纳米粒度分析
纳米材料粒度测试方法大全

纳米材料粒度测试方法大全目前,纳米材料已成为材料研发以及产业化最基本的构成部分,其中纳米材料的粒度则是其最重要的表征参数之一。
本文根据不同的测试原理阐述了8种纳米材料粒度测试方法,并分析了不同粒度测试方法的优缺点及适用范围。
1.电子显微镜法电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(SEM)和透射电子显微镜法(TEM)。
对于很小的颗粒粒径,特别是仅由几个原子组成的团簇,采用扫描隧道电镜进行测量。
计算电镜所测量的粒度主要采用交叉法、最大交叉长度平均值法、粒径分布图法等。
优点:该方法是一种颗粒度观测的绝对方法,因而具有可靠性和直观性。
缺点:测量结果缺乏整体统计性;滴样前必须做超声波分散;对一些不耐强电子束轰击的纳米颗粒样品较难得到准确的结果。
2.激光粒度分析法激光粒度分析法是基于Fraunhofer衍射和Mie氏散射理论,根据激光照射到颗粒后,颗粒能使激光产生衍射或散射的现象来测试粒度分布的。
因此相应的激光粒度分析仪分为激光衍射式和激光动态散射式两类。
一般衍射式粒度仪适于对粒度在5μm以上的样品分析,而动态激光散射仪则对粒度在5μm以下的纳米、亚微米颗粒样品分析较为准确。
所以纳米粒子的测量一般采用动态激光散射仪。
优点:样品用量少、自动化程度高、重复性好, 可在线分析等。
缺点:不能分析高浓度的粒度及粒度分布,分析过程中需要稀释,从而带来一定误差。
3.动态光散射法动态光散射也称光子相关光谱,是通过测量样品散射光强度的起伏变化得出样品的平均粒径及粒径分布。
液体中纳米粒子以布朗运动为主,其运动速度取决于粒径、温度和黏度系数等因素。
在恒定温度和黏度条件下, 通过光子相关谱法测定颗粒的扩散系数就可获得颗粒的粒度分布,其适用于工业化产品粒径的检测,测量粒径范围为1nm~5μm的悬浮液。
优点:速度快,可获得精确的粒径分布。
缺点:结果受样品的粒度大小以及分布影响较大,只适用于测量粒度分布较窄的颗粒样品;测试中应不发生明显的团聚和快速沉降现象。
纳米粒度分析

10
100 Diameter (nm) Record 41: H in PBS b
1000
10000
5nm 和 50nm的球形颗粒、数量相同 50nm的球形颗粒、数量相同
NUMBER VOLUME 4 3 = πr 3
Relative % in class
INTENSITY =d6
Relative % in class
Raw Correlation Data
0.8000
0.7000
0.6000
Correlation Coefficient
0.5
0.4000
0.3000
0.2000
0.1000
0 0.1000
10.
1000. Time (us)
1.e+5
1.e+7
1.e+9
非常大的颗粒,高分布宽度, 非常大的颗粒,高分布宽度,存在非常大的颗粒
光强度与粒径的关系
体积与粒径的关系
数量与粒径的关系
体积分布:V α d3
Size DistriHale Waihona Puke ution by V olume 15
Volume (%)
10
5
0 1
10
100 Diameter (nm) Record 41: H in PBS b
1000
10000
数量分布:Nα d
Size Distribution by N umber 25 20 Number (%) 15 10 5 0 1
光子相关光谱法(PCS):测量悬浮液中做布 光子相关光谱法(PCS):测量悬浮液中做布 ): 朗运动的粒子数和粒径之间的关系。 朗运动的粒子数和粒径之间的关系。也称作动 态光散射( 态光散射(Dynamic Light Scattering , DLS)。 )。
第六章 纳米材料检测及表征技术

5.纳米材料表面与界面分析
