞬时极性相同则为负反馈,相反则为正反馈。 4.反馈类型的判断 反馈类型是特指电路中交流负反馈的类型,所以只有判断电路中存在交流负反馈才判断反馈的类型。反馈是取出输出信号(电压或电流)的全部或一部分送回到输入端并以某种形

相关文档
最新文档