飞剪的机构分析与设计任务书
飞剪的机构分析与设计

《机械原理课程设计》廖汉元孔建益闻欣荣李佳编撰武汉科技大学机械自动化学院机械设计与制造教研室1999年5月(02年再版)飞剪机构分析与设计任务书一.工艺要求1.剪切运动速度为V t=2m/s的钢板,拉钢系数=V刀/ Vt=[],[]=~2.两种钢板定尺(长度)L=1m; ;3.剪切时上下剪刃有间隙,剪切后上下剪刃不发生干涉(相碰);4.剪切时上、下剪刃沿钢板运动速度方向的速度相对误差:ΔV刀[]二.给定参数1.工艺参数图 1剪切力F=10T=98kN;支座A距辊道面高约为 h250mm(如图1);刀刃重合量Δh5mm;钢板厚度Δb=1mm;2.机构设计参数按定尺L=1m给出机构的行程速比系数k 、远极位传动角2、摇杆摆角:表1 参数与方案三.设计内容1.根据工艺要求制定机构方案,定性比较各方案的优、劣;2.设计出满足工艺要求的机构尺寸及上下剪刃的位置尺寸;3.根据最终设计结果按比例绘制机构运动简图及上下剪刃的轨迹;4.进行机构的运动及力分析,检验上下剪刃的速度相对误差、拉钢系数是否满要求,并求出曲柄上的平衡力矩M b《飞剪机构分析与设计》指导书二,对剪机运动的要求:1.曲柄转一圈对钢材剪切一次;2.剪切时,上、下剪刃速度相对误差小于其许用值:V 刀=2|V Et -V Ft |/(V Et +V Ft ) = .3.剪切时,上下剪刃应与钢材运动同步。
一般希望剪刃速度略大于钢材运动速度,即拉钢系数>1:V 刀= (V Et +V Ft )/2;= V 刀/ V t = =~. 4.能调节钢材的剪切长度L三,设定参数1.工艺参数剪切力F=10T=98kN 支座A 距辊道面高约为h 250mm刀刃重合量Δh5mm 钢板厚度Δb=1mm 2.机构设计参数按定尺L=1m 给出机构的行程速比系数k 、远极位传动角2、摇杆摆角如表1所示。
四.机构的型综合首先对工艺要求进行分析,把工艺要求变换为对机构运动的要求,然后根据对机构的动作要求进行型综合。
FJ08飞剪电控任务书

旋转飞剪电控设计任务书1 概述1.1 用途该飞剪安装在连轧机组上,用于对轧制中的带钢降速后进行分断。
1.2 主要技术性能和规格剪切材料————————Q195~Q235、08Al、08F剪切带钢厚度———————0.2~1.5 mm剪切带钢宽度———————800~1350 mm剪切带钢强度极限—————σb≤800N/ mm 2剪切带钢屈服极限—————σs≤750N/ mm 2剪切速度——————————60~180m/min(带钢厚度≥0.2~0.5mm时,最高剪切速度180m/min带钢厚度≥0.5~1.0mm时,最高剪切速度150m/min带钢厚度≥1.0~1.5mm时,最高剪切速度120m/min) 剪切周期——————————0.5~1s高速轴与剪刃轴之速比———— 4.2857设备传动件的GD2[折算到电机轴上(包括电机)]—16.33kg²m22 随设备携带的电控器件2.1 主电机(用户自备直流调速电机带编码器)(1台)型号————————————ZFQZ-250-11B功率————————————100kW电压————————————440V转速————————————1050r/min起动转矩/ 额定转矩—————≥3.0倍转动惯量J —————————≤2kg²m2冷却方式——————————强迫冷却2.2 稀油润滑油泵电机(2台)型号————————————Y802-4功率————————————0.75kW电压————————————380V转速————————————1500r/min2.3 干油润滑油泵(1台)型号————————————DDB-10 JB/ZQ4088-85功率————————————0.37kW2.4 编码器(3个)型号———————————2.5 行程开关(1个)型号———————————3机构与结构本飞剪的结构形式为电控旋转飞剪。