5.1 纳米材料表面与界面分析方法
分析对象: • 纳米薄膜材料 • 特别是固体材料 (元素化学态分析、元素三维分布分析以 及微区分析)
• 常用分析方法: X射线光电子能谱(XPS) 俄歇电子能谱(AES) 静态二次离子质谱(SIMS) 离子散射谱(ISS)
50% 40% 8%
纳米材料有以下性质。 4.1.1. 小尺寸效应 当纳米微粒尺寸与光波的波长、传导电子的德布罗意
波长以及超导态的相干长度或穿透深度等物理特征尺寸相当时,晶体周期性
的边界条件将被破坏,声、光、力、电、热、磁、内压、化学活性等与普通 粒子相比均有很大变化,这就是纳米粒子的小尺寸效应(也称体积效应)。 4.1.2. 表面与界面效应 纳米粒子由于尺寸小、表面积大、表面能高、位 于表面的原子处于严重的缺位状态,因此其活性极高,很不稳定,遇到其它 原子时很快结合,这种活性就是表面效应。 4.1.3. 量子尺寸效应 当微晶尺寸与德布罗意波长相当时,粒子中的电子
1.2.2.电镜观察粒度分析
• 最常用的方法,不仅可以进行纳米颗粒大 小的分析,也可以对颗粒大小的分布进行 分析,还可以得到颗粒形貌的数据。 • 扫描电镜 和 透射电镜 • 主要原理:通过溶液分散制样的方式把纳 米材料样品分散在样品台上,然后通过电 镜放大观察和照相。通过计算机图像分析 程序就可以把颗粒大小、颗粒大小的分布 以及形状数据统计出来。
1. X射线衍射(powder x-ray diffraction,XRD)
• x射线粉末物质衍射是鉴定物质晶相的有效手段。 可以根据特征峰的位置鉴定样品的物相。此外, 依据XRD衍射图.利用scherrer 公式,用衍射峰的半 高宽和位置(2θ)可以计算纳米粒子的粒径。几乎 所 有纳米材料的表征郁少不了x射线衍射方法。改进的x 射线 Fourier解析法分析XRD单峰,都得到较准确的晶 粒尺寸。中山大学 物理系的古堂生等提出了测量纳米 晶粒尺寸分布的新方法。 XRD还用于晶体结构的分析。对于简单的晶体结构, 根据粉末 衍射图可确定品胞中的原子位置、晶胞参数 以及晶胞中的原子数。高 分辨X射线粉末衍射用于晶 体结构的研究,可得到比XRD更可靠 的结构信息,以 及获取有关单品胞内相关物质的元素织成比、尺寸、 离子间距与键长等纳米材料的精细结构方面的数据与 信息.
纳米粒度分析仪安全操作及保养规程

纳米粒度分析仪安全操作及保养规程纳米粒度分析仪是一种用于测量粒子和分子尺寸的仪器。
在使用纳米粒度分析仪时,需要注意安全操作及保养规程,以保证仪器的运行效果和使用寿命。
本文将介绍纳米粒度分析仪的安全操作和保养指南。
安全操作1. 使用前的检查在使用纳米粒度分析仪前,需要先对仪器进行检查,检查是否有摄像头等部件出现未知故障。
2. 操作人员要求在使用纳米粒度分析仪前,需要保证操作人员已经接受过相关培训,并熟悉仪器的操作流程。
操作人员在仪器的使用过程中也需要保持集中注意力,保证仪器正常运作。
3. 电器安全纳米粒度分析仪是一种电气设备,因此需要注意保护电器安全。
在使用过程中,需要确保所有电器设备接地良好,以避免电气事故的发生。
4. 样品制备在样品制备过程中,需要保证样品安全。
如有毒性样品需要使用,需要使用特定的专用器具,并保证在通风情况下进行,防止对操作人员和环境造成伤害。
5. 禁止直接触摸部件在运行纳米粒度分析仪时,不得直接接触仪器的配件或部件。
除非特殊情况下需要进行仪器装卸等操作时,应该确保个人安全。
6. 隔离安全在纳米粒度分析仪运行状态下,需要对操作区域隔离,避免他人干扰。
禁止其他人员进入操作区域,避免发生误操作或意外伤害。
7. 关闭仪器在使用完毕后,需要通过正常的关闭程序来关闭纳米粒度分析仪。
在长期不使用时,可以拔掉仪器的电源,保护仪器的电器安全。
保养指南1. 仪器的清洁在使用纳米粒度分析仪时,需要定期清洁仪器,特别是仪器精密的光学部件。
可以使用纯水或者其他专门的清洗液来进行清洗。
2. 仪器的调理在使用过程中,需要对仪器进行调理。
比如调节液体样品的安放位置,进行实验室空间的清理等。
3. 维护仪器在使用仪器过程中,需要定期检查仪器的部件,例如光学组件、激光、探测器、透镜,确保它们的正常工作。
如果出现故障,应及时联系厂家或专业人士进行修理。
4. 置于适宜的环境纳米粒度分析仪应该放置在一个适宜的环境,例如避光、通风、干燥的地方,避免影响仪器的精度和可靠性。
2024年纳米粒度分析仪市场前景分析

2024年纳米粒度分析仪市场前景分析摘要:纳米粒度分析仪作为一种用于测量颗粒尺寸分布的关键工具,在许多领域中具有广泛的应用。
本文将对纳米粒度分析仪市场进行前景分析,包括市场规模、市场增长趋势以及市场驱动因素。
通过一个综合的市场分析,我们可以了解到纳米粒度分析仪市场的发展潜力以及未来的市场趋势,为企业的决策制定提供参考。
1. 简介纳米粒度分析仪是一种用于测量颗粒尺寸分布的仪器,可以通过粒子的散射、屈光性或沉降速度等参数来获取颗粒尺寸的信息。
它在材料科学、生命科学、环境科学等领域中被广泛应用,对于纳米材料的研究和生产具有重要意义。
2. 市场规模根据市场研究报告的数据,纳米粒度分析仪市场在过去几年中呈现出稳定增长的趋势。
预计到2025年,该市场的价值将达到XX亿美元,年复合增长率预计为X.X%。
3. 市场增长趋势3.1 技术创新推动市场增长纳米粒度分析仪市场的增长主要受到技术创新的推动。
随着科学技术的不断进步,新的测量方法和技术正在不断涌现,使得纳米粒度分析仪具有更高的分辨率和更准确的测量结果。
这进一步推动了市场的发展,并促使科研机构和企业增加对纳米粒度分析仪的需求。
3.2 纳米材料的广泛应用随着纳米技术的快速发展,纳米材料在多个领域中得到广泛应用。
纳米材料具有独特的物理和化学性质,在电子、医药、能源等领域中有着广阔的应用前景。
纳米粒度分析仪作为纳米材料研究和生产的关键工具,其市场需求也将随之增加。
3.3 严格的质量控制要求许多行业对产品的颗粒尺寸分布有严格的要求,例如制药业中的药物颗粒、化工业中的催化剂颗粒等。
纳米粒度分析仪能够提供精确的颗粒尺寸分布分析,帮助企业进行质量控制和优化生产工艺。
受到严格的质量控制要求的推动,纳米粒度分析仪市场将继续增长。
4. 市场驱动因素4.1 技术进步和研发投入纳米粒度分析仪市场的发展受到技术进步和研发投入的驱动。
不断投入研发,提高纳米粒度分析仪的性能和准确度,可以满足不断增长的市场需求,并在竞争激烈的市场中保持竞争优势。
纳米粒度分析仪使用方法说明书

纳米粒度分析仪使用方法说明书使用说明书一、产品概述纳米粒度分析仪是一种先进的仪器设备,用于测量物质的粒子尺寸和粒子分布情况。
本使用说明书旨在帮助用户正确操作和维护纳米粒度分析仪,以确保其正常运行和精确的测量结果。
二、安全注意事项1. 在使用纳米粒度分析仪之前,请仔细阅读本使用说明书,并按照指导进行操作。
2. 在操作纳米粒度分析仪之前,确保工作场所干燥、通风良好,并避免阳光直射。
3. 使用纳米粒度分析仪时,请戴上个人防护设备,如手套、防护眼镜等。
4. 在清洁和维护仪器时,请先断开电源并等待相关部件冷却。
5. 切勿擅自拆卸、修改或修理纳米粒度分析仪的任何部件。
如有故障或需要维修,请联系售后服务中心。
三、仪器组成1. 主机:包括控制面板、显示屏和操作按钮等。
2. 采样仓:用于存放待测样品。
3. 光源系统:提供光源用于激发样品并接收散射光信号。
4. 探测系统:用于接收并测量激发样品后的粒子散射光信号。
5. 数据处理系统:负责将采集到的数据处理并输出粒子尺寸和分布结果。
四、操作流程1. 准备工作a. 将纳米粒度分析仪放置在平稳的桌面上,确保周围环境干燥、无明亮光源。
b. 接通电源,并按照主机上的指示等待系统启动。
c. 使用合适的工具打开采样仓,放入待测样品,并尽量均匀摊开样品。
d. 关闭采样仓,确保密封。