飞剪的机构分析与设计

图 1一.工艺要求1.剪切运动速度为V t =2m/s 的钢板,拉钢系数δ=V 刀/ V t =[δ], [δ]=1.01~1.052.两种钢板定尺(长度)L=1m; 0.65m ;3.剪切时上下剪刃有间隙,剪切后上下剪刃不发生干涉(相碰);4.剪切时上、下剪刃沿钢板运动速度方向的速度相对误差: ΔV 刀≤0.05=[ε]二.给定参数1.工艺参数剪切力F=10T=98kN;支座A 距辊道面高约为 h ≈250mm(如图1);钢板厚度Δb=1mm;2.机构设计参数按定尺L=1m 给出机构的行程速比系数k 、远极位传动角2、摇杆摆角:表1 参数与方案三.设计内容1.根据工艺要求制定机构方案,定性比较各方案的优、劣;2.设计出满足工艺要求的机构尺寸及上下剪刃的位置尺寸;3.根据最终设计结果按比例绘制机构运动简图及上下剪刃的轨迹;4.进行机构的运动及力分析,检验上下剪刃的速度相对误差、拉钢系数是否满要求,并求出曲柄上的平衡力矩M b《飞剪机构分析与设计》指导书二,对剪机运动的要求:1.曲柄转一圈对钢材剪切一次;2.剪切时,上、下剪刃速度相对误差小于其许用值:△V 刀=2|V Et -V Ft |/(V Et +V Ft )≤ [ε] = 0.05.3.剪切时,上下剪刃应与钢材运动同步。
一般希望剪刃速度略大于钢材运动速度,即拉钢系数δ>1: V 刀= (V Et +V Ft )/2;δ= V 刀/ V t =[δ] =1.01~1.05. 4.能调节钢材的剪切长度L三,设定参数1.工艺参数剪切力F=10T=98kN 支座A 距辊道面高约为h ≈250mm 刀刃重合量Δh ≈5mm 钢板厚度Δb=1mm 2.机构设计参数按定尺L=1m 给出机构的行程速比系数k 、远极位传动角γ2、摇杆摆角ψ如表1所示。
四.机构的型综合首先对工艺要求进行分析,把工艺要求变换为对机构运动的要求,然后根据对机构的动作要求进行型综合。
《飞剪机构分析与设计》补充资料(doc 8页)

《飞剪机构分析与设计》补充资料(doc 8页)<<飞剪机构分析与设计>>补充资料一、 正弦飞剪机构的设计1、 建立机构设计的计算模型e 、f 为由刀刃安装确定的结构尺寸,Δh 为刀刃重合量。
刀刃E 的位置方程: x E =acos ϕ1+e y E =asin ϕ1.刀刃E 的速度方程: x 'E = -a ω1sin ϕ1 y 'E =a ω1cos ϕ1. 剪切角ϕ01: cos ϕ01=(a-Δh )/a曲柄半径a :要求开始剪切的刀刃速度y 'E 为[δ]v t ,由此得到: [δ]v t = a ω1(a-Δh )/a a= [δ]v t /ω1+Δh 。
轭架结构尺寸d : d=a+e+Δh+f 。
2、 计算实例:已知:vt=2m/s,L=1m, Δh=5mm, [δ]=1.025,Δv 刀<0.05。
曲柄角速度:ω1=2πv t /L=2π×2/1=4π/ s 曲柄半径:a= [δ]v t /ω1+Δh=1.025×2000/(4π)+5=168.1338mm 。
剪切角ϕ01:cos ϕ01=(a-Δh )/a=(168.1338-5)/168.1338=0.97026188 ϕ01=-14.0080140°轭架结构尺寸d :若取e=f=250md=a+e+Δh+f=168+250+5+250=673mm 。
校验机器性能 刀刃剪钢速度:AB n1E FΔe f d ϕϕ10xy ax EEy Ex'E= -aω1sinϕ1=-168×4π⨯sin(-14.0080140)=511.02mm/s.y'E=v Et=aω1cosϕ1.=168×4π⨯cos(-14.0080140)=2047.7248mm/s=V Ft δ=2047.7248/2000=1.0239。
电气设计任务书-飞剪(0728)

一、用途切头飞剪用于将运行中的钢坯切去头部和尾部,以便钢坯顺利进入精轧机,并且可以提高成品的头、尾质量。
二、结构设备组成切头飞剪采用转鼓式结构,由一台750kW交流电机通过齿式联轴器与主减速机相连,主减速机输出端通过鼓形齿联轴器与下转鼓相连。
上下转鼓间由同步齿轮相连。
当电机转动时带动下转鼓转动,上转鼓也同时转动,由装在上下转鼓上的剪刃剪切带坯。
上下转鼓经双列园柱滚子轴承装到机架内,机架通过预紧螺栓与底座把合一起(见图1)。
图1 飞剪结构简图三、技术数据结构形式:转鼓式剪刃布置:双剪刃90°轧件断面尺寸:34×1430 (管坯钢)40×1580 (普炭钢)最大剪切力: 6500kN剪切力矩: 1750kNm剪切温度:900℃-1050℃(管坯钢)870℃-1050℃(普炭钢)剪切速度:0.5-2m/s剪刃重叠量: 8mm剪刃长度: 1700mm转鼓中心距: 1000mm剪刃回转半径:max.504mm剪刃间隙:0.6-0.9mm材料剪切强度极限: 115 N/mm2(管坯钢900℃时)100 N/mm2(普炭钢900℃时)最大切头长度: 300mm切头长度误差:±30mm折算到电机轴上的转动惯量: 285kgm2(不包括电机)主电机:Z560-2P 750kW n=0-600r/min主减速机速比:i=22.0848四、工作方式飞剪剪前辊道运送钢坯。
剪前导尺使钢坯对中。
测速辊测量出带坯的速度,然后反馈至控制系统控制转鼓速度,使带坯的运行速度与剪切速度相匹配(切头时剪刃水平分速度超前带坯速度1%-5%,切尾时剪刃水平分速度滞后带坯速度1%-5%)。
在不剪切时,剪刃处于等待位置,就是剪刃的静止位置,在此位置上带钢通过飞剪,而剪刃则由冷却水进行冷却。
除了切头切尾外,剪刃均处于该位置。
此时切头剪刃处于270°,切尾剪刃处于180°(见图2)。
图2 剪刃等待位置(通钢位置)(从操作侧看)当飞剪得到切头的指令后,首先将切头剪刃转到240°,该位置就是剪刃的起动位置,当飞剪得到切头起动的指令后,切头剪刃即从240º位置起动加速,在17.75°开始进入剪切,至0°剪切完成,在-20°位置开始制动,在130°位置制动结束,然后再返回到270°等待位置,等待下一个切头指令,再重复以上全过程(见图3)。
飞剪机减速器及四连杆执行机构设计说明书

3.电机的选择(1)电动机所需工作功率为wd p P η=工作所需功率为为1000w FvP =,取连杆机构的急回系数k=1.4则往返时间比为7:5,求得 2.9246w P w =32a 123430.960.990.970.60.526ηηηηη=⋅⋅⋅=⨯⨯⨯=2.92465.560.526Wd aP P W η=== (2) 取同步转速为 1440r/min 的电机,则电机选择为: Y132M-4,P 额=7.5KW机座号132M:D=38,E=80,H=132。
4.传动比的分配(1)总传动比1440/min 3640/minm a w n r i n r === (2)分配传动装置各级传动比 取V 带传动比为01 2.5,V =则减速器传动比为0114.4ai i =, 1223124.493.20ai i i i ⎧==⎪⇒⎨==⎪⎩5.