2. 开始测量a. 在主机的控制面板上选择适当的测量模式和参数设置。
b. 点击开始测量按钮,纳米粒度分析仪将自动进行测量。
c. 注意观察显示屏上的实时数据,并等待测量完成。
3. 数据分析和结果输出a. 测量完成后,纳米粒度分析仪将自动进行数据分析。
b. 在显示屏上查看分析结果,包括粒子尺寸和粒子分布图。
c. 如有需要,可以将结果导出到计算机或存储设备中。
五、维护保养1. 每次使用后,请断开电源并等待仪器冷却后再进行清洁。
2. 使用干净的软布轻轻擦拭仪器表面,避免使用有腐蚀性的溶液或物质。
3. 定期检查仪器的各个连接处,确保紧固和防尘。
纳米粒度分析仪的使用指南

纳米粒度分析仪的使用指南纳米粒度分析仪使用指南引言纳米科技是当前科技领域的热点之一,纳米粒子的粒度分析对于了解材料的性质和应用具有重要意义。
纳米粒度分析仪是一种用于测量和分析纳米颗粒尺寸的仪器,在研究、开发和生产中广泛应用。
本文将介绍纳米粒度分析仪的使用指南,帮助读者了解该仪器的原理、操作步骤和数据解读,以及仪器调试和维护的相关知识。
一、纳米粒度分析仪的原理纳米粒度分析仪主要通过光学或声学的方式,测量并分析样品中的纳米颗粒尺寸。
光学纳米粒度分析仪利用散射光的强度和方向性来推测粒子的直径,并结合洛伦兹-玛尔多纳散射理论进行进一步计算得出结果。
声学纳米粒度分析仪则通过声波散射的方式来测量粒子的尺寸。
两种方式各有优劣,根据实际需求选择合适的仪器。
二、纳米粒度分析仪的操作步骤1. 样品准备:将待测试的纳米颗粒样品适当稀释,并充分摇匀,确保样品中的颗粒均匀分散。
2. 仪器准备:根据实际需要,选择合适的测量模式和参数设置,并确保仪器处于正常工作状态。
3. 校准:对仪器进行校准,确保测量结果的准确性和可靠性。
4. 测量:将样品置于纳米粒度分析仪中,开始测量。
根据仪器的要求,进行必要的操作和参数调整。
5. 数据分析:通过软件对测量得到的数据进行分析和处理,得出纳米颗粒的尺寸分布和相关统计数据。
6. 结果解读:根据数据分析的结果,对样品的纳米颗粒尺寸以及分布情况进行解读和分析,并结合实际应用需求进行相应的判断和调整。
三、纳米粒度分析仪数据解读纳米粒度分析仪测量得到的数据通常包括平均粒径、粒径分布图、样品稳定性等。
通过分析这些数据,可以了解样品中纳米颗粒的尺寸分布情况,进而判断样品的质量和性能。
1. 平均粒径:反映样品中颗粒尺寸的平均水平。
较小的平均粒径通常意味着样品中的颗粒越细小,而较大的平均粒径则意味着样品中的颗粒越粗大。
2. 粒径分布图:将样品中的粒径大小进行统计和分布显示,常见的有累积粒径分布图和数频率粒径分布图。
纳米粒度_实验报告(3篇)

第1篇一、实验目的1. 了解纳米粒度仪的基本原理和操作方法。
2. 学习纳米粒度分析在材料科学、生物医学等领域的应用。
3. 通过实验,掌握纳米颗粒粒径和分布的测量方法。
二、实验原理纳米粒度仪是一种基于动态光散射(DLS)原理的仪器,通过测量颗粒在液体中布朗运动的速度,从而确定颗粒的大小和分布。
实验过程中,激光照射到悬浮颗粒上,颗粒对光产生散射,散射光经过光学系统被探测器接收,通过分析散射光的时间变化,可以得到颗粒的粒径和分布信息。
三、实验仪器与试剂1. 仪器:纳米粒度仪、激光光源、样品池、计算机等。
2. 试剂:纳米颗粒悬浮液、分散剂、滤纸等。
四、实验步骤1. 样品准备:将纳米颗粒悬浮液用滤纸过滤,去除杂质,确保样品的纯净度。
2. 仪器设置:打开纳米粒度仪,调整激光光源、样品池等参数,使仪器处于正常工作状态。
3. 样品测量:将处理好的纳米颗粒悬浮液注入样品池,设定测量时间,启动仪器进行测量。
4. 数据处理:将测量得到的数据导入计算机,利用纳米粒度仪自带软件进行数据处理,得到粒径和分布信息。
5. 结果分析:根据实验结果,分析纳米颗粒的粒径分布、平均粒径等参数,并与理论值进行对比。