运动和动力参数计算● 0轴000005.561440/min 9550/36.9m P P KW N N r T P N N M ======总,● 1轴11101115.34576/min 9550/105.3P P KW N N r T P N N Mη======0,● 2轴22321122225.13/128.3/min 9550/377.8P P KW N N i r T P N N M ηη======1,● 3轴32332233334.92/40/min 9550/1162.5P P KW N N i r T P N N M ηη======2,M )输出 36.9 104.2二、 传动零件设计级合理21cos 10 1.45324062.31001.703A t H F b Z b NF b K εαααεββ===⎩===其中∴强度合理设计计算依据和过程∴强度合理中间级齿轮1cos 10 1.4955612983127100A t H Z b N F b K εααεβ====>⎩∴σ⇒=∴强度合理设计计算依据和过程∴强度合理设计计算依据和过程三、轴的设计四、轴承的选择与校核1 20.22 0.302rre X==⇒2)2552,2029r aXF YFN P+=120.6930.304r r F F ==10.3770.550r F F ==五、键的选择与校核安全∴强度设计合理安全∴强度设计合理安全∴强度设计合理转矩1174T N =⋅∴强度设计合理安全转矩1174T N =⋅∴强度设计合理安全(1)与键4(2)强度校核略六、减速器箱体及附件的设计1.减速器箱体结构尺寸2,δ∆取110.2mm =2.润滑和密封形式的选择1)轴系轴承采用脂润滑,齿轮采用油润滑。
70万吨线材线3#飞剪控制任务书

70万吨线材线3#飞剪系统电控设计任务书2018年2月一、设备用途3#飞剪位于预精轧之后,精轧之前。
具有切头,切尾功能,并与碎断剪配合实现碎断功能。
二、设备主要性能参数1.1设备主要功能描述● 切头剪:飞剪型号FJ-3#C剪切形式回转式飞剪剪切功能切头、切尾工作制度启/停式工作制剪切材料断面≤φ30mm剪切温度≥850℃剪切速度 V= 5~16.5m/s回转半径R=455mm传动比i=1.26剪刃宽度220 mm润滑系统稀油集中润滑(油压)0.1~0.3 Mpa● 碎断剪:飞剪型号 FJ-3#D剪切形式回转式飞剪剪切功能碎断工作制度连续工作制剪切材料断面≤707 mm2剪切温度≥850℃剪切速度 V= 5~16.5m/s回转半径R=200mm传动比i=1剪刃宽度130 mm润滑系统稀油集中润滑(油压)0.1~0.3 Mpa代表钢种25MnSiV、40MnSiV1.2所选电机技术参数:● 飞剪:型号额定功率186KW 额定转速1500r/min额定电压440V● 碎断剪:型号额定功率110KW 额定转速1500r/min额定电压440V三、受控制的装置飞剪主传动直流电动机1台碎断剪主传动直流电动机 1台润滑压差开关 2个飞剪热金属检测器 2 个轧机编码器 1 只飞剪编码器 2 只接近开关 2 只电磁阀 3 只四、控制要求(建议)4.1 控制概述如下图所示,该飞剪控制系统主要分三大部分:PLC控制系统,直流驱动系统,电机和飞剪机械部分执行系统。
通过控制柜面板或主控室里的上位机画面可以实现主机的分合闸,通过画面、操作台以及机旁操作箱上的控制元件可以完成对飞剪的控制,同时通过HMI可以对PLC进行剪切方式、剪切长度及剪切速度的设定。
控制方案见下图1(控制方案图)图1:控制方案图系统工作过程如下:4.1.1剪切过程控制当成品线材经过传感器时,传感器给PLC发出有钢信号,同时PLC启动计数器记录末架轧机编码器上的脉冲数,PLC根据脉冲计算出线材的长度等于要求剪切长度时便给直流驱动系统发出剪切命令,飞剪机械部分做出相应剪切动作。
飞剪机构设计讲稿(new)(11年2)共46页

3.刀刃刀刃位位予置置选应确同机定时架考倾虑刀角刃重4合(量=1h 0, 及上下刀刃水平使速曲度基柄本与相等机的架要求共。线
1
2
A
b 2
C
3
a B
4
c
eF
E
3
f
y h
h
D
P P34 24
x
4
图7
11
fdc o4 sh
e(f h)2(da)22(f h)d (a)c o41/s2
E
a LCE e
2
2
3
L 4
E F h
1 3 f
h
c
分别由BEC和
1
D P34(P24)
DFC求出1和2 x
图8
12
5.调整上下刀刃水平速度误差
(调整机架倾角4)
12
1
y
V E=V C+V EC V F=V C+V FC
若E=90,
2 C
Aa
B
b
13
1
y
E = E -90
Aa
LCE
4 = 4 - E
B
2 b C
2
e 2
h E F h
3
L 4
E
1
f
3
c
1 = 1 - E
D P34(P24)
2 = 2 - E x
图8
3 = 3 - E
13
6,曲柄半径的调整
由于VB未知,故作如下假设:
k1=vB/v刀---------曲柄销的速度与上下刀刃平均水
平速度之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 1一.工艺要求1.剪切运动速度为V t =2m/s 的钢板,拉钢系数湖δ=V刀/ V t =[δ],[δ]=1.01~1.052.两种钢板定尺(长度)L=1m; 0.65m ; 3.剪切时上下剪刃有间隙,剪切后上下剪刃不发生干涉(相碰); 4.剪切时上、下剪刃沿钢板运动速度方向的速度相对误差: ΔV 刀≤0.05=[ε]二.给定参数1.工艺参数剪切力F=10T=98kN;支座A 距辊道面高约为 h ≈250mm(如图1);钢板厚度Δb=1mm;2.机构设计参数按定尺L=1m 给出机构的行程速比系数k 、远极位传动角2、摇杆摆角:表1 参数与方案三.设计内容1.根据工艺要求制定机构方案,定性比较各方案的优、劣;2.设计出满足工艺要求的机构尺寸及上下剪刃的位置尺寸;3.根据最终设计结果按比例绘制机构运动简图及上下剪刃的轨迹;4.进行机构的运动及力分析,检验上下剪刃的速度相对误差、拉钢系数是否满要求,并求出曲柄上的平衡力矩M b《飞剪机构分析与设计》指导书二,对剪机运动的要求:1.曲柄转一圈对钢材剪切一次;2.剪切时,上、下剪刃速度相对误差小于其许用值:∆V 刀=2|V Et -V Ft |/(V Et +V Ft )≤ [ε] = 0.05.3.剪切时,上下剪刃应与钢材运动同步。
一般希望剪刃速度略大于钢材运动速度,即拉钢系数δ>1: V 刀= (V Et +V Ft )/2;δ= V 刀/ V t =[δ] =1.01~1.05. 4.能调节钢材的剪切长度L三,设定参数1.工艺参数剪切力F=10T=98kN 支座A 距辊道面高约为h ≈250mm 刀刃重合量Δh ≈5mm 钢板厚度Δb=1mm2.机构设计参数按定尺L=1m 给出机构的行程速比系数k 、远极位传动角γ2、摇杆摆角ψ如表1所示。
四.机构的型综合首先对工艺要求进行分析,把工艺要求变换为对机构运动的要求,然后根据对机构的动作要求进行型综合。
1.工艺对机构的动作要求:(1)为完成剪切,上下剪刃应完成相对分合运动;C b(2)为剪切运动中的钢材,上下剪刃在完成相对分合运动的同时还应有沿钢材方向的运动;(3)根据以上要求可知,上下剪刃运动轨迹之一应为封闭曲线(如图3a )、b)、c)所示)。
图 3 d)上下刀刃均为非封闭曲线,使得飞剪在空行程中沿钢材运动方向逆向剪切,这是不允许的。
2.机构型综合的方法及一般原则(1)固定一个构件为机架,可得到一个全铰链机构。
(2)可用移动副直接代替转动副而得到带有移动副的机构。
(3)具有两个转动副的一个构件可变换成一个高副。
(4)最简单机构原则。
首先采用最简单的运动链进行机构综合,不满足要求时才采用较复杂的运动链。
(5)最低级别机构原则。
一般采用多元连杆为机架不易得到高级别机构。
(6)不出现无功能结构原则。
(7)最低成本原则。
加工易难及加工成本按如下顺序递增:转动副、移动副、高副。
(8)最符合工艺要求原则。
表2、3和图4、5给出F=1、F=2各类运动链及其结构图,作为进行机构变换的依据。