五、实验结果与分析1. 纳米颗粒粒径分布:实验测得纳米颗粒的粒径分布如图1所示。
从图中可以看出,纳米颗粒的粒径主要集中在20-50nm范围内,符合实验预期。
图1 纳米颗粒粒径分布2. 纳米颗粒平均粒径:根据实验结果,纳米颗粒的平均粒径为30.5nm,与理论值相符。
3. 纳米颗粒分散性:实验测得纳米颗粒的分散性较好,说明样品在制备过程中未发生团聚现象。
六、实验讨论1. 实验过程中,纳米颗粒的粒径分布和平均粒径与理论值相符,说明实验方法可靠,仪器性能稳定。
2. 实验结果表明,纳米颗粒的分散性较好,有利于其在材料科学、生物医学等领域的应用。
3. 在实验过程中,应注意样品的制备和仪器操作,以保证实验结果的准确性。
七、结论本次实验成功测量了纳米颗粒的粒径和分布,验证了纳米粒度仪在材料科学、生物医学等领域的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光子相关光谱法(PCS):测量悬浮液中做布 朗运动的粒子数和粒径之间的关系。也称作动 态光散射(Dynamic Light Scattering , DLS)。
2020/8/1
纳米粒度分析仪测量的参数:
• 颗粒的平均粒径 • 粒径分布的宽度
在数据分析过程中假设颗粒都是各向同性的 和球形的。
2020/8/1
2、在制备样品的最后阶段,为了减少再次引入灰尘 的机会,要将液体与空气的接触减到最少。只要可 能,使用直接的连接,避免接触空气。
3、不要长时间贮存过滤水。细菌会在贮存水中生长, 在测量中产生散射光线。
2020/8/1
溶液/悬浮液的制备
4、若可能,避免将液体喷射入烧瓶或样品池中, 让液体沿着清洁光滑的一面注入,这样可以减少再 次引入灰尘。
图为pH 值=1.5,掺杂量n(Ce)∶n(TiO2)=1∶300条件下制备的Ce -TiO2经600℃热处理后样品的粒度分布曲线,可看出Ce-TiO2样品的颗粒粒度 分布窄,且颗粒尺寸小,这说明Ce掺杂有利于阻止TiO2晶粒的长大,并使得样品粒度分 布均匀。
2020/8/1
案例二:合成的非离子型水性环氧固化剂在室 温下乳化EPON828 所得的乳液粒径分布
1
5 10 50 100 Diameter (nm)
二、PCS仪器介绍
测2020量/8/1 范围:0.6nm~6000nm
2020/8/1
2020/8/1
1、激光:使用固 定波长为632.8nm 的单色连续的氦 氖激光作光源;
2、样品池;
3、光学系统和检 测器
4、主光束截止器;
5、相关器;
6、计算单元
由图 可见,所得的乳液粒径细小,均在1 μm 以下,表明其具有良好的乳化中 低分子质量液体环氧树脂的功能,这与合成的非离子型水性环氧固化剂具有独 特的分子结构分不开:含有与被乳化的液体环氧树脂极相似的疏水链段,同时 含有20柔20/8性/1 高分子聚醚亲水链段及多胺亲水链段。
案例三:新型丙烯酸酯杂合/1
两个固定的颗粒、光束反向、散射光强度降低。
Screen
两个固定的颗粒、光束同向、散射光强度增加。
Screen
很多颗粒、很复杂的光强度模式。
Screen
作布朗运动的分散颗粒的散射光强度I(t)沿时间轴而起伏 涨落,提供分散颗粒的运动信息。
光信号变化慢,布朗运动速度慢,颗粒大
NUMBER
1
1
VOLUME
=
4 3
pr3
1000
INTENSITY =d6
1,000,000
Relative % in class Relative % in class Relative % in class
5 10 50 100 2020/D8/1iameter (nm)
1
5 10 50 100 Diameter (nm)
5、一旦样品制备好后切勿剧烈振摇,否则溶液中 会混入含有灰尘的空气。小得看不见的气泡比大量 的所测试的颗粒将散射更多的光线。轻轻旋转是最 好的方法。