图 3a) b)c)d)图4 F=1表2单自由度运动链表3两自由度运动链图5 F=2的运动链结构图ACDA Dc)图6 曲柄滑块机构的飞剪[机构变换例]:选用图4中最简单的F=1的四杆运动链进行机构变换。
如图6 a)所示以AD为机架;CD 为滑块、D为移动副(图6 b);上、下刀刃分别装在曲柄、滑块上(图6 c)。
方案分析:方案满足上、下剪刃运动轨迹之一应为封闭曲线的运动要求。
其最大的优点是结构简单。
但存在如下突出缺点:①横向尺寸大。
偏距大、连杆长度短将使机构压力角增大。
为减小压力角α,必需增大连杆长度BC;②调节钢材定尺困难。
定尺调短时曲柄转速增高,为使刀刃速度与钢材速度V t同步,必需减小曲柄半径AB和刀刃E的转动半径AE(图6.d 中的AB'、AE')。
由于剪切点由点K上移到K',因此必需将钢材抬起方能进行剪切,这是不允许的。
此为一个坏方案。
可见上刀刃不能装在曲柄上。
五.机构尺度设计分两步进行:1.四杆机构的相对尺寸设计;2.计算四杆机构的绝对尺寸。
1.四杆机构的相对尺寸设计(见“机械原理”P126)已知参数:k, γ2, ψ.计算机构的相对尺寸a 0 ,b 0 ,c 0 , d 0=1.2.计算四杆机构的绝对尺寸(1)曲柄半径a剪切钢板一次所需的时间t : t=L/V t (s)曲柄的转速n 1和角速度ω1:若曲柄销的速度为V B ,则曲柄半径a 为:a=V B /ω1. 设:k 1=v B /v 刀 (k 1为曲柄销B 点的速度与刀刃平均速度之比) V B =k 1V 刀=k 1[δ]V t . 由此得到:a=k 1 [δ]V t /ω1,或 a=k 1 [δ]L/(2π) (2)初步设计时k 1可任选。
(*机构初步设计完成后再重新确定k 1)C2 四杆机构的绝对尺寸相对尺寸为:a 0 , b 0 ,c 0 ,d 0 。
绝对尺寸为:a ,b ,c ,d:求比例尺μL =a/a 0。
得绝对尺寸:a=μL a 0, b=μL b 0, c=μL c 0, d=μL 。
3.刀刃位置确定 如图8所示,取机架角α4=10︒~30︒且使曲柄与机架共线的机构位置来确定刀刃位置尺寸,这是考虑到:可得到刀刃重合量Δh ,且此时有v Ft ≈v Et (此时连杆的绝对瞬心在D 点且有ω2=ω3)。
若计算出f 、α3、e 、α2,即确定了刀刃F 、E 的位置。
f=dcos α4-h (3) e={(f-Δh)2+(d-a) 2-2(f-Δh)(d-a)cos α4}0.5. (4)初步计算α3、α2:α3=α4+Δα。
Δα由ΔBCD 按余弦定理求出。
α3求出后可由ΔBDE 和ΔBDF 求出L CE 、L CF 。
然后由ΔBCE 按余弦定理求出α2。
注意到点E 、F 应满足重合(剪切),即L CE =L CF 。
故令L CEF =(L CE +L CF )/2 (5)按长度L CEF 及尺寸b,e,c,f 重新计算a 2*、 a *34.剪切角ϕ1(0)的确定:剪切角ϕ1(0)即剪切时所对应的曲柄转角。
由图9知:ϕ1(0)=α4-∠DAB.∠DAB 由ΔADB 按余弦定理求解。
长度L BD 由ΔBE (F )D 求得,ΔBED 的角 δ=∠BEC+∠DEC 。
∠BEC 、∠DEC 分别由ΔBEC 、ΔDEC 按余弦定理求解。
5.调整上下刀刃水平速度误差当曲柄转角ϕ1=ϕ1(0)时飞剪对钢材进行剪切。
此时若上、下刀刃E 、F 沿钢材方向的速度误差太大,则出现倾斜的钢材切口,甚至不能切断钢材。
因此必需调整某参数以控制上、下刀刃的速度误差。
上、下刀刃的速度可写成如下矢量方程:V E =V C +V ECV F =V C +V FC 若V EC 、V FC 垂直于钢材运动方向(即CE (F )线与钢材运动方向平行),则其在钢材运动方向的分量为零,V E 、V F 沿钢材的分量即V C 沿钢材的分速度而相等。
故计算CE (F )的位置角ϕE ,再使整个机构沿顺时针转动以使CE (F )线与钢材运动方向平行。
即调整机架倾角a 4使上、下刀刃的速度误差为零。
先对机构进行运动分析求出ϕ2角(参考《机械原理》p29~p30),再由矢量多边形方程BE=BC+CE 由下式求ϕE 角:tan =[esin()-bsin]/[ecos()-bcos] (6)∆φ E = φ E -90︒ (7)∆φ E 即整个机构沿顺时针转动的角度。
按下式计算机构转动后的机架倾角和各构件的位置角:α*4 = α4 - ∆φ E φ(0)*1 = φ(0)1 - ∆φ E φ*2 = φ2 - ∆φ E φ*3 = φ3 - ∆φ E6,调整刀刃与钢材运动速度同步先进行运动分析求出ω2、ω3,再由矢量方程AE=AB+BE 求上、下刀刃沿钢材方向的速度分量V Et=y E'、V Ft=y F'(机构的运动分析参考《机械原理》p29~p30)。
求出上、下刀刃沿钢材方向的平均速度V刀及拉钢系数δ:V刀=(V Et+ V Ft)/2 (8)δ= V刀/ V t (9)一般δ≠[δ],即上、下刀的速度不满足预先选定的拉钢系数要求。
由于曲柄转速不能调整故应调整曲柄半径。
初定曲柄半径a时公式中的k1(为曲柄销B点的速度与刀刃平均速度之比)是任意选定的,故应按下式计算出实际的k1*值后重新计算曲柄半径a*: k1*=aω1/ V刀,(10)a*=k1*[δ]V t/ω1,或a*=k1*[δ]L/(2π) (11)为保证原始给定参数γ2、k、ψ不变,各长度尺寸应作如下调整:b=, c=d=e=f=由此得到满足给定设计要求的机构尺寸为带*的参数,其剪切角为φ(0)*1。
7,求曲柄的平衡力矩M b如图8所示,M bω1-F c V Ex+F c V Fx=0M b=F c(VEx -VFx)/ ω1(12)六.机构设计性能校验(用带*号尺寸计算)1,检验剪切(φ1=φ(0)*1)时,上下刀刃对刀误差:△x=2│x E-x F│/( x E + x F);△y=2│y E-y F│/( y E + y F).2,检验剪切时上下刀刃是否与钢材运动速度同步(δ=[δ]);3,检验剪切时上下刀刃速度的相对误差∆v刀≤0.054 ,检验机构是否达到给定设计要求(k、γ2 、ψ)5,从结构尺寸、传力性能等方面与方案5比较其优劣。
(作方案5的与方案1比较)七.设计的内容及要求(一)设计说明书内容(仅供参考)1,设计任务(题目;具体设计内容);2,飞剪的工作原理及工艺要求;3,原始数据(工艺参数;设计参数);4,机构型综合(型综合原理;工艺对机构动作的要求;三种方案的比较:本计算方案、自己的方案、小组内自选一方案);5,机构的尺寸设计(四杆机构相对尺寸计算;刀刃位置尺寸及剪切角的确定方法;机构绝对尺寸计算及调整的原理与方法;最终设计结果);6,机构的平衡力矩计算;7,主要结论(与方案5(1)比较列出机器的尺寸参数及性能;从机器的尺寸大小、机重、传力等方面比较本方案的优缺点);8,结束语(设计心得与体会)9,参考文献(作者.文献名.出版社.出版年月.卷期号[或页号])1(二)设计的具体要求1,按自己的设计绘制机构型综合3 #图一张。
要求:1)如何从运动链变换得到;2)按合理的比例绘制机构简图;3)按比例画出上下刀刃的轨迹并判断方案的合理性;分析优缺点。
4)图面填充率不小于75%,文字用仿宋体书写。
2,按机构设计的最终尺寸,按比例绘制机构图(2#图)及上下刀刃的轨迹。
要求:1)标出尺寸、运动副、位置参数等的代号,列表标出其数值;2)以X为起始位置将曲柄圆周等分为12等分,图解求点E、F的轨迹(加剪切点共13个点位); 3)列表标出点E、F坐标的图解值与理论值及其相对误差(%)。