6、样品在稀释瓶中作间歇的超声波处理,每次大约 持续10秒钟,再停顿几秒钟,共约2分钟。
2020/8/1
四、应用示例
案例一: Ce-TiO2 粒径分布分析
2020/8/1
三、样品的制备和检查
(一)分散介质 样品应在液体介质中有良好的分散性。分散介质应满足下 列要求:
a)对激光波长应是透明(不吸收)的。 b)与仪器所用的材料相容。 c)样品颗粒在该液体介质中不溶解、不膨胀、不团聚。 d)其折射率与颗粒的折射率不同。 e)已知其折射率数及粘度,准确度应优于0.5%。 f)应充分过滤。
(五)样品的吸光度
光通过样品后被吸收的程度。
2020/8/1
(六)样品的制备
1、溶剂的净化
过滤(灰尘)、 0.2um的一次性过滤器 金属离子的影响(水纯化系统来净化水)
2、样品池的清洁 3、溶液/悬浮液的制备
2020/8/1
溶液/悬浮液的制备:
1、最重要的是用纯化的和经过滤的液体冲洗每件东 西(包括样品池和盖子、稀释瓶和盖子、移液管或 注射器、装缓冲液和表面活性剂的玻璃器皿)。用 纯化的和经过滤的液体制备缓冲液和表面活性剂。
非常大的颗粒,高分布宽度,存在非常大的颗粒
2020/8/1
光强度分布: I a d6
2020/8/1
根据米氏理论,知道颗粒的折射率与吸光率:
光强度与粒径的关系
体积与粒径的关系
数量与粒径的关系
2020/8/1
体积分布:V a d3
2020/8/1
数量分布:Na d
2020/8/1
5nm 和 50nm的球形颗粒、数量相同
( a) HPAE
( b) PAH
HPAE 的平均粒径为170 nm,分布范围窄( 多分散指数PDI = 0. 014) ; PAH 平均粒径仅为93 nm,而且分布范围更宽( PDI = 0. 113) ,其可能原因是:由于PAH由负载2 种不同功能基团( — COOH和—OH) 的乳胶粒P1 和P2 组成,整个乳液体系呈现“大
无灰尘或污染的分散介质在仪器中不产生散射信号(或信号 极低)。
2020/8/1
(二)样品颗粒的浓度
2020/8/1
(三)样品的温度
给定样品准确的温度,计算出样品的粘度。 样品的温度必须稳定,温度改变会使样品池内产生对流 从而使峰变宽。
(四)样品的折射率
颗粒散射光的产生是由于样品与分散介质具有不同的折 射率。折射率的差异越大,样品发生散射的动力越大。
• 信号改变平缓:信号变化慢,布朗运动慢,颗粒大; • 信号改变陡:信号变化快,布朗运动快,颗粒小。
2020/8/1
样品是大颗粒的典型的相关关系图:
2020/8/1
样品是小颗粒的典型的相关关系图:
2020/8/1
2020/8/1
大202颗0/8粒/1 ,中等分布宽度,存在非常大的颗粒
非20常20/8小/1 的颗粒,中等分布宽度,不存在大颗粒
2020/8/1
一、基本原理
1、布朗运动
1827年植物学家布朗在用显微镜观察水中悬浮的极小 的花粉微粒时,发现花粉微粒总是在不停地作无规则的运 动。后来人们就把这种运动叫做布朗运动。
2020/8/1
布朗运动是指由于溶剂分子的轰击使颗粒作随机无规则的运动。
Stokes-Einstein 方程:
d(H)
Large Particles
Intensity
2020/8/1
Time
光信号变化快,布朗运动速度快,颗粒小
2020/8/1
相关器:能反映出光信号变化快慢情况。 散射光强度的时间自相关函数G2(τ):本质上是时间差τ的 一个指数衰减函数。相关器能反映出光信号变化快慢情况。它 是把前面的信号测完后先保存下来,后面信号与前面信号相比 较。
=
kT
3phD
其中, d(H) :颗粒粒径(流体力学直径) ; k : 波兹曼常数; T : 绝对温度; h : 粘度;
D : 扩散系数
颗粒越大,布朗运动速度越慢
温度越高,运动越快
粘度越大,运动越慢
2、 光 子 相 关 光 谱 法 ( PCS-Photon Correlation Spectroscopy)